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Abstract

Cosmological observations indicate that our universe is flat and dark energy (DE)
dominated at present. The luminosity distance plays an important role in the investiga-
tion of the evolution and structure of the universe. Nevertheless, the evaluation of the
luminosity distancedL is associated computationally heavy numerical quadratures in
practice. In this Letter we find a series solution of the luminosity distance in a spatially
flat ΛCDM cosmological model. And it is further shown that the series solution has
a relative error of less than 0.36% for any relative parameterβ (β ≡ Ωm

ΩΛ
) from zero to

four, i.e. 0.2 < ΩΛ < 1 and redshiftz > 0.1 when the order of the series isn = 100.
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1. Introduction

The computation and numerical evaluation of distances is frequently encountered
in the research of cosmological phenomena. In practice, it is common to compute the
various cosmological distances as a function of the redshift z under certain cosmologi-
cal models. Current cosmological observations indicate that the universe is expanding,
has a matter contentΩm ∼ 0.3 and is spatially flat. Further, aΛCDM model fits the data
well, and is frequently used as a fiducial or background model. In theΛCDM model,
various cosmological distances can be expressed in terms ofthe elliptic integrals [1, 2].

Some authors have focused on the luminosity distancedL in theΛCDM model and
derived numerical approximations for the efficient and accurate evaluation ofdL(z) giv-
ing the cosmological parametersΩm andΩΛ [3, 4]. The computation ofdL is useful in
the analysis of distance-redshift relations of type Ia supernovae, and the approximation
for dL can be directly used in the evaluation of other distances, for instance the angular
diameter distance or the comoving distance [1]. In this Letter we present another series
approximation that is of considerable accuracy.

Our approximation todL can be expressed as follows:

dL(z) =
c

H0
√
ΩΛ

(1+ z)l(z),
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where

l(z) =
∞
∑
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(−1)n
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2

)− 2n+1
2
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(

n
i

) (

β − 1
2

)n−i 1− (1+ z)−3i−1/2
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







. (1)

where the parameterβ is defined asβ ≡ Ωm
ΩΛ

, H0 is the Hubble constant andn is the
order of the series.

The rest of this Letter we will derive equation (1) in Section2, and discuss its
application in numerical computation in Section 3.

2. Series Approximation

The luminosity distancedL is related to the comoving distancer(z) bydL = a0r(z)(1+
z). The comoving distancer enters Friedmann-Lemaı̂ter-Robertson-Walker (FLRW)
metric as the radial component of the spatial coordinates:

ds2 = c2dt2 − a2(t)

[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]

, (2)

wherea(t) is the scale factor characterizing the cosmic expansion and k is the sign
of the spatial Gaussian curvature. This is the metric characterizing the homogeneous,
isotropic, and expanding universe. In the spatially flat case, we havek = 0. For the
photon propagating through the expanding universe along the null geodesic in the line-
of-sight direction, we set ds2 to zero, obtaining

r =
∫ t0

t

cdt
a(t)
=

∫ a0

a

cda
a2H
, (3)

whereH is the Hubble parameterH = ȧ/a. For theΛCDM universe, the solution to
Friedmann’s equations gives the expansion rate or Hubble parameter

H = H0

√

Ωm

(a0

a

)3
+ ΩΛ. (4)

Equations (3) and (4) thus relatesr to a.
The scale factora(t) is related to the cosmological redshiftz: a0/a = 1+ z, and the

differentials therefore satisfies

da = − a0

(1+ z)2
dz. (5)

Substituting Equations (4) and (5) into Equation (3), it is straightforward to derive

r(z) =
c

a0H0
√
ΩΛ

∫ 1

1
1+z

dx
√

x4 + βx
(6)

using a change-of-variablex = 1/(1+ z).
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The integral factor in Equation (6),

l(z) =
∫ 1

1
1+z

dx
√

x4 + βx
, (7)

is a special case of the elliptic integral. Performing Taylor series expansion of the
integrand aroundx0 =

3
√

(1− β)/2 and integrate it termwise, we find

l(z) =
∞
∑

n=0

(−1)n
(2n − 1)!!

(2n)!!

(

1+ β
2

)− 2n+1
2















n
∑

i=0

(

n
i

) (

β − 1
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)n−i 1− (1+ z)−3i−1/2

3i + 1/2


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

which is the result presented in Equation (1) (see Appendix Afor the proof of conver-
gence).

3. Analysis and Conclusion

In practice, it is not possible to calculate Equation (1) up to infinite terms. If we cut
off the ordern = Nmax, we effectively obtain an approximation̂dL for the exactdL(z),
and also consider its error by analyzing the relative percentage error

ε =

∣

∣

∣

∣

∣

∣

d̂L − dL

dL

∣

∣

∣

∣

∣

∣

× 100%. (8)

For Nmax = 100, we plot the errorε as a function ofz and cosmological parameters
in Figure 1 with logarithmic coordinates. In the rectangular area defined by (z, β) ∈
(0.1, 10)× [0, 4], we find that the error is maximized atz = 0.1 andΩΛ = 0.2, with
εmax ≈ 0.36%. Asz andΩΛ increase, the error decreases rapidly.

We can further compare the method outlined in this Letter to earlier results in
Refs. [3, 4]. In Figure 2, we plot the errorε of our method and those in Refs. [3, 4] for
ΩΛ = 0.7. Evidently, our method is not well optimized for very smallredshift ranges
wherez ∼ 0.01. However, with the error less than 0.096%, it is comparatively more
accurate forz > 0.1, where most of the type Ia supernova data lies. Asz increases, the
error of our method quickly diminishes.

We have adoptedNmax = 100 in the above analysis of the method’s accuracy. A
larger value ofNmax could further reduce the error, however in practice not muchcan
be gained by adding such higher-order corrections at the cost of more computing power
needed. The optimal value ofNmax should be estimated on a cost-benefit basis depend-
ing on the nature of the work and the required accuracy of numerical evaluation.

And once we get the approximative expression ofdL, the angular diameter distance
in a flat universe withΩΛ follows, i.e.dA = dL/(1+ z)2.
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Figure 1: Contour plot of the percentage errorε. When computed up toNmax = 100, the error of our method
is well controlled within 0.36%.
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Figure 2: Comparison of the accuracy of our methods and thosefound in Refs. [3, 4]. The dash, dotted
and solid curves represent the relative error of Ref. [3], Ref. [4], and ours respectively. The cosmological
parameterΩΛ is fixed at 0.7. Our method gives a larger relative error in thelow redshift rangez < 0.03, but
asz increases, the error approaches zero faster than those of the other methods.
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Appendix A. Derivation of the Equation (1)

We define a functionf : f (x) ≡ (x3 + β)−
1
2 , then Taylor expandingf around

x3
0 =

1−β
2 :

f (x) =
∞
∑

n=0

(−1)n
(2n − 1)!!

(2n)!!

(

1+ β
2

)− 2n+1
2

(

x3 +
β − 1

2

)n

,

Then we get

f (x) =
∞
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(−1)n
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
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









.

From the expanding equation off (x) above, hence we can get equation (1) withl(z) =
∫ 1

1
1+z

x−1/2 f (x)dx easily.

Next let’s prove that the functionx−1/2 f (x) can be integrated for finite redshiftz,
namely, it satisfies the condition of uniform convergence for any 0 ≤ z < ∞ and
0 < ΩΛ < 1. For verifying the result, we only need to consider the properties of f (x) .
At first, we set a function sequence{S n}, which the general form is

S n = (−1)n
(2n − 1)!!

(2n)!!

(

1+ β
2

)− 2n+1
2

(

x3 +
β − 1

2

)n

,

then f (x) =
∑∞

n=0 S n. A noticeable character aboutx is x ∈ (0, 1], we should guarantee
that the domain of convergence off (x) must cover the interval (−1, 1), namely the
radius of convergence needs to satisfyR ≥ 1. If expandingf (x) aroundx3

0 =
1−β

2 , and
assumingR = 1, namely:

lim
n→∞

∣

∣
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∣

S n+1

S n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

1+ β
2

)−1 (

x3 +
β − 1

2

)

∣

∣

∣

∣

∣

∣

∣

≤ 1,

we find,
−β ≤ x3 ≤ 1,

or
0 ≤ x ≤ 1.

The result is just compatible with the domain ofx. In addition, with straightforward
verification, we can find that the series is also converged when x = 1. Hence we get a
conclusion that the expanding function off (x) is uniform convergence.
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