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ABSTRACT 

In this paper, a novel standard variance feature is proposed 
for background modeling in dynamic scenes involving 
waving trees and ripples in water. The standard variance 
feature is the standard variance of a set of pixels’ feature 
values, which captures mainly co-occurrence statistics of 
neighboring pixels in an image patch. The background 
modeling method based on standard variance feature 
includes two main components. First, we divide image into 
patches and represent each image patch as a standard 
variance feature. Then, assuming that standard variance 
feature fits a mixture of Gaussians distribution, we use 
mixture of Gaussians models to model it. Experimental 
results on several challenging video sequences demonstrate 
the effectiveness of our method.  

Index Terms— Background Modeling, Standard 
Variance Feature, Pattern Representation

1. INTRODUCTION 

Designing robust background modeling methods is still an 
open issue, especially considering various complicated 
variations that may occur in dynamic scenes, e.g., trees 
waving, water rippling, illumination changes, camera jitters, 
etc.  

To achieve the goal of robust background modeling, a 
good scene or pattern representation is one of the key issues. 
Representation issues include: what level (e.g. pixel, patch 
or frame level) representation and feature are desirable for 
the description of a pattern, and how to effectively extract 
the feature from the original input signal. 

Intensity or color feature is widely used in the 
background modeling literature to separate foreground from 
background. In the famous method [1], every pixel’s color 
feature in a scene is modeled as a Mixture of Gaussian. 
Elgammal et al. [2] utilize a general nonparametric kernel 
density estimation technique for building a statistical 
representation of the scene background using normalized 
RGB color. A non-statistical clustering technique to 
construct a background model is presented in [3]. The 
background is encoded on a pixel-by-pixel basis and 
samples at each pixel are clustered into the set of codewords. 
Since most of the dynamic scenes exhibit persistent motion 

characteristics, a natural approach to model their behavior is 
via motion information (i.e. optical flow). Sheikh and Shah 
[4] use both temporal and spatial feature to improve 
background modeling results. In [5], a non-parametric 
model of color and optical flow is built for every pixel in a 
scene. Parag and Elgammal [6] use a boosting method 
(RealBoost) to choose the best feature to distinguish the 
foreground for each of the areas in the scene. Wixson [7] 
presents an algorithm that detects salient motion by 
integrating frame-to-frame optical flow over time. 

Most of the above background modeling methods share 
the same basic assumption that the time series of 
observations is independent on each pixel and use the 
properties of a single pixel as image features (e.g., 
intensities, color, edges, gradients, or optical flow) directly. 
This assumption, however, may be too restrictive, especially 
under difficult conditions such as dynamic scenes. To 
effectively build background models for dynamic scenes, 
the correlation between pixels in the spatial vicinity has 
attracted more and more attentions from researchers. In [8], 
a 3-stage algorithm is presented, which operates respectively 
at pixel, region and frame level. Heikkila and Pietikainen [9] 
propose an approach based on the discriminative Local 
Binary Pattern (LBP) histogram. However, the method is 
not so efficiently on uniform regions. In [10], scene is 
coarsely represented as the union of pixel layers and 
foreground objects are detected by propagating these layers 
using a maximum-likelihood assignment. However, the 
limitations of the method are high-computational 
complexity and the requirement of an extra offline training 
step.  

Some background modeling methods divide an image 
into patches and calculate patch-specific features. Change 
detection is achieved via patch matching. The algorithm 
presented in [11] uses an edge histogram calculated over the 
patch area as a feature vector to describe the patch. 
Matsuyama et al. [12] measure the patch correlation via the 
NVD (Normalized Vector Distance) measure. Please refer to 
[13] for a more complete background subtraction methods 
review. 

Inspired by the idea that image variations at neighboring 
pixels have strong correlation, we propose a novel standard 
variance feature for background modeling. We divide image 
into patches and represent each image patch as a standard 
variance feature. The background model of each image 
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patch’s standard variance feature is constructed as a mixture 
of Gaussians models. The standard variance feature is the 
standard variance of a set of pixels’ feature values, which 
captures mainly co-occurrence statistics of neighboring 
pixels in an image patch. Experimental results on several 
challenging video sequences demonstrate the effectiveness 
of the proposed method. 

The rest of this paper is organized as follows. Section 2 
introduces the standard variance feature. The background 
modeling method based on standard variance feature is 
described in Section 3. The experiments are given in Section 
4. We conclude the paper in Section 5. 

2. STANDARD VARIANCE FEATURE 

To effectively employ the co-occurrence statistics of 
neighboring pixels, we extract the standard variance feature 
in an image patch. In the following section, we will first 
define the standard variance feature, and then give some 
typical examples to show why it contains substantial 
evidence for dynamic background modeling. 

Let  be an  image patch. (For simplicity, we 
assume that the shape of image patch is square.) For a pixel 

, let  denote its intensity. The standard variance 
feature can be defined as follows: 

            (1) 

where  is the mean of pixels’ intensities. 
The advantages of using the standard variance feature as 

co-occurrence statistics descriptor for dynamic background 
modeling are as follows. First, it explicitly considers the 
meaningful correlation between pixels in the spatial vicinity. 
For example, an image patch’s center pixel in current frame 
would be a neighboring pixel in the next frame due to the 
small movements of dynamic scenes. The center pixel’s 
intensity will change non-periodically. However, the image 
patch’s standard variance feature is unchanged due to the 
spatial co-occurrence correlations between the center pixel 
and its neighboring pixels are modeled by Eq. (1). Second, 
the image noises are largely filtered out with the average 
filter during the computation of standard variance feature. 
Third, the standard variance feature is invariant to mean 
changes such as identical shifting of intensities. This is very 
valuable when scenes are under changing illumination 
conditions. Finally, the standard variance feature results in a 
low dimensional scalar as representation of each image 
patch. This avoids expensive computation in background 
modeling phase, which is an important property for practical 
applications. 

To illustrate why the standard variance feature contains 
substantial evidence for dynamic background modeling, we 
check how the standard variance features of some image 
patches’ from an outdoor scene [6] change over a short 
period of time (650 frames-30 seconds). The scene and the 
sample image patches are shown in Fig.1  

A B

C

Fig.1. Outdoor scene with three red rectanges showing the 
locations of three sample image patches respectively, static patch A, 
dynamic patch B and foreground patch C. 

Fig.2 plots the evolving curves of the standard variance 
feature over time, for the three patches separately. It is 
obviously to see that the standard variance feature 
distribution of Patch A is fairly stable near zero, in 
consistent with the fact that Patch A is a flat region in the 
sky. For the dynamic Patch B, the fluctuation of the 
corresponding standard variance feature is relatively small. 
When there is no foreground object occupies the Patch C, 
the distribution of the corresponding standard variance 
feature is also relatively stable. However, when foreground 
objects frequently occupy the Patch C, the standard variance 
feature abruptly changes. This indicates that current 
extracted standard variance feature deviates the underlying 
background model. Thus, we can achieve robust foreground 
objects detection based on these phenomena.  

Fig.2. Evolving curves of the standard variance feature over time, 
for the three sample image patches in Fig.1. 

3. BACKGROUND MODELING BASED ON 
STANDARD VARIANCE FEATURE 

In this section, we introduce background modeling 
mechanism based on the standard variance feature described 
above. The goal is to construct and maintain a statistical 
representation of the scene that the camera sees. We 
partition each new video frame into a set of non-overlapping 
patches with  pixels and represent each patch by a 
standard variance feature. In the following, we explain the 
background modeling procedure for each image patch.  
  Inspired by the Stauffer and Grimson’ work [1], we 
consider the standard variance feature of a particular patch 
over time as a patch process, and model the background 
model for this patch as a mixture of Gaussians models. As 
shown in Fig.3, it’s obvious to see that the standard variance 
features can fit mixture of Gaussians distribution well.     
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For a patch X at time t, the probability of its standard 
variance feature value can be written as: 

      (2) 
where K is the number of Gaussian components,  is a 
Gaussian probability density function

, and ,

and  are the time adaptive mixture coefficients, mean 
and variance, respectively, of the ith Gaussian of the 
mixture associated with . At each time instant, the 
Gaussian components are evaluated in descending order 
with respect to  to find the first matching with  (a 
match occurs if the value falls within 2.5  of the mean of 
the component). The first B components are chosen as the 
background model, where  

           (3) 
where T is the minimum portion of the background model. 
The weight is adjusted as follows: 

          (4) 
where is the learning rate and  is 1 for the model 
which is matched and 0 for others. In implementation, two 
significant parameters T and are needed to be set. For 
further details, please see [1].  
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Fig.3. Histogram of the standard variance feature of the sample 
image patch B in Fig.1. It can fit mixture of Gaussians distribution 
well. 

4. EXPERIMENTS 

The performance of the standard variance feature based 
method for modeling the background is evaluated in this 
section. The algorithm is implemented using C++, on a 
computer with Intel-Core 2 1.86 GHz processor. It achieves 
the processing speed of 20 fps at the resolution of 

 pixels. We compare the performance of our 
method to the widely used methods of [1]. We refer to this 
method as GMM in the rest of our experiments. Both 
qualitative and quantitative comparisons are used to 
evaluate our approach. The quantitative comparison is done 
in terms of the number of false negatives (the number of 
foreground pixels that are missed) and false positives (the 
number of background pixels that are marked as 
foreground).  

(a) 

1 2 3 4
0

500

1000

1500

2000

2500

3000

FN

Test Sequence

GMM
The Proposed Method

1 2 3 4
0

10000

20000

30000

40000

50000

60000

FP

Test Sequence
1 2 3 4

0

10000

20000

30000

40000

50000

60000

FN
 +

 F
P

Test Sequence

(b)

Fig.4. Comparision results of GMM and the proposed method. a) is 
the original test sequences and some detection results of the GMM 
and the proposed method. b) is the test results. FN and FP stand for 
false negatives and false positives, respectively. 

In fig. 4(a), we show some results of the proposed method 
using four test sequences. The sequences used in the 
experiment include dynamic scenes, i.e., swaying trees, 
water ripples, and camera jitters. The frames on the first two 
columns contain heavily swaying trees, in which the 
challenge is due to the vigorous motion of the trees and 
bushes. The frames on the first two columns are from [8] 
and [6] respectively. The frames on the third column contain 
a moving bottle in foreground, with dynamic background 
composed of ripples in the water. The last frames on the 
fourth column are from [4], which contain average camera 
jitter of about 14.66 pixels. The challenges contained in 
above dynamic scenes cause classical GMM method that 
rely only on color information to fail. The proposed method 
gives good results because the standard variance feature 
exploits co-occurrence statistics of neighboring pixels in an 
image patch. 

In order to provide a quantitative perspective about the 
quality of foreground detection with the proposed method, 
we manually mark the foreground regions in five frames 
from each sequence to generate ground truth data, and make 
comparison with the widely used GMM method. The 
numbers of error classifications are achieved by summing 
the errors from the frames corresponding to the ground truth 
frames. The corresponding quantitative comparison is 
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reported in Fig. 4(b). For all test sequences, the proposed 
method achieves best performance in terms of false 
positives, and false negatives are acceptable. Since the 
standard variance feature is obtained by capturing mainly 
co-occurrence statistics of neighboring pixels in an image 
patch, it is robust against dynamic background. It should be 
noticed that, for the proposed method, most of the false 
negatives occur on the contour areas of the foreground 
objects (see Fig. 4(a)). This is because standard variance 
feature is a patch description feature. According to the 
overall results, the proposed method outperforms the GMM 
method for the used test sequences. The values for our 
method parameters are given in Table 1. Identical 
parameters are used in the four sequences.  

Table 1. The parameter values of our method for the results in 
Fig.4(a).

Fig. Sequences K 
4(a) 1-4 3 0.7 0.01 

Fig.5. Number of false negatives (FN) and false positives (FP) for 
different parameter values for the second sequence of Fig.4. While 
the parameter value of patch size is varied, other parameters are 
kept fixed at the values given in Table 1. The results are 
normalized between zero and one: 

.

Since our method is a patch-based method, there naturally 
arise the following questions: 1) How sensitive the proposed 
method is to small changes of the values of patch size? 2) 
How easy or difficult is it to obtain a good set of the values 
of patch size? To answer these questions, we calculate the 
error classifications (e.g. FN, FP and FN + FP) for different 
parameter configuration. Because of a huge amount of 
different combinations, only the parameter of patch size is 
varied. The measurements are made for several image 
sequences. The results for the second sequence of Fig.4 are 
plotted in Fig.5. Obviously, for the parameter of patch size, 
a good value can be chosen across a wide range of values. 
The same observation is identical for all the test sequences. 
This property significantly eases the selection of the 
parameter values of patch size. 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a novel background modeling method 
based on standard variance feature, in which co-occurrence 

statistics of neighboring pixels in the spatial vicinity are 
captured. The main contributions of the proposed method 
are: (1) The standard variance feature is completely new for 
background modeling; (2) Different from the features (e.g., 
intensities, color) widely used in background modeling 
literature, the standard variance feature can offer relatively 
stable information for background modeling task; (3) We 
have validated the proposed method by conducting the 
experiments on four challenging sequences involving trees 
waving, water rippling, illumination changes, camera jitters, 
etc. Although the proposed method has not achieved 
pixel-level accuracy for the moving objects, it outperforms 
the GMM method for the used test sequences. Our future 
work will focus on how to improve contour accuracy for the 
moving objects. 
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