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Abstract

Statistical physics cannot explain why a thermodynamic arrow of time exists,

unless one postulates very special and unnatural initial conditions. Yet, we argue

that statistical physics can explain why the thermodynamic arrow of time is uni-

versal, i.e., why the arrow points in the same direction everywhere. Namely, if two

subsystems have opposite arrow-directions initially, the interaction between them

makes the configuration statistically unstable and causes a decay towards a system

with a universal direction of the arrow of time. We present general qualitative argu-

ments for that claim and support them by a detailed analysis of a toy model based

on the baker’s map.
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1 Introduction

The origin of the arrow of time is one of the greatest unsolved puzzles in physics [1, 2, 3,
4, 5]. It is well established that most arrows of time can be reduced to the thermodynamic
arrow, but the origin of the thermodynamic arrow of time remains a mystery. Namely,
the existence of the thermodynamic arrow of time means that the system is not in the
state with the highest possible entropy. But this means that the system is not in the
highest-probable state, which lacks any statistical explanation. The fact that entropy
increases with time means that the system was in an even less probable state in the past,
which makes the problem even harder. Of course, the phenomenological fact that entropy
increases with time can be described by assuming that the universe was in a state with a
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very low entropy at the beginning, but one cannot explain why the universe started with
such a very special and unnatural initial condition in the first place.

Recently, Maccone [6] argued that the problem of the origin of the arrow of time can be
solved by quantum mechanics. He has shown that in quantum mechanics all phenomena
which leave a trail behind (and hence can be studied by physics) are those the entropy
of which increases. (The observer’s memory erasing argument and the corresponding
thought experiments discussed in [6] was also used previously for a resolution of entropy
increase and the quantum wave-packet reduction paradoxes [7, 8, 9].) From this he argued
that the second law of thermodynamics is reduced to a mere tautology, suggesting that
it solves the problem of the arrow of time in physics. However, several weaknesses on
specific arguments used in [6] have been reported [10, 11, 12]. As a response to one of
these objections, in a later publication [13] Maccone himself realized that his approach
does not completely solve the origin of the arrow of time because the quantum mechanism
he studied also requires highly improbable initial conditions which cannot be explained.

Yet, as Maccone argued in [13], we believe that some ideas presented in [6] and [13]
do help to better understand the puzzle of the arrow of time. The purpose of this paper
is to further develop, refine, clarify, and extend some of the ideas which were presented
in [6, 13, 11], and also in a somewhat different context in [8, 9, 14]. In particular, unlike
Maccone in [6, 13], we argue that quantum mechanics is not essential at all. Indeed, in
this paper we consider only classical statistical mechanics.

The idea is the following. Even though statistical physics cannot explain why a thermo-
dynamic arrow of time exists, we argue that at least it can explain why the thermodynamic
arrow of time is universal, i.e., why the arrow points in the same direction everywhere.
Namely, if two subsystems have opposite arrow-directions initially, we argue that the in-
teraction between them makes the configuration statistically unstable and causes a decay
towards a system with a universal direction of the arrow of time. This, of course, does
not completely resolve the problem of the origin of the arrow of time. Yet, at least, we
believe that this alleviates the problem.

The paper is organized as follows. In the next section we present our main ideas in an
intuitive non-technical form. After that, in Sec. 3 we study the statistical properties of the
baker’s map (some basic properties of which are presented in the Appendix), which serves
as a toy model for studding generic features of reversible chaotic Hamiltonian systems.
As a byproduct, in this section we also clarify the differences between various notions of
“entropy”. Then, in Sec. 4 we study the effects of weak interactions between subsystems
which, without interactions, evolve according to the baker’s map. In particular, we explain
how weak interactions destroy the opposite time arrows of the subsystems, by making
them much more improbable than without interactions. Finally, in Sec. 5 we present a
qualitative discussion of our results, including the consistency with strongly-interacting
systems in which the entropy of a subsystem may decrease with time.

2 Main ideas

A priori, the probability of having a thermodynamic arrow of time is very low. However,
our idea is to think in terms of conditional probabilities. Given that a thermodynamic
arrow exists, what can we, by statistical arguments, infer from that?
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To answer this question, let us start from the laws of an underlying microscopic theory.
We assume that dynamics of microscopic degrees of freedom is described by a set of second-
order differential equations (with derivatives with respect to time) which are invariant
under the time inversion t → −t. Thus, both directions of time have an a priori equal
roles. To specify a unique solution of the dynamical equations of motion, one also needs
to choose some “initial” time t0 on which initial conditions are to be specified. (The
“initial” time does not necessarily need to be the earliest time at which the universe came
into the existence. For any t0 at which the initial conditions are specified, the dynamical
equations of motion uniquely determine the state of the universe for both t > t0 and
t < t0.) It is a purely conventional particular instant on time, which may be even in
the “future”. Indeed, in this paper we adopt the “block-universe” picture of the world
(see, e.g., [4, 15, 16, 17] and references therein), according to which time does not “flow”.
Instead, the universe is a “static” object extended in 4 spacetime dimensions.

Of course, the a priori probability of small entropy at t0 is very low. But given that

entropy at t0 is small, what is the conditional probability that there is a thermodynamic
arrow of time? It is, of course, very high. However, given that entropy at t0 is low, the
most probable option is that entropy increases in both directions with a minimum at t0.
On the other hand, in practice, at times at which we make measurements, the entropy is
indeed low, but entropy does not increase in both directions. Instead, it increases in only
one direction. This is because, on a typical t0, not only the “initial” entropy is specified,
but a particular direction of the entropy increase is specified as well. At the microscopic
level, this is related to the fact that on t0 one does not only need to specify the initial
particle positions, but also their initial velocities.

Given that insight, next we ask the following question. Given that at t0 the entropy
is low and increases in the positive time direction, what can be statistically inferred from
that? In this case, the most probable option is that entropy will continue to increase with
t for t > t0, but also that it will decrease in the negative time direction for t < t0. This
is, indeed, what we observe in nature.

And now comes the central question of this section. Given that at t0 the entropy is
low, why entropy at t0 increases in the same (say, positive) direction everywhere? Isn’t
it more probable that the direction of entropy-increase varies from point to point at t0?
If so, then why don’t we observe it? In other words, why the arrow of time is universal,
having the same direction everywhere for a given t0? We refer to this problem as the
problem of universality of the arrow of time.

In this paper we argue that this problem can be solved by statistical physics. In
short, our solution is as follows. If we ignore the interactions between different degrees of
freedom, then, given that at t0 the entropy is low, the most probable option is, indeed,
that the direction of the arrow of time varies from point to point. On the other hand,
if different degrees of freedom interact with each other, then it is no longer the most
probable option. Instead, even if the direction of the arrow of time varies from point to
point at t0, the interaction provides a natural mechanism that aligns all time arrows to
the same direction.

To illustrate the arrow-of-time dilemma, the thought experiments of Loschmidt (time
reversal paradox) and Poincare (recurrence theorem) are also often used. The correspond-
ing paradoxes in classical mechanics are resolved as follows. Classical mechanics allows, at
least in principle, to exclude any effect of the observer on the observed system. However,
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most realistic systems are chaotic, so a weak perturbation may lead to an exponential
divergence of trajectories. In addition, there is also a non-negligible interaction. As a
simple example, consider a gas expanding from a small region of space into a large vol-
ume. In this entropy-increasing process the time evolution of macroscopic parameters is
stable against small external perturbations. On the other hand, if all the velocities are
reversed, then the gas will end up in the initial small volume, but only in the absence of
any perturbations. The latter entropy-decreasing process is clearly unstable and a small
external perturbation would trigger a continuous entropy growth. Thus the entropy in-
creasing processes are stable, but the decreasing ones are not. A natural consequence is
that the time arrows (the directions of which are defined by the entropy growth) of both
the observer and the observed system are aligned to the same direction, because of the
inevitable non-negligible interaction between them. They can return back to the initial
state only together (as a whole system) in both Loschmidt and Poincare paradoxes, so
the observer’s memory gets erased in the end. During this process the time arrow of the
observer points in the backward direction, which has two consequences. First, an entropy
growth is observed in the whole system as well as in its two parts, despite the fact that
entropy decreases with coordinate time. Second, the memory of the observer is erased
not only at the end but also close to that point, because the observer does not remember
his “past” (defined with respect to the coordinate time), but remembers his “future”.

Indeed, it may seem quite plausible that interaction will align all time arrows to the
same direction. But the problem is - which direction? The forward direction, or the
backward one? How can any particular direction be preferred, when both directions
are a priori equally probable? Is the common direction chosen in an effectively random
manner, such that it cannot be efficiently predicted? Or if there are two subsystems with
opposite directions of time at t0, will the “stronger” subsystem (i.e., the one with a larger
number of degrees of freedom) win, such that the joint system will take the direction of
the “stronger” subsystem as their common direction?

The answer is as follows: It is all about conditional probabilities. One cannot question
the facts which are already known, irrespective of whether these facts are in “future”
or “past”. The probabilistic reasoning is to be applied to only those facts which are
not known yet. So, let us assume that the entropy is low at t0 and that we have two
subsystems with opposite time directions at t0. Let us also assume that the subsystems
do not come into a mutual interaction before t1 (where t1 > t0), after which they interact
with each other. Given all that, we know that, for t0 < t ≤ t1, entropy increases with time
for one subsystem and decreases with time for another subsystem. But what happens for
t > t1? Due to the interaction, the two subsystems will have the same direction of time
for t > t1. But which direction? The probabilistic answer is: The direction which is more
probable, given that we know what we already know. But we already know the situation
for t < t1 (or more precisely, for t0 < t ≤ t1), so our probabilistic reasoning can only be
applied to t > t1. It is this asymmetry in knowledge that makes two directions of time
different. (Of course, the interaction is also asymmetric, in the sense that interaction
exists for t > t1, but not for t0 < t ≤ t1.) Thus, the probabilistic reasoning implies that
entropy will increase in the positive time direction for t > t1. Alternatively, if there was no
such asymmetry in knowledge, we could not efficiently predict the direction of the arrow
of time, so the joint direction would be chosen in an effectively random manner.

Now we can understand why the arrow of time appears to be universal. If there is a

4



subsystem which has an arrow of time opposite to the time-arrow that we are used to,
then this subsystem is either observed or not observed by us. If it is not observed, then it
does not violate the fact that the arrow of time appears universal to us. If it is observed
then it interacts with us, which implies that it cannot have the opposite arrow of time
for a long time. In each case, the effect is that all what we observe must have the same

direction of time (except, perhaps, during a very short time interval). This is similar to
the reasoning in [6], with an important difference that our reasoning does not rest on
quantum mechanics.

In the remaining sections we support these intuitive ideas by a more quantitative
analysis.

3 Statistical mechanics of the baker’s map

The baker’s map (for more details see Appendix A) maps any point of the unit square to
another point of the same square. We study a collection of N >> 1 such points (called
“particles”) that move under the baker’s map. This serves as a toy model for a “gas”
that shares all typical properties of classical Hamiltonian reversible deterministic chaotic
systems. Indeed, due to its simplicity, the baker’s map is widely used for such purposes
[18, 20, 21, 22].

3.1 Macroscopic entropy and ensemble entropy

To define a convenient set of macroscopic variables, we divide the unit square into 4 equal
subsquares. Then the 4 variables N1, N2, N3, N4, denoting the number of “particles” in
the corresponding subsquares, are defined to be the macroscopic variables for our system.
(There are, of course, many other convenient ways to define macroscopic variables, but
general statistical conclusion are not expected to depend on this choice.) The macro-

scopic entropy Sm of a given macrostate is defined by the number of different microstates
corresponding to that macrostate, as

Sm = −N
4
∑

k=1

Nk

N
log

(

Nk

N

)

= −
4
∑

k=1

Nk log
(

Nk

N

)

. (1)

This entropy is maximal when the distribution of particles is uniform, in which case Sm

is Smax
m = N log4. Similarly, the entropy is minimal when all particles are in the same

subsquare, in which case Sm = 0.
Let (x, y) denote the coordinates of a point on the unit square. In physical language,

it corresponds to the particle position in the 2-dimensional phase space. For N particles,
we consider a statistical ensemble with a probability density ρ(x1, y1; . . . ; xN , yN ; t) on
the 2N dimensional phase space. Here t is the evolution parameter, which takes discrete
values t = 0, 1, 2, . . . for the baker’s map. Then the ensemble entropy is defined as

Se = −
∫

ρ(x1, y1; . . . ; xN , yN ; t) log ρ(x1, y1; . . . ; xN , yN ; t) dX, (2)

where
dX ≡ dx1 dy1 · · · dxN dyN . (3)
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In general, ρ and Se change during the evolution generated by the baker’s map and depend
on the initial ρ. However, if the initial probability-density function has a form

ρ(x1, y1; . . . ; xN , yN) = ρ(x1, y1) · · ·ρ(xN , yN), (4)

which corresponds to an uncorrelated density function, then the probability-density func-
tion remains uncorrelated during the evolution.

As an example, consider ρ(xl, yl) which is uniform within some subregion Σ (with area
A < 1) of the unit square, and vanishes outside of Σ. In other words, let

ρ(xl, yl, t) =

{

1/A for (xl, yl) inside Σ,
0 for (xl, yl) outside Σ.

(5)

In this case

Se = −
(

1

A

)N

log
(

1

A

)N

AN = N logA. (6)

Since A does not change during the baker’s map evolution, we see that Se is constant
during the baker’s map evolution. This example can be used to show that Se is, in fact,
constant for arbitrary initial probability function. To briefly sketch the proof, let us divide
the unit 2N -dimensional box into a large number of small regions Σa, on each of which
the probability is equal to ρa. During the evolution, each region Σa changes the shape,
but its 2N -dimensional “area” Aa remains the same. Moreover, the probability ρa on the
new Σa also remains the same. Consequently, the ensemble entropy Se = −

∑

aA
N
a ρa logρa

remains the same as well. This is the basic idea of a discrete version of the proof, but a
continuous version can be done in a similar way.

3.2 Appropriate and inappropriate macroscopic variables

The macroscopic variables defined in the preceding subsection have the following proper-
ties:

1. For most initial microstates having the property Sm < Smax
m , Sm increases during

the baker’s map.

2. For most initial microstates having the property Sm = Smax
m , Sm remains constant

during the baker’s map.

3. The two properties above do not change when the baker’s map is perturbed by a
small noise.

We refer to macrovariables having these properties as appropriate macrovariables.
Naively, one might think that any seemingly reasonable choice of macrovariables is

appropriate. Yet, this is not really the case. Let us demonstrate this by an example. Let
us divide the unit square into 2M equal vertical strips (M >> 1). We define a new set
of macrovariables as the numbers of particles inside each of these strips. Similarly to (1),
the corresponding macroscopic entropy is

Sm = −
2M
∑

k=1

Nk log
(

Nk

N

)

, (7)

6



where Nk is the number of particles in strip k. For the initial condition, assume that
the gas is uniformly distributed inside odd vertical strips, while even strips are empty.
Then Sm < Smax

m initially. Yet, for a long time during the baker’s evolution, Sm does not
increase for any initial microstate corresponding to this macrostate. However, during this
evolution the number of filled strips decreases and their thickness increases, until only one
thick filled vertical strip remains. After that, Sm starts to increase. We also note that the
evolution towards the single strip can be easily destroyed by a small perturbation.

Thus we see that vertical strips lead to inappropriate macrovariables. By contrast,
horizontal strips lead to appropriate macrovariables. (Yet, the macrovariables in (1) are
even more appropriate, because they lead to much faster growth of Sm.) This asymmetry
between vertical and horizontal strips is a consequence of the intrinsic asymmetry of
the baker’s map with respect to vertical and horizontal coordinates. This asymmetry is
analogous to the asymmetry between canonical coordinates and momenta in many realistic
Hamiltonian systems of classical mechanics. Namely, most realistic Hamiltonian systems
contain only local interaction between particles, where locality refers to a separation in
the coordinate (not momentum!) space.

Finally, we note that evolution of the macroscopic variables Nk(t), k = 1, 2, 3, 4, is
found by averaging over ensemble in the following way

Nk(t) =
∫

Nk(x1, y1; . . . ; xN , yN ; t)ρ(x1, y1; . . . ; xN , yN ; t) dX. (8)

3.3 Coarsening

As we have already said, the ensemble entropy (unlike macroscopic entropy) is always
constant during the baker’s map evolution. One would like to have a modified definition
of the ensemble entropy that increases similarly to the macroscopic entropy. Such a
modification is provided by coarsening, which can be defined by introducing a coarsened
probability-density function

ρcoar(x1, y1; . . . ; xN , yN) =
∫

∆(x1 − x′
1, y1 − y′1; . . . ; xN − x′

N , yN − y′N)

× ρ(x′
1, y

′
1; . . . ; x

′
N , y

′
N) dX

′, (9)

where ∆ is nonvanishing is some neighborhood of X ′ = 0, 0; . . . ; 0, 0. In this way, the
coarsened ensemble entropy is

Scoar
e = −

∫

ρcoar(x1, y1; . . . ; xN , yN) log ρcoar(x1, y1; . . . ; xN , yN) dX. (10)

Of course, the function ∆ can be chosen in many ways. In the following we discuss a few
examples.

One example is the Boltzmann coarsening, defined by

ρcoar(x1, y1; . . . ; xN , yN) = ρ(x1, y1) · · ·ρ(xN , yN), (11)

where
ρ(x1, y1) =

∫

ρ(x1, y1; . . . ; xN , yN) dx2 dy2 · · · dxN dyN , (12)

and similarly for other ρ(xl, yl).
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Another example is isotropic coarsening, having a form

∆(x1 − x′
1, y1 − y′1; . . . ; xN − x′

N , yN − y′N) =

∆(x1 − x′
1)∆(y1 − y′1) · · ·∆(xN − x′

N )∆(yN − y′N). (13)

Yet another example is the Prigogine coarsening [18]

∆(x1 − x′
1, y1 − y′1; . . . ; xN − x′

N , yN − y′N) = ∆(y1 − y′1) · · ·∆(yN − y′N), (14)

which is an anisotropic coarsening over the shrinking direction y.
Finally, let us mention the coarsening based on dividing the system into two smaller

interacting subsystems. The coarsened ensemble entropy for the full system is defined as
the sum of uncoarsened ensemble entropies of its subsystems. Such a coarsened entropy
ignores the correlations between the subsystems.

All these types of coarsening have the following property: If the initial microstate
is such that macroscopic entropy increases, then the coarsened ensemble entropy also
increases for that initial microstate. Yet, the Prigogine coarsening has the following
advantages over Boltzmann and isotropic coarsenings:

First, if the initial microstate is such that the macroscopic entropy decreases, then
the Prigogine coarsened ensemble entropy does not decrease, while the Boltzmann and
isotropic coarsened ensemble entropies decrease.

Second, assume that the initial microstate is such that the macroscopic entropy in-
creases, and consider some “final” state with a large macroscopic entropy close to the
maximal one. After this final state, consider the “inverted” baker’s evolution, (i.e., the
baker’s evolution with exchanged x and y). Then the Prigogine coarsened ensemble en-
tropy decreases, while the Boltzmann and isotropic coarsened ensemble entropies remain
unchanged.

Thus, the Prigogine coarsening provides the most correct description of the ensemble-
entropy increase law without any additional assumptions. For example, to get the same
result with Boltzmann coarsening, one would need to introduce the additional “molecu-
lar chaos hypothesis” to replace ρ(x1, y1; x2, y2) with ρ(x1, y1)ρ(x2, y2) in the equation of
motion for ρ(x, y, t).

4 The effects of weak interactions

4.1 Small external perturbations

The growth of the ensemble entropy can be achieved even without coarsening, by intro-
ducing a small external perturbation of the baker’s map. The perturbation must be small
enough not to destroy the growth of macroscopic entropy, but at the same time, it must
be strong enough to destroy the reverse processes and Poincare returns. For most such
perturbations, the qualitative features of the evolution do not depend much on details of
the perturbation.

There are two ways how the external perturbation can be introduced. One way is to
introduce a small external random noise. The macroscopic processes with the increase of
macroscopic entropy are stable under such a noise. However, the area of a region is no
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longer invariant under the perturbed baker’s map. In this way the ensemble entropy can
decrease.

The other way is to introduce a weak interaction with the environment (which can
be thought of as an “observer”). Again, the macroscopic processes with the increase
of macroscopic entropy are stable, but the area of a region is no longer invariant under
the perturbed baker’s map. Consequently, the ensemble entropy can decrease. However,
such a system is no longer isolated. Instead, it is a part of a larger system divided
into two subsystems. Hence, as we have already explained in Sec. 3.3, the coarsened
ensemble entropy for the full system can be defined as the sum of uncoarsened ensemble
entropies of its subsystems. In the next subsection we study the weak interactions with
the environment in more detail.

4.2 Weak interaction and the destruction of opposite time ar-

rows

To proceed, one needs to choose some specific interaction between two gases. In the
absence of interaction, each of them evolves according to the baker’s map. We put the
two unit squares one above another and specify the interaction with distance σ such
that, between two steps of the baker’s map, all closest pairs of particles (with distance
smaller than σ between them) exchange their positions. (More precisely, we first find the
pair of closest particles (with distance smaller than σ between them) and exchange their
positions. After that, we find the second pair of closest particles (with distance smaller
than σ between them and different from previously chosen particles) and exchange their
positions too. We repeat this procedure until we exhaust all particles.) Such interaction
does not affect the motion of the particles, but gives rise to the mixing between the
two subsystems when two particles of the pair belong to different subsystems. When
they belong to the same system, we interpret them as trivial irrelevant exchanges, and
consequently think of them as exchanges that have not happened at all. In this sense,
the interactions happen only between the particles in different subsystems. Note also
that such mixing by itself does not lead to the Gibbs paradox, as long as we consider the
two unit squares as separate objects. The macroscopic entropy is defined as the sum of
macroscopic entropies of the two subsystems.

Now let us consider the case in which the time arrows of the two subsystems have the
same direction. The processes in which the macroscopic entropies of the two subsystems
increase are stable under the interaction. Thus, most low-entropy initial conditions lead
to a growth of macroscopic entropy of both subsystems, as well as of the full system.

Similarly, if we inverse a process above with increasing macroscopic entropy, we obtain
a system in which macroscopic entropy of both subsystems, as well as of the full system
- decreases. In this sense, the interaction does not ruin the symmetry between the two
directions of time.

Now let us consider the most interesting case, in which entropy increases in the first
subsystem and decreases in the second. The initial state of the first subsystem has a low
entropy (for example, all particles are in some small square near the point (0, 0) of the
unit square). Likewise, the second system has a low entropy (for example, all particles
are in some small square near the point (1, 1) of the unit square) in the final state
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If there was no interaction, the final state of the first subsystem would be a high-
entropy state corresponding to a nearly uniform distribution of particles. Likewise, the
initial state of the second system would be a high-entropy state of the same form.

However, the solutions above with two opposite arrows of time are no longer solutions
when the interaction is present. In most cases, the interaction mixes the particles between
the subsystems. The number of solutions with interaction which have the initial-final
conditions prescribed above is very small, in fact much smaller than the number of such

solutions in the absence of interaction.

Let us make the last assertion more quantitative. After an odd number of (non-trivial)
exchanges, the particle transits to the other subsystem. Likewise, after an even number
of such exchanges, it remains in the same subsystem. The probabilities for these two
events are equal to p = 1/2 and do not depend on other particles, at least approximately.
Further, we can argue that the mixing between the two subsystems is negligible in the
initial and final states, as the entropies of the two subsystems are very different. We want
to calculate the probability of a small mixing in the final state, given that the mixing is
small in the initial state. For definiteness, we shall say that the mixing is small if the
number Nt of transited particles is either Nt < N/4 or Nt > 3N/4. Thus, the probability
is given by the cumulative binomial distribution F (Nt;N, 1/2), given by

F (k;n, p) =
⌊k⌋
∑

i=0

(

n
i

)

pi(1− p)n−i (15)

where ⌊k⌋ is the greatest integer less than or equal to k. The function F (k;n, p) satisfies
the bound

F (k;n, p) ≤ exp

(

−2
(np− k)2

n

)

. (16)

Thus, since the opposite time arrows of subsystems are not destroyed when Nt < N/4 or
Nt > 3N/4, we see that the probability of this is equal to

2F (N/4;N, 1/2) ≤ 2e−N/8. (17)

Clearly, it decreases exponentially with N , which means that such a probability is neg-
ligibly small for large N . Hence, it is almost certain that processes with opposite time
arrows will be destroyed.

In the model above, we need a nearly equal number of particles in the two subsystems
to destroy the opposite time arrows. This is because one particle can influence the motion
of only one close particle. For more realistic interactions, one particle can influence the
motion of a large number of particles in its neighborhood, which means that even a very
small number of particles in one system can destroy the entropy decreasing processes of
the other system.

4.3 Decorrelation in the interacting system

Hamiltonian systems are described not only by a macrostate, but also by complex nonlin-
ear correlations between microstates. These correlations are responsible for reversibility.
The interaction between two subsystems destroys these correlations inside the subsystems,
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but the full system remains reversible, i.e., the correlations appear in the full system.
Thus, the decorrelation in the subsystems expands the correlations over the full system.
(This process is a classical analogue of decoherence in quantum mechanics.)

Let us put these qualitative ideas into a more quantitative form. Linear (Pearson)
correlations have a behavior very similar to the nonlinear correlations described above.
The only difference is that these linear correlations decrease with time. The interaction
we proposed can be approximated by a random noise with amplitude corresponding to
a distance σ of the interaction between the particles. Therefore, we expect that the
interaction not only causes the alignment of the time arrows, but also a decay of correlation
which is even stronger than that without the interactions (Sec. A.5). During this process
the evolution of subsystems is irreversible, but the full system remains reversible.

We can quantify this decay of correlations by calculating the Pearson correlation for
our subsystems, given by

r(m) =
C(m)

√

C(0)〈Cm(0)〉
, (18)

where 〈Cm(0)〉 is the expected variance of the random variable x calculated after m
iterations of the map. The variance Cm(0) can be calculated as

Cm(0) =
2m−1
∑

j=0

(j+1)2−m

∫

j2−m

(2mx− j − 〈x〉+ S)2 dx, (19)

where S is a random number defined as S =
∑m−1

k=0 2kζk. Here ζk is an i.i.d. random
number with zero mean and variance σ2, which models the influence of interactions on
the evolution of the system. After a short calculation we get

〈Cm(0)〉 = C(0) + 〈S2〉 = C(0) +
m−1
∑

k,k′=0

2k+k′〈ζkζk′〉. (20)

Using the properties of i.i.d. variables 〈ζkζk′〉 = δkk′σ
2, it follows that

〈Cm(0)〉 = C(0) +
22m − 1

3
σ2. (21)

It is clear that the interactions will enhance the decay of correlations of at least linear
dependencies, because

r(m) =
2−m

√

1 + 4(22m − 1)σ2
. (22)

Yet, for the full system the Pearson correlation r(m) = 2−m remains the same. Since
〈S2〉1/2 must be much smaller than the system size (unit square), we can conclude that
our assumptions resulting in (22) are correct only for 〈S2〉 = [(22m − 1)/3]σ2 ≪ 1 and
σ2/2−2m ≪ 1.

4.4 Numerical simulation

So far, we have been using general abstract arguments. In this subsection we support these
arguments by a concrete numerical simulation. We consider two subsystems (labeled as 1
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Figure 1: The initial particle configuration at t = 1.
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Figure 2: Evolution of entropy without interaction.

and 2), each with N1 = N2 = 300 particles. The two subsystems occupy two unit squares.
To define the coarsened entropy, each unit square is divided into 16 × 16 = 256 small
squares. Thus, the entropy in the two subsystems is given by

Si = −Ni

512
∑

k=1

fk,i log fk,i, (23)

where i = 1, 2, fk,i = nk,i/Ni, and nk,i is the number of particles in the corresponding
small square. Similarly, the total entropy is defined as

S = −(N1 +N2)
512
∑

k=1

fk log fk, (24)

where fk = (nk,1 + nk,2)/(N1 +N2)
For the system 1 we choose a zero-entropy initial state at t = 1 (see Fig. 1). Similarly,

for the system 2 we choose a zero-entropy “initial” state at t = 6. Such initial conditions
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Figure 3: Evolution of entropy with interaction.

provide that, in the absence of interactions, S1 increases with time, while S2 decreases with
time for t < 6. To avoid numerical problems arising from the finite precision of computer
representation of rational numbers, (27) is replaced by x′ = ax−⌊ax⌋, y′ = (y+ ⌊ax⌋)/2,
with a = 1.999999. The results of a numerical simulation are presented in Fig. 1 and
Fig. 2.

To include the effects of interaction, we define interaction in the following way. (For the
sake of computational convenience, it is defined slightly differently than in Sec. 4.2.) We
take a small range of interaction ry = 0.01 in the y-direction, which can be thought of as a
parameter that measures the weakness of interaction. (Recall that y and x are analogous
to a canonical coordinate and a canonical momentum, respectively, in a Hamiltonian
phase space.) The interaction exchanges the closest pairs similarly as in Sec. 4.2, but
now “the closest” refers to the distance in the y-direction, and there is no exchange if the
closest distance is larger than ry. In addition, now interaction is defined such that only
the x-coordinates of the particles are exchanged. By choosing the same initial conditions
at t = 1 as in the non-interacting case (Fig. 1), the results of a numerical simulation with
the interaction are presented in Fig. 3. We see that with interaction (Fig. 3) S2 starts to
increase at earlier times than without interaction (Fig. 2).

5 Discussion

In this paper, we have used the toy model based on the baker’s map to demonstrate
features which seem to be valid for general systems described by reversible Hamiltonian
mechanics. Clearly, for such systems one can freely choose either final or initial conditions,
but one cannot freely choose them both. For most mixed initial-final conditions, an
appropriate solution (of the Hamiltonian equations of motion) does not exist. Similarly,
our toy model suggests that for most Hamiltonians with weak interactions, the number of
solutions with given coarse-grained initial-final conditions is much smaller then the number
of solutions with only coarse-grained initial or only coarse-grained final conditions. This
explains why, in practice, we never observe subsystems with opposite arrows of time, i.e.,
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why the the arrow of time is universal.
In a sense, this destruction of opposite arrows of time is similar to ergodicity. Both

properties are valid for all practical purposes only, they are not exact laws. They are true
for most real systems, but counterexamples can always be found. Also, they both may
seem intuitively evident, but to prove them rigorously is very difficult. For ergodicity the
relevant rigorous result is the KAM (Kolmogorov–Arnold–Moser) theorem, while for the
destruction of the opposite time arrows a rigorous theorem is still lacking.

Our results also resolve the “contradiction” between the Prigogine’s “New Dynamics”
[18] (discussed in Sec. 3.3 of the present paper) and Bricmont’s comments [23]. Dynamics
of interacting systems we can be divided into two types of dynamics:

1. Reversible ideal dynamics is considered with respect to the coordinate time, in which
case entropy can either decrease or increase.

2. Irreversible observable dynamics is considered with respect to the intrinsic time
arrow of interacting systems, in which case entropy increases.

In the framework of this terminology, the Prigogine’s “New Dynamics” [18] is one of
the forms of the observable dynamics, while the Bricmont’s paper [23] considers ideal
dynamics. In particular, the observable dynamics does not include Poincare’s returns and
reversibility, that are indeed unobservable by a real observer, which makes it simpler than
ideal dynamics. Yet, in principle, both types of dynamics are correct.

It should also be noted that our results are not in contradiction with the existence
of dissipative systems [24] (such as certain self-organizing biological systems) in which
entropy of a subsystem can decrease with time, despite the fact that entropy of the envi-
ronment increases. The full-system entropy (including the entropies of both the dissipative
system and the environment) increases, which is consistent with the entropy-increase law.
For such systems, it is typical that the interaction with the environment is strong, while
results of our paper refer to weak interactions between the subsystems. For example, for
existence of living organisms, a strong energy flow from the Sun is needed. The small flow
from the stars is not sufficient for life, but is sufficient for the decorrelation and for the
alignment of the time arrows. To quote from [6]: “However, an observer is macroscopic
by definition, and all remotely interacting macroscopic systems become correlated very
rapidly (e.g. Borel famously calculated that moving a gram of material on the star Sirius
by 1 m can influence the trajectories of the particles in a gas on earth on a time scale of
µs [19]).”

Acknowledgements

The works of H.N. and V.Z. was supported by the Ministry of Science of the Republic of
Croatia under Contracts No. 098-0982930-2864 and 098-0352828-2863, respectively.

A Basic properties of the baker’s map

In this appendix we present some basic properties of the baker’s map. More details can
be found, e.g., in [25].
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(a) (b) (c) (d)

Figure 4: Geometric interpretation of the baker’s map. (a) Initial configuration. (b)
Uniform squeezing in vertical direction and stretching in horizontal direction by a factor
of 2. (c) The final configuration after cutting the right half and putting it over the left
one. (d) The final configuration after two iterations.

A.1 Definition of the baker’s map

Consider a binary symbolic sequence

. . . S−2, S−1, S0;S1, S2, S3 . . . (25)

infinite on both sides. Such a sequence defines two real numbers

x = 0.S1S2S3 . . . , y = 0.S0S−1S−2 . . . . (26)

The sequence can be moved reversibly with respect to the semicolon in both directions.
After the left shift we get new real numbers

x′ = 2x− ⌊2x⌋, y′ =
1

2
(y + ⌊2x⌋), (27)

where ⌊x⌋ is the greatest integer less than or equal to x. This map of unit square into
itself is called the baker’s map.

The baker’s map has a simple geometrical interpretation presented in Fig. 4. There
(a) is the initial configuration and (c) is the final configuration after one baker’s iteration,
with an intermediate step presented in (b). The (d) part represents the final configuration
after two iterations.

A.2 Unstable periodic orbits

The periodic symbolic sequences (0) and (1) correspond to fixed points (x, y) = (0, 0) and
(x, y) = (1, 1), respectively. The periodic sequence (10) corresponds to the period-2 orbit
{(1/3, 2/3), (2/3, 1/3)}. From periodic sequence . . . 001; 001 . . .we get {(1/7, 4/7), (2/7, 2/7), (4/7, 1/7)}.
Similarly, from . . . 011; 011 . . . we get {(3/7, 6/7), (6/7, 3/7), (5/7, 5/7)}.

Any x and y can be approximated arbitrarily well by 0.X0 . . .Xn and 0.Y0 . . . Ym,
respectively, provided that n and m are sufficiently large. Therefore the periodic sequence
(Ym . . . Y0X0 . . .Xn) can approach any point of the unit square arbitrarily close. Thus,
the set of all periodic orbits makes a dense set on the unit square.
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A.3 Ergodicity, mixing, and area conservation

Due to stretching in the horizontal direction, all close points diverge exponentially under
the baker’s iterations. In these iterations, a random symbolic sequence approaches any
point of the square arbitrarily close. In general, such an ergodic property can be used to
replace the “time” average 〈A〉 by the “ensemble” average

〈A〉 =
∑

n

A(xn, yn) =
∫

A(x, y) dµ(x, y) =
∫

A(x, y)ρ(x, y) dx dy, (28)

where dµ(x, y) is the invariant measure and ρ(x, y) is the invariant density for the map.
For the baker’s map, ρ(x, y) = 1.

Under the baker’s iterations, any region maps into a set of narrow horizontal strips.
Eventually, it fills uniformly the whole unit square, which corresponds to mixing. Simi-
larly, reverse iterations map the region into narrow vertical strips, which also corresponds
to mixing.

During these iterations, the area of the region does not change. This property is the
area conservation law for the baker’s map.

A.4 Lyapunov exponent, shrinking and stretching directions

If x
(1)
0 and x

(2)
0 have equal k first binary digits, then, for n < k,

x(2)
n − x(1)

n = 2n(x
(2)
0 − x

(1)
0 ) = (x

(2)
0 − x

(1)
0 )en log 2, (29)

where Λ = log 2 is the first positive Lyapunov exponent for the baker’s map. Consequently,
the distance between two close orbits increases exponentially with increasing n, and after k
iterations becomes of the order of 1. This property is called sensitivity to initial conditions.
Due to this property, all periodic orbits are unstable.

Since the area is conserved, the stretching in the horizontal direction discussed above
implies that that some shrinking direction must also exist. Indeed, the evolution in the
vertical y direction is opposite to that of the horizontal x direction. If (x

(1)
0 , y

(1)
0 ) and

(x
(2)
0 , y

(2)
0 ) are two points with x

(1)
0 = x

(2)
0 , then

y(2)n − y(1)n = 2−n(y
(2)
0 − y

(1)
0 ) = (y

(2)
0 − y

(1)
0 )en(− log 2). (30)

Hence Λ = − log 2 is the second negative Lyapunov exponent for the baker’s map.

A.5 Decay of correlations

Since x-direction is the unstable direction, the evolution in that direction exhibits a decay
of correlations. The average correlation function C(m) for a sequence xk is usually defined
as

C(m) = lim
n→∞

1

n

n
∑

k=1

(xk − 〈x〉) (xk+m − 〈x〉) , (31)

where 〈x〉 = lim
n→∞

∑n
k=1 xk/n. Correlations can be more easily calculated if one knows the

invariant measure µ(x), in which case

C(m) =
∫

(x− 〈x〉) (fm(x)− 〈x〉) dµ(x), (32)
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where fm(x) = xm is the function that maps the variable x to its image after m iterations
of the map. For the baker’s map dµ(x) = dx, so we can write

C(m) =
2m−1
∑

j=0

∫ (j+1)2−m

j2−m

(x− 〈x〉) (2mx− j − 〈x〉) dx, (33)

which yields

C(m) =
2m−1
∑

j=0

[

2m
x3

3
− (2m〈x〉+ 〈x〉)

x2

2
+ 〈x〉2x− j

(

x2

2
− 〈x〉x

)](j+1)2−m

j2−m

. (34)

For the baker’s map 〈x〉 = 1/2, so the sum above can be calculated explicitly

C(m) =
2−m

12
. (35)

This shows that the correlations decay exponentially with m. The Pearson correlation for
the system is given by

r(m) = C(m)/C(0) = 2−m. (36)
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