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Abstract

Cosmological observations indicate that our universe isafid dark energy (DE)
dominated at present. The luminosity distance plays antitapbrole in the investiga-
tion of the evolution and structure of the universe. Newddhs, the evaluation of the
luminosity distanceal, is associated computationally heavy numerical quadratare
practice. In this Letter we find a series solution of the luosity distance in a spatially
flat ACDM cosmological model. And it is further shown that the sersolution has
a relative error of less than36% for any relative parametgr(3 = g—r) from zero to
four, i.e. 02 < Q4 < 1 and redshifz > 0.1 when the order of the seriesris= 100.
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1. Introduction

The computation and numerical evaluation of distanceseiguently encountered
in the research of cosmological phenomena. In practice,dbmmon to compute the
various cosmological distances as a function of the retishifider certain cosmologi-
cal models. Current cosmological observations indicadéttie universe is expanding,
has a matter conteft;,, ~ 0.3 and is spatially flat. Further,//CDM model fits the data
well, and is frequently used as a fiducial or background moldethe ACDM model,
various cosmological distances can be expressed in terths efliptic integralsi[1,.2].

Some authors have focused on the luminosity distapde the ACDM model and
derived numerical approximations for thieient and accurate evaluationdf(2) giv-
ing the cosmological paramete®s, andQ, [3,l4]. The computation ad_ is useful in
the analysis of distance-redshift relations of type la supeae, and the approximation
for d_ can be directly used in the evaluation of other distancesngtance the angular
diameter distance or the comoving distance [1]. In thisdrette present another series
approximation that is of considerable accuracy.

Our approximation tal, can be expressed as follows:

di(2 = c

IOV a+2l(2,
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where the parametgris defined ag = g—r Ho is the Hubble constant armdis the
order of the series.

The rest of this Letter we will derive equatidnl (1) in Sect@nand discuss its
application in numerical computation in Sectidn 3.

2. Series Approximation

The luminosity distancd, is related to the comoving distandg) by d, = agr(2)(1+
2). The comoving distance enters Friedmann-Lemaiter-Robertson-Walker (FLRW)
metric as the radial component of the spatial coordinates:

ds? = c?dt? - 2(t) ——— +r?de” + rsir gy (2)

wherea(t) is the scale factor characterizing the cosmic expansiahkas the sign
of the spatial Gaussian curvature. This is the metric chiariaing the homogeneous,
isotropic, and expanding universe. In the spatially flaecage havek = 0. For the
photon propagating through the expanding universe alomguifi geodesic in the line-
of-sight direction, we setst to zero, obtaining
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whereH is the Hubble parametét = a/a. For theACDM universe, the solution to
Friedmann’s equations gives the expansion rate or Hublbépeter

3
H = Ho /@ (2] + Qa. (@)

Equations[(B) and{4) thus relatet a.
The scale factoa(t) is related to the cosmological redshiftag/a = 1 + z, and the
differentials therefore satisfies

Qo

da. = —mdz

(%)

Substituting Equation§¥4) anld (5) into Equatibh (3), ittraightforward to derive

r@ = (6)

agHo \/Q_A j;z VX4 + BX

using a change-of-variable= 1/(1 + 2).



The integral factor in Equatiofl(6),

L dx
| = —_—,
@ f L /x4 + Bx 7)

is a special case of the elliptic integral. Performing Taderies expansion of the
integrand aroundy = /(1 — 8)/2 and integrate it termwise, we find

n(2r1 i1+ -5 B- 1\ 1= (1+ 23112
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i=0

which is the result presented in Equatibh (1) (see AppenfforAhe proof of conver-
gence).

3. Analysisand Conclusion

In practice, it is not possible to calculate Equatidn (1)aimfinite terms. If we cut
off the ordem = Npnax, We dfectively obtain an approximatiaty for the exacd, (2),
and also consider its error by analyzing the relative paeggnerror

d. —d.
d

For Nmax = 100, we plot the erras as a function oz and cosmological parameters
in Figure[1 with logarithmic coordinates. In the rectangwaeea defined byz(B) €
(0.1,10) x [0, 4], we find that the error is maximized at= 0.1 andQ, = 0.2, with
emax ~ 0.36%. AszandQ, increase, the error decreases rapidly.

We can further compare the method outlined in this Letteradier results in
Refs. [3,4]. In Figurél2, we plot the errerof our method and those in Refsl [3, 4] for
Qx = 0.7. Evidently, our method is not well optimized for very snratishift ranges
wherez ~ 0.01. However, with the error less than 0.096%, it is compaeatimore
accurate for > 0.1, where most of the type la supernova data liesz kreases, the
error of our method quickly diminishes.

We have adoptetiihax = 100 in the above analysis of the method’s accuracy. A
larger value o\« could further reduce the error, however in practice not meaih
be gained by adding such higher-order corrections at theo€asore computing power
needed. The optimal value B,.x should be estimated on a cost-benefit basis depend-
ing on the nature of the work and the required accuracy of mizalesvaluation.

And once we get the approximative expressiod,gfthe angular diameter distance
in a flat universe witt, follows, i.e.da = d/(1 + 2)2.

e= x 100% (8)
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Figure 1: Contour plot of the percentage emolWhen computed up thinax = 100, the error of our method
is well controlled within 036%.
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Figure 2: Comparison of the accuracy of our methods and tfms®l in Refs.|[3,4]. The dash, dotted
and solid curves represent the relative error of Ref. [3], [43, and ours respectively. The cosmological
parametef, is fixed at 0.7. Our method gives a larger relative error inltheredshift rangez < 0.03, but
aszincreases, the error approaches zero faster than those atttbr methods.



Appendix A. Derivation of the Equation (1)

We define a functionf: f(x) = (x® + ,B)‘%, then Taylor expanding around
-
2n+1
@n-1)1 (14877 (5 B-1)"
_ n
f( = Z( Ve 2 (¥
Then we get
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From the expanding equation 6¢x) above, hence we can get equatiah (1) Wi =
fi x12f(x)dx easily.

Next let's prove that the functior ¥2f(x) can be integrated for finite redshift
namely, it satisfies the condition of uniform convergencedoy 0 < z < « and
0 < Qa < 1. For verifying the result, we only need to consider the prtips off(x) .
At first, we set a function sequent®,}, which the general form is

- oy (1;ﬁ)2”7”(xs+f%1)n,

thenf(x) = X" o Sn. A noticeable character aboxits x € (0, 1], we should guarantee
that the domain of convergence 6fx) must cover the interval{1, 1), namely the
radius of convergence needs to satiBfg 1. If expandingf(x) aroundxg = 1’75, and

assumingR = 1, namely:
izt B-1
‘( 2 ) (X3+ 2 )

B<xX <1,
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we find,

or
O0<x< 1l

The result is just compatible with the domain>of In addition, with straightforward
verification, we can find that the series is also convergedwhe 1. Hence we get a
conclusion that the expanding functionfqf) is uniform convergence.
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