中蒙边界亚干变质核杂岩糜棱状钾质花岗岩 ——早中生代收缩与伸展构造体制的转换标志^{*}

王涛¹ 郑亚东¹ 刘树文¹ 李天斌² 马铭波¹

WANG Tao¹, ZHENG YaDong¹, LIU ShuWen¹, LI TianBin² and MA MingBo¹

1. 北京大学地质系,北京 100871 2. 宁夏区域地质调查院,银川 750021

1. Department of Geology, Peking University, Beijing 100871, China

2. Regional Survey Institute of Ningxia Province, Yinchuan 750021, China

2001-02-19 收稿, 2001-06-18 改回.

Wang T, Zheng YD, Liu SW, Li TB and Ma MB. 2002. Mylonitic potassic granitoids from the Yagan metamorphic core complex on Sino-Mongolian border: a mark of transition from contractile to extensional tectonic regime. Acta Petrologica Sinica, 18(2):177-186

Abstract Occurrences of large-scale thrusts and extensional tectonics in Middle and Late-Mesozoic are a striking feature of the tectonics in the North China Block. This paper, however, further recognizes Early Mesozoic mylonitic granites with extensional tectonic setting from the Yagan metamorphic core complex (MCC), a typical representative of extensional tectonics. They have features of potassic or shoshonitic granite types and their tectonic discriminations show extensional setting. The zircon U-Pb dating of the Shuiquangou mylonitic pluton yields 228 + 7Ma. These granitoids were strongly deformed by syn-tectonic magmatic flow and high-temperature solid flow. All these characteristics suggest that adjustment, thinning and extensional deformations at the middle-low crustal levels might have started from the early Mesozoic, *i. e.* much more earlier than the final formation (Mesozoic) of the large-scale extensional tectonics, *i. e.* the MCC. Integration of all these characteristics displays a peculiar tectonic dynamic mechanism and setting.

Key words Mylonitic granite, Syn-emplacement deformation, Extensional setting, Early Mesozoic, Sino-Mongolian border

摘 要 中、晚中生代大型推覆和伸展构造的发育是华北地块及北缘构造的一大特色。本文在典型伸展构造亚干变质核杂 岩中识别出早期具拉张环境的糜棱状花岗岩,岩石类型为钾质花岗岩及钾玄岩系列,具造山后及板内拉张构造环境特点,锆 石 U-Pb 定年为 228±7Ma.这些岩石强烈变形,并发育同侵位岩浆流动和高温固态流动变形。这些特征表明在晚中生代该核 杂岩成型之前即早中生代中下地壳层就已经历调整、减薄和伸展变形。它们的组合揭示了一种特有的构造动力学机制和 背景。

关键词 糜棱岩状花岗岩;同侵位变形;拉张环境;早中生代;中蒙边界 中图法分类号 P588.121; P597.3; P534.5

晚中生代伸展构造是中、东亚地区特别是中国华北及邻 区显著的地质特征. 中蒙边界及南蒙一带发现的亚干 (Zheng et al., 1991; Zheng Y & Zhang Q, 1994)或亚干-翁 奇海尔罕变质核杂岩(Webb et al., 1999)是其典型代表,它 将中东亚中生代局部高应变伸展作用区扩展至中亚腹地 (Webb et al., 1999)。更为令人瞩目的是,该区还发育有特 大型陆内推覆构造(Zheng et al., 1996),亚干核杂岩正好叠 加于其上。它们真实地记录了从缩短至伸展构造的转化 (Webb et al., 1999; Zheng et al., 1996)。这些重要的构造 意义已引起了国外有关学者的关注(Webb et al., 1999;

^{*} 国家自然科学基金(49872072)和中国博士后科学基金资助项目. 第一作者简介:王涛,男,1959年生,博士后,从事花岗岩、构造研究.

Graham *et al.*, 1996; Johnson *et al.*, 1997; Webb *et al.*, 1997)。目前,这种转换的确切时间、标志、深浅部构造的耦合 及其动力学等成为人们关注、研究的重点。我们近期的研究 表明,在亚干核杂岩中还发育有时代更早的具拉张环境的糜 棱状钾质花岗岩,暗示在上述构造发育之前已开始出现伸展 构造背景,比变质核杂岩(150~126Ma)指示的区域性伸展 提前了近 90~100Ma,从而揭示了更为复杂的挤压与伸展的 转换关系,为探讨大陆内部特有的动力学背景和机制提供了 新线索。本文研究了该类岩石的变形和岩石地球化学特征以 及年代学,初步探讨其揭示的构造意义。

1 区域地质背景及亚干核杂岩

研究区位于华北地台、塔里木地台和西伯利亚地台三大 构造单元的构造复合部。该区于晚古生代蒙古洋封闭,经历 了海西期造山作用,使二叠系(上二叠统)发育强烈褶皱及区 域低绿片岩相变质。晚三叠纪陆相磨拉石角度不整合于其上,标志造山作用的结束。侏罗系和早白垩统为同伸展盆地快速堆积产物。此外,发育有元古代白云质灰岩推覆体和飞来峰,展现了陆内特大型逆冲推覆构造(Zheng *et al.*, 1996)。前寒武纪深变质岩系(片麻岩系)则呈核杂岩形式产出,如亚干变质核杂岩即亚干-翁奇海尔罕变质核杂岩(Webb *et al.*, 1999)。

该核杂岩发育于内蒙阿拉善盟西部中蒙边境及蒙古国 (图1),由下盘变质核、拆离带及上盘组成。变质核由角闪岩 相深变质岩系构成;上盘由二叠系、侏罗系、白垩系及呈飞 来峰的元古代白云质灰岩组成。已有的下盘变质岩黑云母 K-Ar、Ar-Ar 年龄和花岗岩 K-Ar 年龄资料(150~126Ma) (Zheng *et al.*,1991; Zheng Y & Zhang Q,1994; Webb *et al.*,1999)以及中侏罗世、白垩世同伸展沉积盆地的发育显 示,侏罗世-白垩世是核杂岩主体的形成时期。但这一伸展构 造何时开始发育,与推覆构造的转换时间尚不清楚。

图 1 亚干变质核杂岩及糜棱状花岗岩体地质略图

文中小插图和 126±1Ma 年龄据 Webb et al. (1999),其余年龄为作者新测定

Fig. 1 Sketch map of the Yagan metamorphic core complex and the mylonitic grantoids

2 糜棱状花岗岩体的产状及变形特征

亚干核杂岩中侵入有大量花岗岩体,依据地质产状和同 位素年龄可分为前中生代、早中生代、晚中生代岩体。前中生 代岩体以片麻状岩体和亚东岩体(锆石 U-Pb 年龄 262Ma, 王涛,2000)为代表;晚中生代岩体为同构造(中生代)晚期 的近圆形末变形岩体如呼热岩体(锆石 U-Pb 年龄 135Ma, 王涛,2000)。本文重点研究的是早中生代同构造(中生代) 早期的线状糜棱状岩体。

2.1 形态及产状

糜棱状岩体(水泉沟岩体)发育于核杂岩伸展拆离带附 近(图1),平行主期伸展面理呈线型(席状)产出,宽约2km, 长至少40km,轴比达20,直观地显示了强烈的变形特点。作 为花岗质糜棱岩带,它将核杂岩核部结晶岩系进一步分为下 部为中深变质岩片和上部中浅变质岩片,很可能是核杂岩中 被花岗岩愈合并再次糜棱岩化的韧性拆离带。据估算,在地 表面(近 XY 和 YZ 面)上,岩石应变轴率最大约为 3;若去应 变,岩体初始形态轴比也达 7 左右,表明该岩体原为席状 侵入。

2.2 同侵位变形

岩体发育强烈的面理和线理,产状近一致,均向南缓倾, 与区域面理、线理一致。岩石组构可鉴别出(亚)岩浆流动组 构和高温固态流动组构。前者表现为成分条带、暗色析离体 及包体的定向;一些岩石中磁铁矿集合体也略显定向;后者 以斜长石、钾长石强烈的长条状、透镜状动态重结晶集合体 条带为特征,显示了高温(至少>600°C)固态变形(Paterson et al., 1989; 1998)。石英也呈现较粗的动态重结晶集合体 条带。这些特征表明在岩浆结晶过程中或不久便发生了变 形,是同侵位变形,这是同构造岩体的特征(Paterson *et al.*, 1989; 1998; Miller et al., 1994; Schulmann et al., 1996; Schofield et al., 1998)。此外,斜长石脆性破碎、石英的强烈 细粒化条带及白云母、绢云母的生成,反映了岩体固结后的 中低温(400°C~300°C)固态变形(Paterson et al., 1989)的 叠加。一些糜棱岩中的黑云母 130~126Ma Ar-Ar 年龄 (Webb et al., 1999)(封闭温度 300℃~350℃)可能反映了 这一期变形。值得注意的是上述组构相互平行,总的构造特 征是这些组构叠加的综合结果。

2.3 剪切变形机制

岩石呈现 S-L 组构和 L 组组构,具有典型的简单剪切和 拉伸变形特点。S-C'组构的普遍发育(Zheng et al., 1991; Zheng Y & Zhang Q, 1994) 显示了伸展变形的特点。以前几 乎所有描述该杂岩韧性伸展变形的实例均取自该变形岩体 (Zheng et al., 1991; Zheng Y & Zhang Q, 1994)。在手标本 上以长石透镜状残斑为标志体(镜下为动态重结晶集合体), 用 Rf/φ 法进行了应变测量,结果显示 LOD 参数为 0.19~ 0.32,为近简单剪切为主、压扁次之的变形类型;三维应变 强度 Es 可达 0.62~0.83。实际上,由于变形分解作用(Bell, 1985),长石承担了整个岩石主要的压扁变形组分,较"软"的 变形更强的基质及石英承担了主要的简单剪切变形组分; 因此,整个岩石可能具有简单剪切甚至拉伸变形。该应变不 包括基质很多带状石英、长石的应变,所测的 Es 值近似代表 变形长石的最小值。由于两种长石同时发生韧性变形的温度 高(至少>600°C)(Paterson et al., 1989; 1998),接近于同 侵位变形,而后期中低温变形集中于基质及石英,故本文测 定的应变主要反映了早期近同侵位变形特征。

3 花岗岩的岩石地球化学特征

3.1 岩相学特征

主体岩性为极强变形的眼球状、糜棱状中一中粗粒含斑

黑云母石英二长岩或二长花岗岩。岩石呈淡肉红色,眼球状、 糜棱状构造,长石呈长透镜状,原岩应为斑状中一中粗粒花 岗结构。镜下岩石具变晶糜棱岩结构;碎斑占40%~50%, 其中钾长石(镜下表现为条纹长石)30%~35%,斜长石15% ~20%,基质由石英(15%~25%)、长石(20%~40%)、黑云 母(5%)及少量绿泥石组成。局部见长石常与石英交生构成 的微文象结构。主要副矿物为磁铁矿、钛铁矿、锆石、褐帘石、 磷灰石和独居石,磁铁矿含量远大于钛铁矿。略晚的糜棱状 中-中细粒(含小斑)黑云母石英二长岩、黑云母二长花岗岩 具有与上述相近的矿物组成,只是黑云母含量较低(5%~ 2%);副矿物磁铁矿呈集合体斑点出现。更晚的中细粒含石 榴石黑云母二长花岗岩主要矿物含量为钾长石30%~3%, 斜长石15%~20%,石英(20%~30%)、黑云母1%~2%, 白云母1%、石榴石2%。

3.2 地球化学特征

对野外采集的样品经过薄片鉴定后,选择新鲜和有代表 性的样品进行地球化学分析。主量、微量和稀土元素分析在 国土资源部测试中心测定。样品经 $105^{\circ}C \pm 5^{\circ}C$ 烘 $1 \sim 2h$, 取 0.5g 样, 以无水偏硼酸锂为溶剂,在1150℃~1250℃高频感 应炉中熔融,铸成玻璃片,用 XRF 测定,仪器为日本理学 3080。一些含量低的微量和稀土元素用 ICP-AES ICP-MS (仪器 JA1160,美国 TJA POEMS 公司生产)测定。微量元素 样品经 HCI-HNO₃-HF-HCIO₄ 分解,在 3%HNO₃ 介质中,用 ICP-AES 测定。稀土元素取 0.5g 样品经 Na₂O₂ 熔融,10% 三乙醇胺提取、过滤,用 2mol/L 盐酸溶液沉淀的溶液经阳离 子交换分离,用 3.5mol/L 盐酸淋洗树脂吸附的稀土元素,用 ICP-AES ICP-MS 测定。分析结果列于表 1。同位素样品由中 国科学院地质研究所同位素实验室分析,实验流程可见已有 文献叙述(黄萱等,1990)。Sr 同位素比值测定采用⁸⁶Sr/⁸⁸Sr = 0.1194进行质量分馏校正, Nd 同位素比值测定采用 $^{146}Nd/^{144}Nd=0.7219$ 校正,分析流程空白试验本底: Rb<8×10⁻¹¹g, Sr<8×10⁻¹⁰g, Sm、Nd(1×10⁻¹²g。分析结 果列于表 2。

3.2.1 岩石地球化学

主体岩石的 A/NCK 变化范围较大,0.89~0.98,为准 铝质,少数为过铝质(表1)。与该区其它花岗岩和一般花岗岩 相比,它具以下特点:

(1) Al₂O₃、FeO*略高,特别是 K₂O 明显较高(4.71~
8.22),显示了钾玄岩系列特点(Peccerillo and Taylor, 1976)
(图 2a); K₂O/Na₂O 比值>0.5(0.95~2.08)(图 2b),也显示钾玄岩系列特点(Väisänen *et al.*, 2000); 个别达到超钾 玄岩系列的比值(K₂O/Na₂O 值>2.0)(Turne *et al.*, 1996);

(2)碱值高,达到了 A-型花岗岩的富碱程度(图 2c)。 δ 为 2.98~8.01,过碱指数 AKL(K₂O+Na₂O)/Al₂O₃)为 0.64~ 0.71。在 SiO₂-(K₂O+Na₂O)、SiO₂-FeOT/MgO 等很多有 关常量元素的图解中大都位于碱性及 A 型花岗岩区。

图 2 糜棱状花岗岩的常量元素的岩石类型图解

a. K₂O-SiO₂图解界限据 Peccerillo and Taylor (1976);

b. K₂O/Na₂O-SiO₂ 图解(K₂O/Na₂O>0.5 为钾玄岩系列,椐 Väisänen et al. (2000);

c. $(Al_2O_3 + CaO)/(FeO* + Na_2O + K_2O) - 100(MgO + FeO* + TiO_2/SiO_2$ 图解椐 Sylester (1997)

Fig. 2 Major element diagrams for rock types of the mylonitic grantoids

图 3 糜棱状花岗岩的稀土元素球粒陨石标准化分布模式

Fig. 3 Chondrite-normalized REE distribution pattens of the mylonitic grantoids

图 4 糜棱状花岗岩的在 A 型花岗岩判别图解中的位置

Ce,Nd,含量-10000 * Ga/Al 关系图、1000 * Ga/Al 和 FeO * /Mg-Zr+Nb+Ce+Y 关系图.

I,S-S和I型花岗岩分布区; FG-分异的I,S型花岗岩分布区; OGT-I,S,M型花岗岩分布区据 Whale (1987)

Fig. 4 Locations of the mylonitic grantoids in discrimination diagrams for A-type granites

表1 糜棱状钾质花岗岩岩石地球化学分析结果

Table 1 Major-, trace- and rare-earth-element compositions of mylonitic potassic from the Yagan MCC

样号	113	I9	N7	I31	179/1	I18	007/1	I32
SiO_2	64.31	64.11	65.14	55.09	63.4	61.22	72.83	75.91
TiO_2	0.56	0.32	0.47	0.65	0.36	0.36	0.18	0.06
Al_2O_3	16.53	16.88	16.75	19.72	18.12	18.27	13.84	13.44
$\mathrm{Fe}_2\mathrm{O}_3$	2.02	0.79	1.03	3.24	2.46	2.02	0.75	0.09
FeO	1.99	1.13	1.68	2.93	0.23	1.24	0.7	0.29
MnO	0.14	0.13	0.12	0.15	0.03	0.08	0.03	0.09
MgO	1.21	0.50	0.76	2.55	0.49	0.79	0.24	0.09
CaO	2.08	2.17	2.02	3.53	0.7	2.14	1.08	0.09
Na ₂ O	5.05	3.95	4.93	5.02	5.89	6.21	3.48	3.91
K_2O	5.69	8.22	6.76	5.29	6.89	5.87	5.95	4.71
P_2O_5	0.32	0.14	0.17	0.79	0.15	0.25	0.04	0.01
$\rm H_2O^+$	0.24	0.56	0.34	0.78	0.48	0.62	0.42	0.5
Los	0.37	1.02	0.54	0.8	0.68	1.31	0.47	0.64
Total	100.5	99.9	100.7	100.5	99.9	100.4	100.0	99.8
A/NCK	0.91	0.87	0.88	0.97	0.98	0.89	0.98	1.15
KNA	0.65	0.72	0.70	0.52	0.71	0.66	0.68	0.64
δ	5.41	7.02	6.17	8.79	8.01	8.01	2.98	2.26
W	0.50	0.41	0.38	0.53	0.91	0.62	0.52	0.24
RA	3.73	4.54	4.30	2.59	5.23	3.90	4.44	4.51
La	133.90	90.38	128.65	185.30	125.70	69.59	69.28	4.79
Ce	252.00	200.30	231.40	298.60	235.00	105.20	127.50	5.72
Pr	25.78	19.51	24.15	27.73	22.37	9.39	11.67	0.74
Nd	101.60	73.41	90.65	96.74	78.66	32.31	39.39	3.33
Sm	15.99	11.26	14.81	12.95	11.55	4.10	6.45	1.02
Eu	2.77	2.09	2.67	2.96	2.14	1.48	0.57	0.41
Gd	15.20	9.59	14.32	12.01	10.64	3.24	4.79	1.92
Tb	1.67	1.12	1.47	1.41	1.40	0.39	0.42	0.42
Dy	9.36	6.09	7.38	5.37	6.26	1.51	1.48	3.26
Ho	1.84	1.11	1.74	0.94	1.13	0.28	0.21	0.79
Er	4.74	3.14	4.47	2.83	3.15	0.73	0.60	2.63
Tm	0.68	0.42	0.57	0.36	0.41	0.10	0.10	0.41
Yb	4.29	2.18	4.03	2.06	2.71	0.49	0.23	3.62
Lu	0.67	0.01	0.57	0.34	0.41	0.10	0.10	0.61
Y	45.49	26.04	39.74	22.83	28.54	5.28	3.34	22.74
REE	616.0	446.7	578.5	672.4	530.1	234.2	266.1	52.4
LR/HR	6.34	7.99	5.67	12.97	8.70	18.32	22.61	0.44
La/Yb	31.21	41.46	37.23	89.95	46.38	142.02	301.22	1.32
δEu	0.53	0.60	0.59	0.71	0.58	1.20	0.30	0.88
(La/Yb) _N	21.09	28.02	20.41	60.78	31.34	95.97	203.55	0.89
Cr	5	7.25	6	16	12	14	14	14
Co	27	1.72	25	12	1.4	2.9	0.1	0.1
Ni	5	4	4.2	6.7	4.1	4	4	4
V	29	10.16	27	92	24	25	1.5	1.5
Th	10	13	11	35	30	14	104	21
Rb	273	384	251	238	209	207	172	337
Sr	1044	742.7	984	3890	770	1360	82	235
Ba	1122	1275	1234	2670	1110	1600	246	170
Та	3	2.3	3.8	2.4	3.3	1.8	0.2	1.8
Nb	36	43	42	35	43	15	7.8	24
Hf	2	2.3	2.6	1.5	4.6	1.9	1.7	2.1
Zr	581	84.19	476	78	174	69	105	38
Ga	26	26	27	32	29	26	13	33

岩性:向右依次为:1-糜棱状中粗粒石英二长岩;2-糜棱状中粗粒石英二长岩;3-糜棱状中粒石英二长岩;4-糜棱状中细粒石英闪长岩; 5-灰白色糜棱状中粗粒二长花岗岩;6-糜棱状中粒石英二长岩;7-糜棱岩状中粗粒二长花岗岩,8糜棱岩化中细粒灰白色石榴石二长 花岗岩。国土资源部测试中心测试

3.2.2 微量元素和稀土元素

与该区其它花岗岩相比,该类岩体高场强元素(HFSE) Nb Zr Y、Ga 和 Sr、Ba 以及稀土元素 La、Ce、Nd、Zr、Sm、Y、 Nd Yb,较高。 Σ REE 平均为 230~616µg/g,是本地 I 型和 S 型花岗岩的 2-4 倍。 δ Eu 中等负异常(图 3)。在多种判别图 解中,绝大多数样品都落入 A 型花岗岩区(图 4),与纳米比 亚元古代 Damara 造山带准铝质 A 型花岗岩(Jung, 1998)、 福建铝质 A 型花岗岩相类似(邱检生等,2000)。在 Zr+Nb+ Ce+Y-(FeO*/MgO)、Rb-(Nd+Y)等图上与东非钾质花 岗岩(Kuster and Harms, 1997)也相同。

可见,该类花岗岩具有某些 A 型花岗岩特点。但它与一般典型的碱性花岗岩略有不同:(1)相对富铝(Al₂O₃>13%)

以上,A/NCK 值多大于 0. 91,而碱性花岗岩的 Al_2O_3 一般小 于 12%,A/NCK 值多小于 0. 95; (2)过碱 值 (AKL) (<0.1)、 Fe_2O_3 含量、氧化指数(W 值)、Ti P 含量较低以及 Zr+Nb+Ce+Y总量均较低。这些特征似乎类似于某些铝 质 A 型花岗岩特点(邱检生等,2000; King, 1997)。

3.2.3 Sr Nd 同位素特征

该花岗岩体不同部位或单元的岩石地球化学成分变化 较大,但它们的 Sr Nd 同位素组成特征相近, $I_{\rm Sr}$ 特别是 $\epsilon_{\rm Nd}(t)$ 值变化不大(表 2),显示了它们岩浆源区相似。值得注意的 是, $I_{\rm Sr}$ 均小于 0.7068,特别是 $\epsilon_{\rm Nd}(t)$ 值较高, $-0.8 \sim -2.3$, 显示了幔源成分的存在,因此,该花岗岩可能为壳幔混合作 用的产物,表明花岗岩在形成过程中有幔源组分参与。

表 2 亚干核杂岩糜棱状钾质花岗岩 Sr、Nd 同位素组成

Table 2 Sr and Nd isotopic data of the potassic granites from Yagan MCC

No.	Rb (µg/g)	Sr (µg/g)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	T (Ma)	Sr (228Ma)	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$^{143}{ m Sm}/$	ε _{Nd} (228Ma)
I 9	393.800	1193.000	0.953000	0.70973 ± 14	228	0.70664	12.5200	73.2200	0.103400	0.512385 \pm 7	-2.22
N7	329.700	773.700	1.231000	0.710795 ± 15	228	0.70680	17.3800	108.0000	0.097380	0.512384 ± 7	-2.07
007/1	332.900	83.020	11.610000	0.734215 ± 15	228	0.69657	7.6450	44.5800	0.103700	0.512381 ± 9	-2.30
I32	306.800	227.200	3.902000	0.71557 ± 12	228	0.70292	1.6590	5.7690	0.174000	0.512562 \pm 11	-0.82

中国科学院地质所同位素室测定

应指出,该岩体变形强,主要是高温、中高温流动变形, 真正的后期糜棱岩化及细粒化作用并不是普遍发育,相应的 交代作用不太强,镜下未见到普遍的交代现象。另外,其它岩 石中如围岩、包体及老的片麻状岩体也未见到强烈的交代现 象。所以,该岩体后期的交代作用不太强,地球化学数据主要 反映了原始岩浆的特性。个别样品(7/1)*I*sr小于 0.700 可能 是由于锶含量低(如表中的 83.020)和高 Rb/Sr 使年龄对 *I*sr 影响大,并易受测量误差影响所致。实际上,这个样是较晚的 浅色花岗岩,该岩石单元是这套糜棱状花岗岩中最晚的单 元。个别样品(7/1)*I*sr小于 0.700 可能是由于锶含量低和高 Rb/Sr 使年龄对 *I*sr影响大,并易受测量误差影响所致。

3.3 构造环境

在构造环境判别图中,本文研究的糜棱状花岗岩位于造 山后及板内构造环境区或其边缘部位(图 5)。更为重要的是, 在各类图解中该岩体比该区其它花岗岩特别是伸展环境下 同构造晚期花岗岩都偏向于造山后和板内环境区,而且是该 区唯一一个落入板内环境的花岗岩。该区其它时代的花岗岩 大都位于岛弧区和同碰撞区(另文专述)。因此,所研究的花 岗岩应具有造山后伸展的板内构造环境。花岗岩落于板内环 境有两种可能:一是由于结晶分异造成 Nb、Y、Rb 富集的结 果;二是形成于拉张构造环境(Forster *et al.*, 1997)。本文研 究的花岗岩 δEu 中等异常,分异不强,说明是后者的可能性 大。另外,假如该花岗岩归属 A 型花岗岩,从上述图解(图 4) 看出,该区糜棱状花岗岩大致位于 PA 型花岗岩区(Whalen, 1987;洪大卫等,1995),这也是造山作用结束的标志(洪大卫 等,1995)。

4 年代学测定

采集了糜棱状似斑黑云母二长花岗岩样品,粉碎后挑选 出锆石。这些锆石形态为长柱状(6:1)到扁平状,具有完好 的晶面和晶形,均未见继承核,多无色,含极少量包裹体。少 量锆石为淡黄色,含少量淡红色包裹体,未参与分析。该样品 在美国亚利桑纳大学地球科学系 U-Pb 实验室进行了分析。 方法及流程参见 Gehrels (2000)。本次实测了四组不同大小 的锆石和三个抛光的单颗粒锆石。这七个实验点构成一很好 的不一致线,与协和线的上、下交点分别获得 228±7Ma 和 127±240Ma 的年龄(图 6),其 MSWD 值为 1.07,可信度为 95%。在同一实验室,用同种方法还获得变质核杂岩中花岗 质片麻岩 916 ± 16 Ma 的年龄,说明核杂岩地层时代很老, 228±7Ma 不会是碎屑锆石年龄。因此,该上交点代表的岩浆 锆石的结晶年龄(表 3,图 6),可以限定该岩体的年龄。下交 点年龄误差很大,可能反映了该区后期较强的构造热事件的 干扰。该岩体获得的 126MaAr-Ar 年龄 (Webb et al., 1999),反映了后期变形变质事件。

图 5 亚干核杂岩糜棱状花岗岩微量元素的构造环境判别

Y-Nd 和 Ta-Yb 图解椐 Pearce et al. (1984); Rb-Y+Nb 图解椐 Pearce (1996)

Fig. 5 Tectonic setting discrimination for the mylonitic grantoids

表 3 亚干核杂岩糜棱状钾质花岗岩锆石 U-Pb 同位素分析数据

Table 3 Isotopic analysis data of the zircon of the potassic granite from Yagan MCC

										表面年龄(Ma)		
颗粒 类型	颗粒重量 ^(μg)	Pb (pg)	U $(\mu g/g)$	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb * / ²³⁵ U	± 误差 %	²⁰⁷ Pb * / ²³⁵ U	±误差%	²⁰⁶ Pb * / ²³⁸ U	²⁰⁷ Pb * / ²³⁵ U	²⁰⁷ Pb * / ²⁰⁶ Pb *
8A	25	17	599	1895	5.0	0.03346	\pm 0.66	0.23452	± 1.22	212.2±1.4	213.9±2.4	233 ± 19
6B	36	365	2405	510	3.8	0.03265	\pm 0.94	0.23436	\pm 3.78	207.1 \pm 1.9	213.8 \pm 7.1	$287\!\pm\!71$
5C	51	465	1458	326	3.9	0.03040	\pm 0.66	0.21413	\pm 3.13	193.0 \pm 1.3	197.0 \pm 5.5	$245\!\pm\!60$
4D	73	28	441	2620	4.9	0.03608	\pm 0.42	0.25216	\pm 0.87	228.6 \pm 0.9	228.3 \pm 1.8	$227\!\pm\!15$
1Ea	25	7	656	5440	6.0	0.03619	\pm 0.52	0.25340	\pm 0.88	229.2 \pm 1.2	229.3 \pm 1.8	$231\!\pm\!13$
1Ea	28	6	978	1055	3.6	0.03565	± 1.58	0.24712	± 2.12	225.8 \pm 3.6	224.2 ± 4.2	$208\!\pm\!25$
1Ea	31	26	709	1948	5.4	0.03573	\pm 0.50	0.25045	± 1.11	226.3 \pm 1.1	226.9 \pm 2.3	234 ± 20

注:*=放射性成因 Pb;颗粒类型:A=~100μ,B=~120μ,C=~140μ,D=~170μ,E=~200μ,a=在磨蚀器中打磨抛光;
 ²⁰⁶Pb/²⁰⁴Pb 为实测比值,未对实验空白、稀释剂或分馏作校正.²⁰⁶Pb/²⁰⁸Pb 已对实验空白、稀释剂或分馏作了校正;
 同位素比值误差为百分比,年龄误差为百万年.因颗粒重量的不确定性,多数浓度具 25%的不确定性.使用参数:²³⁸U/²³⁵U=137.88.
 衰变常数²³⁵U=9.8485×10⁻¹⁰,²³⁸U=1.55125×10⁻¹⁰;所有不确定性置信度为 95%. Pb 空白为 2~10pg;U 空白<1pg.

所有分析使用常规同位素稀释法和热离子化光质量谱测定法(Gehrels, 2000).

5 讨论及结论

由上可见,所研究的花岗岩具有钾玄岩系列特点,也具 有 A 型花岗岩的某些特点,但是否可归为钾玄岩系列或A 型 花岗岩还难定论。实际上,自然界很多花岗岩具有非典型的 过度特点,具体属于什么类型已不是主要问题,而关键的问 题是研究具体的特征和反映的构造环境。花岗岩体与构造的 时间关系即同构造花岗岩鉴别对区域构造演化分析至关重 要(Paterson *et al.*, 1998; Miller & Paterson, 1994; Schulmann *et al.*, 1996; Schofield *et al.*, 1998)。本文研究 的糜棱状花岗岩体原为席状并变形强烈;(亚)岩浆流动机 制→高温固态流动组构揭示有同侵位变形特点,这说明在岩 体侵位过程中(228±7Ma)或略后一点该岩体就已开始发生 同侵位深层次高温变形。高温固态流动变形的长石应变分析 显示单剪为主的变形类型。这进一步暗示,在该期变形具有 剪切变形特点。岩石地球化学特征又表明,该岩体具有钾质 花岗岩及钾玄岩系列特点,构造判别为拉张环境。这些特征 的的综合分析表明,在该糜棱状花岗岩侵位时或略晚一点, 该区挤压造山作用已近结束,伸展作用特别是中下地壳的伸 展剪切作用已经开始。因此,该糜棱状花岗岩应是收缩向伸 展构造体制转换的标志。

图 6 亚干核杂岩糜棱状花岗岩锆石 U-Pb 同位素年龄图 Fig. 6 The U-Pb concordia diagram for the zircons of the mylonitic grantoids in the Yagan metamorphic core complex

类似的拉张环境的花岗质岩体在邻区也有发现,如在内 蒙阿拉善北部的 A 型花岗岩,认为是造山期后的拉张环境的 产物,实测年龄值也为 228Ma(王廷印等,1998)。在整个华 北地块及其北缘以及大兴安岭,越来越多地识别出年龄值在 229~226Ma 的指示拉张环境的基性岩、基性岩墙和 A 型花 岗岩,反映该时期发育有幔源岩浆的底侵作用(邵济安等, 1998; 1999)。说明该时期华北地块及北缘整个岩石圈已处 于与底侵有关的伸展状态。本文研究的糜棱状 A 型花岗岩不 同于前人研究的高侵位未变形岩体,它是糜棱状岩石,发育 近水平的同侵位深层次高温变形(也就是说,在侵位时期或 略后就已开始发生变形),很可能反映了中下地壳的伸展变 形。这更好地说明,在 228Ma 左右,中下地壳层次已经开始 调整,发生近水平的伸展,海西期挤压造山增厚的大陆地壳 已开始减薄。这可能是上部(中上地壳)伸展的诱发点和动力 发动区。在地表,可能对应晚三叠纪盆地的发育。

一种可能的构造背景和机制是,海西期造山增厚的冷、 重的岩石圈地幔沉入热、轻的软流圈,而软流圈上升取代岩 石圈,引起岩石圈地幔和富流体交代部分的高温(在 900 C) 熔融,并引起下地壳的熔融,两种岩浆混合形成上述具钾玄 岩系列特点的花岗岩岩浆。本文研究的花岗岩高的 $\epsilon_{Nd}(t)$ 值 是其表现之一。这种作用可能导致了上部地壳的快速伸展抬 升。这可能类似于造山带下部对流减薄或岩石圈迁移" (convective thinning or removal of lithosphere beneath mountain belts)模式(Turner *et al.*, 1992;1996)。它常用来 解释晚或后造山岩浆的形成,特别是不相容元素富集的碱性 玄武岩和钾玄岩系列岩浆的形成(Turner *et al.*, 1996; Väisänen *et al.*, 2000)。

然而,该区以及甘肃北山到华北北缘大型逆冲推覆构造 大约发生在(中、晚?)侏罗纪,一些地区中侏罗系发生变质变 形,并被上侏罗系角度不整合覆盖(Zheng et al., 1991; 1996)。这意味着,在228Ma的伸展之后还发育有逆冲推覆, 它和之后的 150~126Ma 的伸展变质核杂岩构成一挤压-伸 展旋回。这样,该区有可能发育两次挤压-伸展的构造旋回, 即晚古生代(海西期)挤压造山到早中生代 228Ma 的伸展和 之后的新一轮的造山后挤压推覆和伸展拆离。若果真如此, 则暗示该区在较短的时间内经历了多次的收缩与伸展构造 体制的转换。这种频繁的构造体制交替转换的机制、时间和 两种挤压-伸展的转换机制异同以及动力学过程显然值得进 一步研究。另外,还应注意的是,该推覆方向与其后的变质核 杂岩伸展拆离方向一致,即均由北向南,而且时间有重合。这 种现象似乎有一定的区域性。如亚干核杂岩、呼和浩特核杂 岩等很多核杂岩都是上盘向南的伸展拆离。这说明,与地壳 上部的推覆一样,这种地壳中或中下层次极性近水平伸展剪 切也具有一定的普遍意义。因此,早期韧性伸展变形时间的 确定揭示出中下地壳的韧性伸展与上地壳大型推覆构造同 时同向(向南)的重要现象。这可能意味着,推覆与伸展可能 是受统一的动力学系统控制的不同地壳层次构耦合的一个 同时或连续的过程。这种大陆内部不同地壳层次不同构造体 制的耦合特点和其独特的动力学机制可能揭示了一种大陆 动力学的特点,更值得深入研究。我们初步提出了地壳尺度 的"切向剪切构造"(王涛,2000),即在地壳尺度顶部向南的 切向剪切的动力学体系和背景下,地壳上部发育向南的推 覆,而地壳中下层次近水平剪切可导致一组向南缓倾的低角 度韧性剪切带,相当于 C'褶劈理,并可以发展为伸展拆离 带。这也就是说,推覆与伸展是表层次和深层次两种不同性 质构造的递进转化和耦合,而不一定是挤压与伸展两种不同 方向动力学体制的交替转换,这可解释这种地壳上部推覆与 下部伸展的同时同向的现象(转文论述)。

总之,亚干核杂岩中发育的糜棱状钾质花岗岩体具有同 侵位剪切变形特征和拉张构造环境特征。它们共同指示,在 早中生代 228Ma 时该区已开始由挤压向伸展转化,比变质 核杂岩最终成型(150~126Ma)指示的区域性伸展提前了近 90~100Ma。在变质核杂岩中进一步鉴别出更早的具伸展拉 张环境的糜棱状花岗岩还不多见。它与之后的推覆和伸展是 两个独立的构造旋回还是一个连续过程中不同地壳层次构 造的耦合还值得进一步研究。

感谢洪大卫、王式洸、韩宝福、许保良教授和陈斌博士的 有益修学术讨论和美国亚利桑纳大学地球科学 George E. Gehrels 教授对锆石年龄的精心测定。

References

- Batchlor R B. and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 48: 43-55
- Bell T H. 1985. Deformation partitioning and porphyroblast rotations in metamorphic rocks: a radical reinterpretation. J. Meramorphic Geol., 3(3): 109-118
- Forster H-I, Tischendorf G, Trumbull R B, 1997. An evolution of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40:261-293
- Gehrels G E. Reconnaissance geology and U-Pbsoutheastern Alaska, in Stowell, H. H., and McClelland, W. C., eds., 2000. Tectonics of the Coast Mountains, southeast Alaska and coastal British Columbia: Geological Society of America, Special Paper, 342,213-234
- Graham S A, Hendrix M S, Badach G and Badamgarav D. 1996. Sedimentary record of transition from contractile to extensional tectonics, Mesozoic, southern Mongolian; Geological Society of American Abstracts with Programs, 28(7): 68
- Hong Gawei, Wang Shiguang, Han Baofu et al., 1995. Discrimination marks for tectonic setting of alkaline granites. Science in China, 25(4):418~426(in Chinese)
- Huang Xuan and Wu Liren. 1990. Nd-Sr isotopes of granitoids from Shaanxi province and their significance for tectonic evolution. Acta Petrologica Sinica, 6(2): 1~11(in Chinese with English abstract)
- King PL, White AJR, Chappell BW et al. 1997. Characterization and origin of alumineous A-type granites from the Lachlan fold belt, Southeastern Australia. J. Petrol., 38: 371~391
- Kuster D. and Harms U. 1997. Post-collisional potassic grantoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: Review. Lithos, 45: 177 -195
- Johnson C L, Graham S A, Webb L E, Badarch G, Beck M, Hendrix M S, Lenegen R. and Sjostrom D. 1997. Sedimentary response to late Mesozoic extension, southern Mongolia: Eos (Thransactions, American Geoghysical Union), 78:175
- Jung S, Mezger K and Hoernes S. 1998. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites — a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 45: 147-175
- Miller R B & Paterson S R. 1994. The transition from magmatic to high-temperature solid-state deformation: implications from the Mount Stuart batholith, Washington. Journal of Structural Geology, 16: 853-865
- Paterson S R, Vernon R H & Tobisch O T. 1989. A review of the criteria for the identification of magmatic and tectonic foliations. J. Struct. Geol., 11: 349-363

- Paterson S R, Fowler T K Ir, Schmidt K L, Yoshinobu A S, Yuan E S, & Miller R B. 1998. Interpreting magmatic fabric patterns in plutons. Lithos, 48: 53-82
- Pearce J. 1996. Sources and setting of granitic rocks. Episode, 23 (2):120-125
- Pearce J A, Harris N B W. and Tindle A G. 1984. Trace element discrimination diagram for the tectonic interpretation of granitic rock. J. Petrol., 25: 955-983
- Peccerillo R and Taylor S R. 1976. Geochemicstry of Eocene calcalkalie volcanic rocks from the Kastamonu aera, northern Tuekey. Contrib. Mineral. Petrol. 58: 63-81
- Qiu Jiansheng, Wang Dezi, Satashi, Kanisawa, Brent I A McInners. 2000. Geochemistry and petrogenesis of aluminous A-type granites in the coastal area of Fujian Province. Geochimica, 29(4):313-321(in Chinese with English abstract)
- Schulmann K, Mlcoch B, Melka R. 1996. High-temperature microstructures and rhellogy of deformed granite, Erzgebrige, Bohemian Massif. Journal of Structural Geology, 18(6):19-33
- Shao Ji'an, Mu Baolei, Zhang Luqiao. 1999. Deep geological process and its shallow response during Mesozoic trasfer of tectonic frameworks in eastern North China. Geological Review, 46(1), 32-40 (in Chinese with English abstract)
- Shao Ji'an, Zhao Guolong, 1998. Mesozoic tectonic evolution in the southpart of Da Hinggan mountains, northeastern China. Science in China, 28(3):193~200(in Chinese)
- Sylester P J. 1989. Post-collisional alkaline granites. J. Geol., 97: 261 - 590
- Schofield D L, D'lemos R S. Relationships between syn-tectonic granite fabrics and regional P. T. t paths: an example from the Gander-Avalon boundary of NE Newfoundland. J. Struct. Geol., 1998, 20: 459-471
- Turner, S Arnaus, N Liu, J, Rogers, N Hawkeworth, C Harris, N Kelley, S Van Calsteren, P Deng, W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau; implications for convective thinning of the Lithosphere and source of ocean island basalts. J. Petrol. 37,45-71
- Turner, S., Sandiford, M and Foden, J. 1992. Some geodynamic and compositional constraints on "post-orogenic" magmatism. Geology, 20, 931-934
- Väisänen M, Mänttäri I, Kriegsman L M, Holtt? P. 2000. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 54: 63-81
- Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95:407~419
- Wang Tao. 2000. Mechanism, process and dynamics of the formation of the Yagan metamorphic core complex, Sino-Mongolian border area: major evidences from the generation, evolution and deformation of the granitoid plutons. Postdoctoral thesis of Peking University, 1-40 (in Chinese with English abstract)

- Wang Tingyin Gao Junping, Wang Jinrong. 1998. Magmatism of collisional and post-orogenic period in the northern Alaxa region in Inner Mongolia. Acta Geologica Sinica, 72(2):126-137(in Chinese with English abstract)
- Webb L E, Graham S A, Johnson C L, Badarch G and Hendrix M S. 1999. Occurrence, age and implication of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia. Geology, 27(2): 143-146
- Webb L E, Graham S A, Jhonsn C L, Badarch G, Beck M and Hendrix M S. 1997. Characteristics and implications of the Onch Hayrhan metamoroghic core complex of southern Mongolia: Eos (Thransactions, American Geoghysical Union), 78:.174-175
- Zheng Y, Wang S, & Wang Y. 1991. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area. Science in China (series B), 34(9): 1146-1152
- Zheng Y & Zhang Q. 1994. The Yagan metamorphic core complex and extensional detachment fault in Inner Mongolia. Acta Geologica Sinica, 7(2):125-135
- Zheng Y, Zhang Q, Wang Y, Liu R, Zuo G, Wang S, Lkaasuren B, Badarch G, Badamgarac Z. 1996. Great Jurassic thrust

sheets in Beishan (North Mountains)-Gobi areas of China and southern Mongolia. J. Struct. Geol., 18(9): 1111-1126.29

附中文参考文献

- 洪大卫,王式洸,韩宝福等. 1995. 碱性花岗岩的构造环境分类及其 鉴别标志. 中国科学(B辑), 25(4):418~426
- 黄萱,吴利仁. 1990. 陕西地区岩浆岩 Nd, Sr 同位素特征及其与大 地构造发展的联系. 岩石学报,6(2):1~11
- 邱检生,王德滋,蟹泽聪史, Brent I. A. Melnnes. 2000. 福建沿海铝 质 A 型花岗岩的地球化学及岩石成因. 地球化学, 29(4):313 -321
- 邵济安,张履桥,牟保磊. 1998. 大兴安岭中南段中生代的构造演化. 中国科学, 28(3):193~200
- 邵济安,牟保磊,张履桥. 2000. 华北东部中生代构造格局转换过程 中的深部与浅部响应. 地质论评,1999,46(1):32-40
- 王廷印,高军平,王金荣等. 1998. 内蒙阿拉善北部地区碰撞期和后 造山期岩浆作用. 地质学报, 72(2):126-137
- 王涛. 2000. 中蒙边界亚干变质核杂岩形成的构造机制、过程及动力 学探讨-主要来自花岗岩成因演化及变形改造的信息. 北京大 学博士后出站报告,1-40