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Abstract

We show a different modification of Poincare algebra that also preserves the Lorentz algebra. The

change begins with how boosts affect space-time in a way similar to how boosts affect the momenta

in kappa Poincare algebra, thus the name dual kappa Poincare algebra. Since by construction the

new space-time commutes, it follows that the momenta co-commute. Proposing a space-time co-

algebra that is similar to the momentum co-product in the bicrossproduct basis of kappa Poincare

algebra, the phase space algebra is derived using the Heisenberg double construction. The phase

space variables of the dual kappa Poincare algebra are then related to SR phase space variables.

From these relations, we complete the dual kappa Poincare algebra by deriving the action of

rotations and boosts on the momenta.
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I. THE POINCARE ALGEBRA

The generators of the Poincare algebra are mi, ni and pµ, which correspond to real

rotations, boosts and translations. The algebra is given by the relations

[mi, mj ] = iǫijkmk, (1a)

[mi, nj] = iǫijknk, (1b)

[ni, nj] = −iǫijkmk, (1c)

[mi, p0] = 0, (1d)

[mi, pj] = iǫijkpk, (1e)

[ni, p0] = ipi, (1f)

[ni, pj] = iδijp0 (1g)

These algebraic relations follow if we consider the basic phase space brackets

[xµ, pν] = iηµν , (2a)

[xµ, xν ] = [pµ, pν ] = 0, (2b)

ηµν = (−,+,+,+) , (2c)

and the defining equations for rotations and boosts

mi = ǫijkxjpk, (3a)

ni = xip0 − x0pi. (3b)

From (2) and (3), we can derive the action of rotations and boosts on space-time

[mi, x0] = 0, (4a)

[mi, xj] = iǫijkxk, (4b)

[ni, x0] = ixi, (4c)

[ni, xj ] = iδijx0. (4d)

These equations show that the coordinates xi and momenta pi rotate while x0 (time) and p0

(energy) are invariant under real rotations. Note also that the boosts act on the momenta

and and coordinates in the same way.
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II. THE KAPPA POINCARE ALGEBRA

The deformation of the Poincare algebra has evolved from the pioneering work of Lukierski

and collaborators [1] to the present form [2] where the rotation generators Mi, the boosts

Ni and the momenta Pµ satisfy a deformed Poincare algebra measured by a deformation

parameter κ such that (i) the Lorentz algebra is maintained (the first three relations of (1)),

(ii) the rotation generators’ action on the momenta remains the same (the fourth and fifth

relations in (1)), and (iii) the boosts action on momentum (the last two equations of (1)) is

changed. The first is easily implemented by

Mi = mi, (5a)

Ni = ni. (5b)

The second is implemented by

[Mi, P0] = 0, (6a)

[Mi, Pj] = iǫijkPk. (6b)

Using (5) and the SR commutators, we see that (6) is satisfied if

P0 = f(p0, ~p · ~p), (7a)

Pi = pig(p0, ~p · ~p). (7b)

As for the action of boosts on the momenta, these are given by

[Ni, P0] = iPiD(P0, ~P · ~P ), (8a)

[Ni, Pj] = iδijA(P0, ~P · ~P ) + iPiPjB(P0, ~P · ~P ). (8b)

By tensor structure, these are the only possible terms along with an ǫijkPk, which can

be shown to vanish via Jacobi’s identity. The functions A, B and D are dependent on a

deformation parameter κ and must get back the Poincare algebra in a suitable limit (which

we will show later as κ approaches ∞). This means B approaches zero, D approaches one

and A approaches P0 in the Poincare limit.

It is usually argued that the deformation of the Poincare algebra is not unique because

the three functions A, B and D can be shown to satisfy the non-linear equation [3]

∂A

∂P0

D + 2
∂A

∂(~P · ~P )

[

A+ (~P · ~P )B
]

−AB = 1, (9)
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which leaves two functions out of three that is not specified. Actually, the reason is more

restrictive, there is only one function that is not specified and it is not A, B or D but either

f or g of (7). Making use of the second of equation (5), the fundamental commutators in SR

phase space, equation (7) and its inverse as given by

p0 = F (P0, ~P · ~P ), (10a)

pi = PiG(P0, ~P · ~P ), (10b)

we find that

A(P0, ~P · ~P ) = p0g(p0, ~p · ~p), (11a)

B(P0, ~P · ~P ) = G2

[

2F
∂g

∂(~p · ~p)
+

∂g

∂p0

]

, (11b)

D(P0, ~P · ~P ) = G

[

2F
∂f

∂(~p · ~p)
+

∂f

∂p0

]

. (11c)

At the right hand side of equation (11), we have to substitute the expressions given by (10)

to give the P0 and ~P · ~P dependence of A, B and D. Presenting the deformation of Poincare

algebra in terms of relations with SR phase space variables, we find that of the two functions

f and g (or the inverses F and G), only one function is not specified because of equation (9).

Equation (11) has not been given in the literature as far as the author knows. Since there is

one unspecified function, there is no unique deformation of the Poincare algebra and there

are four that that are currently cited in the literature - the bicrossproduct basis or DSR1

[2], the Magueijo-Smolin or DSR2 [4], the classical basis [5] and the earliest, which is the

Snyder basis [6].

At this stage, it looks like DSR is merely SR in a non-linear momentum representation.

The complete dissociation from SR and Poincare algebra is made when a non-trivial co-

algebra is endowed on the momentum sector. The fact that the momentum sector commutes

by construction (see (7)) results in a space-time sector that co-commutes, i.e.,

∆(Xµ) = 1⊗Xµ +Xµ ⊗ 1. (12)

Endowing the momentum sector with a non-trivial co-algebra as in the bicrossproduct basis

or DSR1

∆(P0) = P0 ⊗ 1+ 1⊗ P0, (13a)

∆(Pi) = Pi ⊗ 1+ exp (−
P0

κ
)⊗ Pi, (13b)
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and making use of the Heisenberg double [7], we find the phase space algebra

[X0, P0] = −i, (14a)

[Xi, Pj] = iδij , (14b)

[Xi, Xj] = [P0, Xi] = 0, (14c)

[X0, Pi] =
i

κ
Pi, (14d)

[X0, Xi] = −
i

κ
Xi. (14e)

The first four relations of (14) are only valid for DSR1 while the last seems to be universal for

all DSR theories [3]. Equation (14e) shows the Lie algebraic, non-commuting nature of DSR

space-time. This result along with the proof of Kowalski-Glikman [8] that the momentum

space of DSR is De Sitter completes the proof that DSR describes physics beyond SR.

To complete the bicrossproduct Poincare algebra, we will derive the action of rotations

and boosts on space-time making use of the DSR1 ↔ SR phase space transformations. The

explicit f and g or F and G are

f = κ ln (
p0

κ
+

√

1 +
m2

κ2
), (15a)

g =
1

p0
κ
+
√

1 + m2

κ2

, (15b)

F = κ sinh
P0

κ
+

1

2κ
(~P · ~P ) exp (

P0

κ
), (15c)

G = exp (
P0

κ
). (15d)

Using (11), we will get

A(P0, ~P · ~P ) =
κ

2

(

1− exp (
−2P0

κ
)

)

+
1

2κ
~P · ~P , (16a)

B(P0, ~P · ~P ) = −
1

κ
, (16b)

D(P0, ~P · ~P ) = 1, (16c)

which we are citing for completeness of the DSR1 relations and to show that in the limit

κ → ∞, we get back the Poincare limit.

The phase space algebra given by (14) is satisfied by the following expression for the

DSR1 space-time in terms of SR phase space variables

Xµ = xµ

(

p0

κ
+

√

1 +
m2

κ2

)

. (17)
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Three comments are in order at this point. First, a similar relation was given in the context of

DSR2 [9]. Second, the transformation is not purely space-time, it involves the SR momenta

to give space-time non-commutativity. Third, the DSR↔ SR transformation is not canonical

because the fundamental brackets are not invariant [10] again emphasizing that DSR is not

SR in a non-linear basis.

Using (17), (15), (5) and (3), we find

Mi = ǫijkXjPk, (18a)

Ni =
κ

2
Xi

(

1− exp (
−2P0

κ
)

)

+
1

2κ
Xi(~P · ~P )−X0Pi. (18b)

Using these relations and (14), we find

[Mi, X0] = 0, (19a)

[Mi, Xj] = iǫijkXk, (19b)

[Ni, X0] = iXi −
i

κ
Ni, (19c)

[Ni, Xj] = iδijX0 −
i

κ
ǫijkMk. (19d)

To summarize, the kappa Poincare algebra is given by the Lorentz algebra (guaranteed by

(5)) and (6) and (8). In particular, the bicrossproduct basis is given by (15) and (16) with

the coalgebra given by (12) and (13). These results in the phase space algebra given by (14),

from which we deduce (17). The bicrossproduct relations is completed by deriving (19) from

(18) and (14), which can be deduced directly from the co-algebra of rotations and boosts

[3].

III. THE DUAL KAPPA POINCARE ALGEBRA

To present the dual kappa Poincare algebra, we begin by defining its generators as P̄µ, M̄i

and N̄i. Just as in the Poincare and kappa Poincare algebra, we will maintain the Lorentz

algebra and we can do this by identifying

M̄i = mi, (20a)

N̄i = ni. (20b)
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As in Poincare algebra we require that the rotation operator M̄i leave time X̄0 invariant and

rotate the space X̄i as a vector. This means

[

M̄i, X̄0

]

= 0, (21a)
[

M̄i, X̄j

]

= ǫijkX̄k. (21b)

Making use of the first equations of (20) and (3), and (2), we find that the space-time of

the dual kappa Poincare is related to SR space-time via

X̄0 = f̄(x0, ~x · ~x), (22a)

X̄i = xiḡ(x0, ~x · ~x). (22b)

These are the counterpart of the relations given by (7) in kappa Poincare. The inverse of

these relations are given by

x0 = F̄ (X̄0,
~̄X ·

~̄X), (23a)

xi = X̄iḠ(X̄0,
~̄X ·

~̄X), (23b)

which are the counterpart of the relations given by (10) in kappa Poincare.

Substituting (22) in
[

N̄i, X̄0

]

and
[

N̄i, X̄j

]

and using (23), the second of (3) and (2), we

find

[

N̄i, X̄0

]

= iD̄(X̄0,
~̄X ·

~̄X)X̄i, (24a)
[

N̄i, X̄j

]

= iδijĀ(X̄0,
~̄X ·

~̄X) + iX̄iX̄jB̄(X̄0, ~̄X · ~̄X), (24b)

where

Ā = F̄ ḡ(x̄0, ~x · ~x), (25a)

B̄ = Ḡ2

[

2F̄
∂ḡ

∂(~x · ~x)
+

∂ḡ

∂x0

]

, (25b)

D̄ = Ḡ

[

2F̄
∂f̄

∂(~x · ~x)
+

∂f̄

∂x̄0

]

. (25c)

In the above equations, we have to make use of (23) to get the X̄0 and ~̄X · ~̄X dependence of

Ā, B̄ and C̄.

Equations (24) and (25) in the dual kappa Poincare are the counterparts of equations

(8) and (11) in kappa Poincare. Following a similar procedure in kappa Poincare, this time

7



considering the Jacobi identity involving N̄i, N̄j and X̄k, we find that Ā, B̄ and C̄ satisfy

∂Ā

∂X̄0

D̄ + 2
∂Ā

∂( ~̄X ·
~̄X)

[

Ā+ ( ~̄X ·
~̄X)B̄

]

− ĀB̄ = 1. (26)

This equation is the counterpart of equation (9) in kappa Poincare theory. And just like in

kappa Poincare, the fact that there is one (non-linear) equation for two unknown functions

(f̄ and ḡ or their inverses F̄ and Ḡ) means that there is no unique dual kappa Poincare

theory.

To complete the dual kappa Poincare algebra, we need to derive the dual phase space

algebra, the action of rotations and boosts on the momenta, how the dual kappa Poincare

algebra reduces to the Poincare limit (limiting value of the deformation parameter κ̄).

This section will mirror the presentation in the latter part of Section II. By construction

the dual kappa Poincare coordinates commute (see (22)), i.e.,

[

X̄µ, X̄ν

]

= 0. (27)

Since the space-time commutes, it follows that the momenta cocommutes, i.e.,

∆(P̄µ) = 1⊗ P̄µ + P̄µ ⊗ 1. (28)

This is the analogue of (12). We define a non-trivial space-time coproduct given by

∆(X̄0) = X̄0 ⊗ 1+ 1⊗ X̄0, (29a)

∆(X̄i) = X̄i ⊗ 1+ exp (−κ̄X̄0)⊗ X̄i. (29b)

Comparing this with (13), we see that this particular deformation of Poincare algebra can

be appropriately called dual bicrossproduct basis. The parameter κ̄ must have dimension of

momenta and thus dual to the parameter κ of the bicrossproduct basis, which has dimension

of length.

The Heisenberg double procedure yields the following phase space algebra

[

P̄0, X̄0

]

= i, (30a)
[

P̄i, X̄j

]

= −iδij, (30b)
[

P̄i, X̄0

]

=
[

P̄i, P̄j

]

= 0, (30c)
[

P̄0, X̄i

]

= −iκ̄X̄i, (30d)
[

P̄0, P̄i

]

= iκ̄P̄i. (30e)

8



From above, we see that in the dual bicrossproduct basis of the dual kappa Poincare algebra

the energy does not commute with the momenta and spatial coordinates.

At this stage, we develop the dual bicrossproduct basis further by giving the counterpart

formulas for (15)

f̄ =
1

κ̄
ln (κ̄x0 +

√

κ̄2(x2

0
− ~x · ~x) + 1), (31a)

ḡ =
1

κ̄x0 +
√

κ̄2(x2

0
− ~x · ~x) + 1

, (31b)

F̄ =
1

κ
sinh (κ̄X̄0) +

κ̄

2
~̄X ·

~̄X exp (κ̄X̄0), (31c)

Ḡ = exp (κ̄X̄0). (31d)

The main difference between (15) of the bicrossproduct basis and the above equations for

the dual bicrossproduct is that p2
0
− ~p · ~p = m2 in the former while x2

0
−~x · ~x does not have a

corresponding invariant value in the latter and thus appears explicitly in the transformations.

Using these expressions in (25), we find the algebra of the boost generators with space-time

in the dual bicrossproduct is given by (24) with

Ā =
1

2κ̄
(1− exp (−2κ̄X̄0)) +

κ̄

2
( ~̄X ·

~̄X), (32a)

B̄ = −κ̄, (32b)

D̄ = 1. (32c)

The Poincare limit of the dual bicrossproduct basis of the dual kappa Poincare algebra is

arrived at when κ̄ → 0. In this limit we see that Ā → X̄0, B̄ → 0. Clearly, the action of

boosts in the limit κ̄ → 0 gives back the Poincare limit (see the third and fourth equations

of (4)).

To complete the dual kappa Poincare algebra, we derive the action of boosts and rotations

on the momenta. This is the analogue of equations (19), which give the action of boosts

and rotations on space-time in the bicrossproduct basis of kappa Poincare algebra. In this

case, we have to derive the momenta in terms of the SR variables, which is the analogue of

(17). This involves finding P̄µ(x, p) that satisfy (30). After a relatively long computation,

we find

P̄0 = p0

√

κ̄2(x2

0
− ~x · ~x) + 1, (33a)

P̄i = pi

√

κ̄2(x2

0
− ~x · ~x) + 1− κ̄(xip0 − x0pi). (33b)
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Note, the dependence on space-time and momenta, which makes the momenta of the dual

kappa Poincare non-commuting. Also, the transformation cannot be a canonical transfor-

mation because the fundamental brackets are not invariant.

The inverse relations, the SR phase space variables in terms of the phase space variables

of the dual bicrossproduct basis of the dual kappa Poincare algebra are given by

p0 = P̄0

[

cosh (κ̄X̄0)−
κ̄2

2
( ~̄X ·

~̄X) exp (κ̄X̄0)

]

−1

, (34a)

pi = exp (−κ̄X̄0)P̄i + κ̄X̄iP̄0

[

cosh (κ̄X̄0)−
κ̄2

2
( ~̄X ·

~̄X) exp (κ̄X̄0)

]

−1

. (34b)

The above equations give the rotation generators in the dual kappa Poincare algebra

M̄i = ǫijkX̄jP̄k. (35)

Using this and the phase space algebra given by (30), we find the action of rotations on the

momenta as

[

M̄i, P̄0

]

= 0, (36a)
[

M̄i, P̄j

]

= ǫijkP̄k. (36b)

Note, the action of rotations on the momenta is the same as in SR and DSR.

As for the action of boosts on the momenta, we will do the computations in SR phase

space, make use of N̄i = ni and (33) and then transform back the results in the new kappa

Poincare phase space variables. The results of the computations yield

[

N̄i, P̄0

]

= iP̄i + iκ̄N̄i, (37a)
[

N̄i, P̄j

]

= iδijP̄0 + iκ̄ǫijkM̄k. (37b)

Two comments are in order at this point. First, the action of boosts and rotations on the

momenta in the dual bicrossproduct basis of the new kappa Poincare have the same structure

as the action of boosts and rotations on the coordinates in the bicrossproduct basis of kappa

Poincare (see (19)). Second, in the Poincare limit, i.e., κ̄ → 0, we get back the action of

boosts and rotations in SR.

To summarize, the dual kappa Poincare algebra, which we derived by making use of the

dual bicrossproduct basis are given by the Lorentz algebra, (36) and (37). The co-algebra

are given by (28) and (29). The phase space algebra is given by (30). The action of rotations
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on the coordinates are given by (21) and the action of boosts on the coordinates are given

by (24). In the particular dual bicrossproduct basis, the right hand side of (24) are given

by (32).

IV. CONCLUSION

In this paper , we have presented the dual kappa Poincare algebra. The advantage of this

new way of modifying the Poincare algebra is that it has a space-time that is commuting

but not co-commuting and a mometum space that is co-commuting but not commuting.

Because the momenta has a trivial co-algebra, it will not suffer from the soccer ball and

non-symmetric two particle momentum state problems. Since space-time commutes, there

is no problem in defining the instantaneous velocity without resorting to various procedures

in phase space [11]. Furthermore, if the analogy with Kowalski-Glikman’s work, where he

showed that the momentum space of DSR theories is De Sitter, holds, we may just have

the space-time of this dual kappa Poincare algebra being De Sitter as the co-algebra given

by (29) suggests. The parameter κ̄ must be related to the cosmological constant Λ through

κ̄ = Λ
1

2 because for De Sitter space-time to be a solution of Einstein’s equation Λ = 3

l2
,

where l is the De Sitter length [12]. Note, the Poincare limit is achieved as Λ → 0. The

other observer-independent scale to make the dual Poincare algebra a basis for a dual DSR

is currently under investigation (a natural guess is the De Sitter length l) along with the

co-algebra of boosts and rotations, the antipodes and co-units to have a complete Hopf

algebra.
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