文章编号: 1000-4939(2010) 02-0298-05

27 卷 第 2 期

2010年6月

基于 Level Set 方法对油水和 气水两相界面的数值模拟

王琳琳 田辉 李国君

(西安交通大学 710049 西安)

摘要:为研究两相界面迁移特性,基于 Level Set 方法,建立了求解非定常不可压缩两相界面流动 的数值方法。计算中使用结构化网格采用 Level Set 函数捕捉两相界面。通过对经典算例的模拟, 验证了数值方法对界面捕捉的有效性和精确性。模拟了油滴在水中上升、变形,与油层融合的过 程,研究了气泡在产生、发展、脱离阶段的变形机理,和表面张力系数对气泡形状的影响。计算 结果发现,表面张力系数越大,气泡在发展阶段持续的时间就越长,膨胀的程度也越大,并在脱 离时刻,气泡的体积也越大,为进一步研究两相界面迁移特性提供了新的途径。

关键词: Level Set 方法; 数值模拟; 两相流

中图分类号: TK121 文献标识码: A

1 引 言

两相界面流动现象广泛存在于各个领域,如能 源与动力、石油和化工领域等。其具有许多独特的 流体力学性质,研究这些性质对流体力学的发展及 工程应用都有重要的意义。由于相间质量、动量、 能量交换主要发生在两相界面上,因此对两相流界 面迁移特性的研究格外受到关注,提出了多种数值 方法,这些方法主要分为两类,即界面追踪类方法 和界面捕获类方法。以PIC、MAC等算法为代表的 界面追踪类方法是通过拉格朗日法,采用一系列离 散的标记点,具有较高的精度。但这类方法对于拓 扑结构变化大的问题处理起来比较困难,而且消耗 较多的计算资源。以VOF、Level Set 等算法为代表 的界面捕获类方法是用欧拉法构造表征界面特性 的相函数,并以此相函数为基础重构界面,求解相 函数后经界面重构,得到新的界面位置;并且在保 证一定的精度下,消耗较少的计算资源。在处理三 维问题,以及对界面的融合、破碎现象的描述时, Level Set 方法显示出比 VOF 方法更大的优势。1988 年,Osher 和 Sethian 提出了相界面随时间运动的 Level Set 方法^[1],其重要思想是引入 Level Set 函数 *f*,将移动的相界面对应为零水平集,只要确定了 零水平集就可以确定界面的位置。这种方法自提出 以来,在界面的演化、流体力学、燃烧、图像处理 和材料力学等领域都得到了广泛的应用^[2]。

本文基于 Level Set 方法, 建立了一套求解两相 不可压缩流体相界面非定常迁移特性的数值方法。 在对经典算例验证的基础上,模拟并研究了油滴与 油层融合和气泡形成、发展、脱离的过程,分析了 表面张力系数对气泡形状的影响。

来稿日期: 2009-03-06 修回日期: 2010-05-25

第一作者简介:王琳琳,女,1981年生,西安交通大学能源与动力工程学院,博士生;研究方向——多相流流动。 E-mail:<u>linlinwang.724@stu.xjtu.edu.cn</u>

299

2 两相界面流数值模拟方法及 验证

2.1 Level Set 方法

Level Set 方法具有界面捕获精度高、不需要重新构造界面、不需要特殊的技巧就能描述界面的复杂拓扑变化、容易推广到三维问题等特点^[3]。本文采用 Level Set 方法进行两相界面的捕获,其方程为:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = 0 \tag{1}$$

式中: **v** 为速度; **f** 为 Level Set 函数。运动界面恰 好是 f(x,t) = 0时的位置, $\{x | f(x,t) > 0\}$ 表示 相界面外的区域, $\{x | f(x,t) < 0\}$ 表示相界面内 的区域。物理变量密度 r 和动力黏性系数 **m** 可表示 为

$$\begin{cases} r = \begin{cases} r_1 , & f > 0 \\ r_2 , & f < 0 \\ 0.5(r_1 + r_2) , f = 0 \\ m = \begin{cases} m_1 , & f > 0 \\ m_2 , & f < 0 \\ 0.5(m_1 + m_2) , f = 0 \end{cases}$$
(2)

为了使f始终保持为一个距离函数,引入重新初

始化方程[4]

$$\frac{\partial f}{\partial t} = \operatorname{sign}_{e}(f_{0})(1 - |\nabla f|)$$
(3)

$$f(\mathbf{x}, 0) = f_0(\mathbf{x}) \tag{4}$$

其中

$$\operatorname{sign}_{e}(f_{0}) = \begin{cases} -1 , & f_{0} < -e \\ \frac{f_{0}}{e} + \frac{1}{\pi} \sin(\frac{\pi f_{0}}{e}), & |f_{0}| \le e \\ 1 , & f_{0} > e \end{cases}$$

这里 e 表示界面厚度的一半,本文取其为 1.5 倍网格特征长度。

2.2 主流场控制方程及求解

使用连续表面力(CSF)模型^[5],把表面张力 F_{st} 表示为

$$F_{st} = k(f)d_e(f)\nabla f \tag{5}$$

其中

$$\begin{split} k(f) &= \nabla \cdot (\frac{\nabla f}{|\nabla f|}) \quad d_e(f) = \frac{\partial H_e(f)}{\partial f}, \\ H_e(f) &= \begin{cases} 0, & f < -e \\ \frac{1}{2}(1 + \frac{f}{e} + \frac{1}{\pi} \sin(\frac{\pi f}{e})) , & |f| \leq e \\ 1, & f > e \end{cases} \end{split}$$

结合 CSF 模型和 Level Set 方法,得到不可压缩两 相界面流动控制方程

$$\nabla \cdot \mathbf{v} = \mathbf{0} \tag{6}$$

$$\frac{\partial}{\partial t} \mathbf{v} + \nabla \cdot (\mathbf{v} \ \mathbf{v}) = -\frac{1}{r} \nabla P + \frac{1}{r}$$

$$\frac{Re^{-1}\nabla \cdot (\boldsymbol{m}\,\boldsymbol{v}\,) - \frac{\boldsymbol{s}}{Fr} - F_{st}/(\overline{r}_{We}) + \frac{1}{r}Re^{-1}\nabla \cdot (\overline{\boldsymbol{m}}(\nabla\,\boldsymbol{v}\,)^{\mathrm{T}})$$
(7)

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = 0 \tag{8}$$

$$\ddagger \oplus Re = \frac{r_1 L U}{m_1} ; \quad Fr = \frac{U^2}{gL} ; \quad We = \frac{r_1 L U^2}{s} ;$$

$$\bar{m} = \frac{m}{m_1}; \ \bar{r} = \frac{r}{r_1}$$
。这里: *L* 为特征长度; *U* 为特

征速度; *s* 为表面张力系数; *m*, *r* 分别为流体的动力黏性系数和密度,其值的选取取决于网格中心的流体。为保证计算稳定, *m*和*r*做如下变换

$$\begin{cases} \overline{r} = l_r + (1 - l_r) H_e(f) \\ \overline{m} = l_m + (1 - l_m) H_e(f) \end{cases}$$
(9)

其中:
$$l_r = \frac{r_2}{r_1}; \ l_m = \frac{m_2}{m_1}$$
。采用二阶四步龙格库

塔 Crank-Nicholson 投影方法计算 N-S 方程,用 ENO 格式离散 Level Set 方程中的对流项^[6]。

2.3 方法验证

为了验证本文方法的有效性和精确性,对文献^[7]中精确解的经典算例进行计算并对比分析。该 算例是:当 *t*=0 秒,在边长为1的正方形区域中放 置一个圆形界面,该正方形左下角的坐标是(0,0), 圆形界面的圆心是(0.5,0.75),半径是0.15,上 下边界和左右边界分别设为周期性边界。此方形区域内的速度场为

$$\begin{cases} u = -\sin^2(\pi x)\sin(2\pi y) \\ v = \sin^2(\pi y)\sin(2\pi x) \end{cases}$$
(10)

这是一个螺旋型速度场。图1给出了在各时刻 (*t*分别为 1, 2, 3s)由计算得到的圆形区域的变 形情况。其中灰色区域表示圆形区域的内部;白色 区域表示圆形区域的外部。由图可看出界面及其界 面内区域在速度场的作用下被拉伸并绕着螺旋中 心(0.5, 0.5)顺时针旋转,随着时间的推进,界 面由圆形变为旋转的细丝。文献[8]采用拉格朗日方 法计算得到了此算例的"精确"解。图 2 给出了 *t*=3s 时,"精确"解和用本文方法计算的数值解对比图, 可以看出,两者极为接近。

由计算结果发现,尽管界面的变形很严重,但 是质量损失却小于 0.07%,而且当计算区域中的速 度场变化剧烈时,本文计算对界面的捕捉仍比较准 确,说明此方法对于捕捉复杂界面的迁移特性是准 确有效的。

3 油水两相流的相界面模拟

石油输送中常见的油水两相界面的流型转变、 阻力计算等问题始终困扰着学者和工程技术人员。 下面应用本文建立的数值方法对此问题进行数值 模拟,为研究此类问题提供一条新的途径。由于实 际问题具有对称性,取一半区域进行分析计算。计 算区域为 0.01m×0.02m 的矩形区域,设:矩形的左 下角坐标是(0,0);矩形左侧边界为对称轴;其它三 个边界为无滑移边界;计算网格数是 10000;油层 起始高度为 0.015m。初始时刻在(0,0.007)处放入半 径为 0.005m 的油滴:水的密度为 997kg/m³,动力 粘性系数为 1.04×10⁻³ Pa·s;油的密度为 880kg/m³, 动力粘性系数为 0.36 Pa·s;水和油的表面张力系数 为 0.073。计算获得的油滴在水中上升并与上部油 层融合的过程如图 3 所示,其中:白色区域表示水; 灰色区域表示油。

油滴在初始时刻无速度,在浮力的作用下,油 滴在水中慢慢上升。开始时速度较小,油滴受到水 的压力作用,发生微小的形变;油泡在上升过程中, 变形越来越大,顶部呈现冠状;油滴上升到油层附 近,开始挤压上面的油层,使油层隆起。0.22s后,随着油滴继续上升,油滴将油层挤破,融入油层, 并将少量水挤入油层,最后油滴与油层完全融合, 油水交界面趋于水平。由此发现,本文方法能够较 精确的模拟实际液体自由表面的破碎和融合等复 杂变化,说明本文方法对研究两相流是可行的。

4 气泡在水中形成、脱离的过程及表面张力系数的影响

气泡在液体中的弥散是一种复杂的现象,对气 泡从单一管道中形成和脱离过程进行研究对理解 此类现象具有重要意义。本文通过对气泡在水中形 成和脱离过程进行数值模拟,分析气泡的变形原因 及表面张力系数对气泡形状的影响。计算区域由进 气通道和两相混合区组成,其中:进气通道的尺寸 为 0.004m×0.015m;两相混合区域的尺寸为 0.04m×0.04m。初始时刻进气通道内充满空气,两 相混合区域的上部分为空气层,空气层高度是 0.008m。空气进气通道的进口速度为 *u*=0.05m/s, 混合区域出口的压力设为 0Pa;计算区域的其它边 界设为无滑移边界,网格数为 11000,水的密度为 997kg/m³,动力粘性系数为 1.04×10⁻³Pa·s;空气的 密度为 1.205 kg/m³,动力粘性系数为 1.81×10⁻⁵Pa·s, 水和空气的表面张力系数为 0.0727N/m。

4.1 气泡在水中形成和脱离的过程与分析

计算获得气泡在水中形成和脱离过程如图4所 示,图中:灰色表示空气;白色表示水。由图看出, 初始时刻,空气充满进气道和两相混合区域的上部 分,0.04s时在进气道的出口处鼓起空气泡,两相混 合区域上部的部分空气被挤出,液面上升。由于表 面张力的作用气泡呈现半圆形, 空气继续匀速进入 进气道, 气泡逐渐增长, 挤压顶部的水。气泡顶部 的压力大于其尾部的压力, 在尾部附近形成涡环, 使气泡发生变形, 0.12s 气泡尾部开始收缩。 气泡继 续增长, 气泡顶部和尾部的压差逐渐增大, 尾部的 涡环强度增大, 气泡尾部的变形更大, 尾部更窄, 涡环强度继续增加,变形加剧。最后,气泡克服表 面张力的作用,从尾部最细位置脱离,在浮力的作 用下,脱离的气泡向上运动。刚脱离时,由于表面 张力使表面积最小, 气泡呈现圆形。随着上升高度 的增加,气泡的顶部和底部形成压差,使得底部形 成涡环并在中央处,形成射流。射流推动气泡向上 运动,涡环使气泡两边变形。0.25s 左右,可以看到 气泡由圆形变成顶部凸,底部凹的帽状。

4.2 表面张力系数对气泡形成、发展及脱离阶段的 影响

本文在此考察表面张力系数*s* 对气泡形成、发展、脱离的影响。令 h 表示气泡顶部到进气道出口的高度,它随时间变化,一定程度反应出了气泡的形成、发展及脱离过程。通过改变表面张力系数*s* (*s* 取值分别为0.02、0.05、0.0727、0.09、0.11N/m),计算 h 随时间的变化过程。图 5 给出了不同表面张力系数下 h 随时间的变化情况,图中的实黑线表示

线段 h = ut (其中 t Î [0,0.33])。从图可以看出:

①当*s* < 0.05 时,在气泡形成阶段,气泡以速度 *u* 匀速增长,在气泡发展、脱离阶段,气泡以大于 *u* 的速度增长;当*s* ³ 0.05 时,在气泡形成阶段, 空气通过进气道的体积较少,气泡以速度*u* 匀速增 长,随着气泡体积的增加,表面张力、液体对气泡 的反作用力、在粘性流体中的液体对气泡的阻力增 加,使气泡较前一阶段沿*h*方向增长减缓,沿*h*的 垂直方向发生膨胀,在气泡脱离阶段,气泡的尾部 在涡环作用下开始收缩,空气被向上部挤压,气泡 沿*h*方向以大于*u* 的速度增长,直到气泡脱离;② *s* 越大,表面张力越大,气泡发展阶段的时间越长, 且同时刻沿*h*方向增长速度越小,脱离时刻气泡越 长。在表 6 中,*S*表示气泡脱离时的面积,可以看 出,气泡脱离时所含气体量随表面张力系数*s* 的增 大而增大。

表6 气泡脱离时的面积

$s / N \cdot m^{-1}$	$S/10^{-4} \cdot m^2$
0.02	0.19
0.05	0.2858
0.0727	0.3565
0.09	0.3962
0.11	0.4709

5 结论

本文应用 Level Set 方法, 建立了一种用于求解 两相不可压缩流体相界面非定常特性的数值方法, 通过对计算结果的分析,得到了气泡变形的机理, 并发现表面张力系数影响气泡的形状和脱离体积: 随着表面张力系数的增加,气泡在发展阶段的时间 增长,并且气泡沿其高度方向增长的速度减慢,气 泡的体积脱离增大,这使得对表面张力作用有了更 深入的认识,为进一步研究两相界面迁移特性提供 了途径。

参考文献

[1] Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:algorithms based on hamilton-jacobi formulations[J].Journal

of Computational Physics, 1988, 79:12-49.

- [2] 王德军,唐云,于洪川,等.水平集方法与距离函数[J].应用数学和力学,2003,24:839-848.
- [3] 陈立亮,姜俊侠.基于 Level Set 法铸造充型过程气-液两相流数值模 拟[J].特种铸造及有色合金,2008, 28:751-753.
- [4] Sussman M,Smereka P,Osher S.A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics,1994,114:146-159.
- [5] Chang Y C,Hou T Y,Merriman B,et al.A level set formulation of eulerian interface capturing methods for incompressible fluids[J].Journal of Computational Physics, 1996,124:449-464.
- [6] Ni M J,Abdou M.A variable-density projection method for interfacial flows[J].Numerical Heat Transfer, 2003,44:553-574.
- [7] Rider W,Kothe D.Reconstructing volume tracking[J]. Journal of Computational Physics,1998,141:112-152.
- [8] Rider W,Kothe D.Stretching and tearing interface tracking methods[C]. 12th AIAA CFD Conference,AIAA,1995:95-171.