汉诺坝榴辉岩相石榴辉石岩 ——岩浆底侵作用新证据^{*}

樊祺诚¹ 隋建立¹ 刘若新¹ 周新民²

1. 中国地震局地质研究所,北京 100029; 2. 南京大学地球科学系,南京 210093

1. Institute of Geology, China Seismological Bureau, Beijing 100029, China;

2. Department of Earth Sciences, Nanjing University, Nanjing 210093, China.

2000-11-16 收稿, 2000-12-11 改回.

FAN QiCheng, SUI JianLi, LIU RuoXin and ZHOU XinMin. 2001. Eclogite facies garnet-pyroxenolite xenolith in Hannuoba area: New evidence of magma underplating. Acta Petrologica Sinica, 17(1):1-6

Abstract Eclogite facies garnet-pyroxenolite xenoliths in Hannuoba area show the typical layered cumulate structures and crystalloblastic textures of granulite facies. The mineral compositions, equilibrated *P*-*T* conditions and REE geochemistry of the xnolith reveal its mantle-derived genesis. All these facts indicate that the mantle-derived magma underplates in the top of the upper mantle and forms the mafic cumulate, then the cumulate experiences some metamorphism of eclogite facies. The e-clogite facies xenolith, accomponied with the granulite facies xenolith, provides new evidence of the existence of the crust-mantle transitional zone.

Key words Eclogite facies garnet-pyroxenolite xenoliths, Magma underplating, Crust-mantle transitional zone, Hannuoba area

摘 要 汉诺坝榴辉岩相石榴辉石岩捕虏体的产状、层状堆晶构造和粒状变晶结构,以及具有幔源成因的矿物学、REE 地 球化学特征和温压条件表明,其深部过程是由幔源岩浆底侵于上地幔顶部,形成镁铁质堆晶岩,再经榴辉岩相变质而成,它与 下地壳底部的麻粒岩相镁铁质堆晶岩,提供了岩浆底侵作用和壳-幔过渡带存在的新证据。

关键词 榴辉岩相石榴辉石岩捕虏体;岩浆底侵作用;壳-幔过渡带;汉诺坝

中图法分类号 P588.125; P583

1 引言

深部地球物理探测给我们带来了地球深部的各种有意 义的信息(Kuo,1999; Vander *et al.*,1999; 刘福田等, 2000),但长期以来由于缺乏对深部特别是岩石圈地质事实 的直接观测,我们只能借以间接地了解或推测地球内部的结 构、构造和物质组成。莫霍面作为大陆岩石圈 $30 \sim 40$ km 深 处壳-幔之间观察到的地震波不连续面,是地球层圈结构的 一个重要界面,有关莫霍面的性质一直争论不休。Fountain and Salisbury(1981)认为,壳-幔边界并非截然的界面,而是 一个过渡带,存在基性、超基性岩浆的底垫。莫霍面之上,正 常地壳的 $Vp \leq 7$ km/s,其下的 Vp为(8.0±0.2)km/s,而二 者之间过渡带的 $V_{\rm P}$ 一般为 6.8~7.8km/s (Mooney and Meissner,1992; White,1988)。自 80 年代全球地学断面计划 实施以来,地震反射资料证实一些大陆地区的莫霍面是一个 十分复杂的界面,过渡带在下地壳和壳-幔边界相当发育。

地质方面,随着壳-幔过渡带剖面在地表的出露(Mehnert,1975; Rivalenti *et al.*,1984)和被爆发性火山携至地表 的原产于壳-幔边界的岩石捕虏体的发现和研究(Rudnick, 1992),证实镁铁质麻粒岩与超镁铁质橄榄岩组成的壳-幔边 界混合层(即岩石学莫霍面)与地震莫霍面并不完全一致。现 在看来,正是由于壳-幔相互作用(包括底侵作用和拆沉作 用)导致壳-幔过渡带或壳、幔岩石混合层的产生,由此出现 壳-幔界面是作为"化学界面"(Ringwood and Green,1966), 或是"相变界面"(Yoder and Tilley,1962; Ito and kennedy,

^{*} 国家自然科学基金项目(编号:49772112)和中国科学院知识创新工程项目(编号:KZCX1-07-05)资助成果.

第一作者简介: 樊祺诚, 男, 1948年生, 研究员, 岩石学专业.

1970)的论争,也才有"岩石学莫霍面"(petrological Moho) 与"地震莫霍面"(seismic Moho)概念之差异(Nelson,1991; Griffin and O' Reilly,1987)。要回答上述问题,解开壳-幔边 界的物理、化学状态,壳-幔过渡带岩石学研究可能提供最直 接的证据。

迄今,全球造山带和克拉通地区已发现多处出露地表的 壳-幔过渡带剖面,意大利 Ivrea 带被当做世界上最好的壳-幔过渡带剖面(Rivalenti *et al.*,1984)。但是,象 Ivrea 这样的 抬升出露地表的壳-幔过渡带剖面非常有限,更多的是被火 山活动带到地表的零散的壳-幔边界的偶然捕虏体,给我们 带来壳-幔过渡带的信息。90 年代以来国内陆续报道了一些 赋存在火山岩中的下地壳麻粒岩相捕虏体(周新民等,1992; 樊祺诚等,1995,1998; 郭峰等,1997; 于津海等,1998; 韩宝 福等,1998; 邵济安等,1999),使我们对壳-幔边界过渡带岩 石学的认识大大前进了一步。

2 汉诺坝麻粒岩相-榴辉岩相捕虏体

我们曾经从汉诺坝麻粒岩相斜长辉石岩(原文称斜长辉 石麻粒岩)的岩石学和年代学,报道了岩浆底侵作用的年代 $(120 \sim 140 \text{Ma})$ 与现今镁铁质下地壳的组成特征(樊祺诚等, 1995,1998)。本文报道的是由幔源岩浆底侵于上地幔顶部尖 晶石二辉橄榄岩中形成的榴辉岩相石榴辉石岩捕虏体新类 型,为壳-幔过渡带提供新的实物证据。必须指出榴辉岩相石 榴辉石岩原始产状是侵入于尖晶石二辉橄榄岩,后作为玄武 岩的捕虏体被带到地表,不同于以往所称的被玄武岩直接包 裹的具火成结构特征的辉石岩类捕虏体。现阶段的研究工作 表明,汉诺坝新生代玄武岩中的麻粒岩相堆晶岩和榴辉岩相 堆晶岩捕虏体代表壳-幔过渡带岩石,通过这些被火山活动 捕获至地表的支离破碎的捕虏体样品之产状恢复、岩相学、 年代学、岩石地球化学及其高温高压下的物性实验研究(樊 祺诚等,1995,1998:本文和未发表资料),可以恢复其壳-幔 边界的组成特征与状态,建立由幔源岩浆底侵、分异堆晶和 麻粒岩相、榴辉岩相变质成因的现今壳-幔过渡带岩石学组 成(岩石学莫霍面)。岩浆底侵于下地壳底部形成麻粒岩相斜 长辉石岩、辉石岩、斜长石榴辉石岩等堆晶岩系列:岩浆底 侵于上地幔顶部形成榴辉岩相石榴辉石岩堆晶岩。前一类岩 石系列的矿物组合为:斜长石+单斜辉石±斜方辉石±石榴 石后一类矿物组合为:单斜辉石+石榴石,但有地幔矿物橄 榄石不同程度的混入。后一类正是本文要描述和研究的。

2.1 榴辉岩相石榴辉石岩地质产状特征

榴辉岩相石榴辉石岩与上地幔尖晶石橄榄岩以及黑色 辉石岩均呈团块状作为新生代玄武岩中的捕虏体产出,它们 共存在一块手标本上现象也很常见(见本期封面照片)。我们 研究的数块榴辉岩相石榴辉石岩为长条型块状,厚约 5~ 6cm,长 8~12cm,石榴石已蚀变,风化面呈灰白色麻点状,与 黑色单斜辉石共生。最具地质意义的特征是, 榴辉岩相石榴 辉石岩的顶面和底面均有一薄层尖晶石二辉橄榄岩(实际上 只剩下一层皮), 这是由于橄榄岩易碎脱落难以保存的缘故。 正是这一重要现象为我们判断其原始产状提供了榴辉岩相 石榴辉石岩以薄层状产于上地幔尖晶石二辉橄榄岩中的直 接证据, 被挤入的橄榄石主要沿榴辉岩相石榴辉石岩与尖晶 石二辉橄榄岩接触的边界分布。在其岩石抛光剖面上具典型 的层状堆晶构造, 粗粒石榴石粒径可达 5~8mm, 富淡褐红 色石榴石条带与富黑色单斜辉石条带交替呈层状分布, 榴辉 岩相石榴辉石岩与尖晶石二辉橄榄岩接触边界附近被卷入 的少量褐黄色橄榄石及其顶、底面的尖晶石二辉橄榄岩也清 晰可辨(图 1)。

2.2 岩相学特征

榴辉岩相石榴辉石岩具有典型的不等粒粒状变晶结构。 同种矿物石榴石或单斜辉石在粒度上逐渐过渡,大多数矿物 晶面为弯曲的接触面,并有受应力影响导致的颗粒压扁拉长 和定向排列现象。石榴石粒径变化最大(1mm~8mm),已完 全蚀变,个别石榴石包裹有细粒浑圆状单斜辉石。单斜辉石 新鲜,黑色或褐黑色,区别于橄榄岩中翠绿色铬透辉石。其层 状堆晶构造和粒状变晶结构特点也明显区别于汉诺坝从同 源玄武质岩浆高压结晶、具火成结构的包括石榴石辉石岩在 内的辉石岩类,也不同于具残斑结构的上地幔石榴石二辉橄 榄岩(Fan and Hooper,1989),而代表了特定的由幔源岩浆底 侵于上地幔顶部形成的堆晶岩,并经历了榴辉岩相变质作用 的产物,它与形成于下地壳的麻粒岩相堆晶岩(樊祺诚等, 1998)都是不同时期幔源岩浆底侵作用的产物。

3 岩石学

据 4 个榴辉岩相石榴辉石岩样品统计,平均矿物组成为: $Cpx_{45}Gt_{55}$ 。2 个榴辉岩相石榴辉石岩全岩化学成分如表 1,它们都有高含量的 MgO(分别为 18.67%和 21.90%), 如果扣除混入的橄榄石(<10%)的 MgO 含量,它们的 MgO 也仍在 15%以上。

榴辉岩相石榴辉石岩的矿物电子探针分析结果如表 2, 同时列出作为榴辉岩相石榴辉石岩(WD958)之底面的尖晶 石二辉橄榄岩(WD958B)矿物成分分析结果。榴辉岩相石榴 辉石岩的石榴石都是富镁的镁铝榴石,样品 WD954 的石榴 石最富镁(MgO 25%,Pyr83),其它三个样品的石榴石成分 很接近(MgO 20%~21%,Pyr73~Pyr74)。单斜辉石也都是 成分相近的透辉石(Wo₄₄₋₄₈En₄₉₋₅₀Fs₄₋₅),Na₂O 变化于 0.66% ~1.12%(平均0.86%),Cr₂O₃ 含量较低(0.24%~0.63%), 故显褐黑色。位于其底面的尖晶石二辉橄榄岩(WD958B)的 单斜辉石为含 Cr₂O₃ 较高(0.80%)的翠绿色铬透辉石,但它 们的橄榄石成分完全一致(Fo_{89.8}),这也证实榴辉岩相石榴

(a) WD957 尖晶石二辉橄榄岩 qt 榴辉岩相石榴辉石岩 cpc срх ol ol 98 AN. (b) WD954 尖晶石二辉橄榄岩 q 榴辉岩相石榴辉石岩 срх срх ol 尖晶石二辉橄榄岩

图 1 具典型层状堆晶构造的榴辉岩相石榴辉石岩

Fig. 1 The typical layered cumulate structures of eclogite facies garnet-pyroxenolite

表1 榴辉岩相石榴辉石岩主量元素(%)和微量元素(µg/g)分析结果

Table 1 The analyses results of major element (%) and trace element ($\mu g/g$) of eclogite facies garnet-pyroxenolite

キーチ	样	号	微景元表	样 号			
土儿系	WD951	WD958	城重九条	WD951	WD958		
SiO_2	46.98	45.39	La	1.345	3.255		
TiO_2	0.45	0.27	Ce	3.034	7.265		
Al_2O_3	11.7	13.45	Pr	0.372	0.916		
FeO	4.11	5.09	Nd	1.586	3.645		
$\mathrm{Fe}_2\mathrm{O}_3$	1.69	0.88	Sm	0.845	1.488		
MnO	0.14	0.21	Eu	0.362	0.602		
CaO	12.89	10.31	Gd	1.575	2.429		
MgO	18.67	21.90	Tb	0.346	0.466		
K_2O	0.43	0.16	Dy	2.414	3.166		
Na_2O	0.41	0.47	Но	0.529	0.661		
P_2O_5	0.04	0.04	Er	1.63	1.925		
烧失量	2.11	1.49	Tm	0.237	0.271		
总计	99.62	99.66	Yb	1.494	1.64		
Mg'	85.6	87.7	Lu	0.236	0.246		

分析单位:中国科学院地质与地球物理研究所 $Mg' = 100 \cdot Mg/(Fe^{2+} + Mg)$

表 2 榴辉岩相石榴辉石岩矿物电子探针分析结果(%)

Table 2 Microprobe analyses (%) of minerals in eclogite facies garnet-pyroxenolite

	WD951		WD954		WD957		WD958			WD958B						
	gt(2)	cpx(4)	ol	gt	cpx(2)	ol	gt	cpx	ol(2)	gt	cpx	ol	ol	opx	cpx(2)	sp
SiO_2	41.28	51.09	39.44	41.38	51.45	40.16	41.03	50.93	39.14	39.91	51.35	39.42	39.20	54.64	51.56	0.00
${\rm TiO}_2$	0.17	0.48	0.11	0.13	0.44	0.06	0.02	0.44	0.05	0.23	0.50	0.01	0.08	0.09	0.29	0.10
$\mathrm{Cr}_{2}\mathrm{O}_{3}$	0.84	0.63	0.07	0.16	0.24	0.00	0.83	0.58	0.04	0.17	0.39	0.18	0.25	0.40	0.80	12.54
$\mathrm{Al}_2\mathrm{O}_3$	23.31	5.60	0.08	22.54	5.76	0.08	22.52	6.17	0.25	23.04	5.76	0.38	0.29	4.18	5.85	45.94
FeO	7.19	2.97	11.41	8.26	3.04	9.65	7.44	2.51	9.95	7.49	2.93	9.89	9.90	6.61	3.00	12.43
MnO	0.26	0.09	0.19	0.31	0.07	0.24	0.26	0.00	0.12	0.28	0.00	0.15	0.10	0.04	0.04	0.25
MgO	20.79	16.74	48.58	24.75	16.64	48.84	21.31	15.80	48.74	21.13	16.28	48.76	48.91	32.24	16.15	26.72
CaO	3.96	20.52	0.08	1.69	20.64	0.02	5.34	20.99	0.05	5.28	21.54	0.13	0.14	0.79	21.23	0.01
Na_2O	1.00	0.66	0.02	0.00	0.92	0.00	0.08	0.74	0.00	0.31	1.12	0.03	0.05	0.21	1.06	0.00
K_2O	0.19	0.04	0.00	0.00	0.06	0.00	0.02	0.00	0.03	0.05	0.03	0.01	0.00	0.00	0.02	0.00
Total	98.97	98.80	99.98	99.22	99.23	99.05	98.85	98.16	98.36	97.89	99.90	98.93	98.92	99.20	99.98	97.99
Wo		44.4			44.7			46.7			46.4			1.6	46.1	
En		50.4			50.1			48.9			48.7			88.2	48.8	
Fs		5.2			5.2			4.4			4.9			10.2	5.1	
Pyr	74.1			83.0			73.3			72.5						
Fo			88.4			90.0			89.7			89.8	89.8			

分析者:中国地质科学院矿床地质研究所 ol-橄榄石;cpx-单斜辉石;gt-石榴石;sp-尖晶石;()括号内数字为分析个数

辉石岩中的橄榄石是由岩浆底侵时从尖晶石二辉橄榄岩中 被卷入的,而非堆晶成因的橄榄石。榴辉岩相石榴辉石岩的 石榴石、单斜辉石变化于中国东部新生代玄武岩中的地幔橄 榄岩与辉石岩类成分的变化范围(Fan and Hooper,1989),表 明其地幔属性,但成因上存在差别。

4 P-T 平衡条件

近年来,矿物地质温压计繁多,但限于具体条件真正可 适用于研究对象的并不多,特别是在温压估计之前的地质产 状与与矿物学研究尤为重要。由于榴辉岩相石榴辉石岩不含 斜方辉石,目前尚无直接估计其形成温度与压力的计算方 法,但根据其产状和成因矿物学特征,无疑是侵位于上地幔。 与其一道产出的下地壳麻粒岩相斜长二辉岩的 T-P 条件为 >900 C和 1.0~1.2GPa,相当于 33~40km 深度(樊祺诚等, 1995),而岩浆底侵作用主要发生于壳-幔边界几公里的厚 度,推测榴辉岩相堆晶石榴辉石岩的形成深度在 40km~ 45km 之间(P≈1.3GPa~1.5GPa),相当于上地幔尖晶石二 辉橄榄形成深度的上限。在上述压力限定之后,我们采用两 种石榴石-单斜辉石温度计(Ellis and Green,1979; Powell, 1985)估计了榴辉岩相石榴辉石岩的平衡条件(表 3),在1.3 GPa~1.5GPa 压力条件下,其形成温度均在 1000℃以上 (1065~1080℃),而该区下地壳麻粒岩相斜长二辉岩的形成 温度估计在 1000℃以下(樊祺诚等,1995;陈绍海,1996)。必 须指出,汉诺坝麻粒岩相和榴辉岩相捕虏体矿物岩石学、结 构特征及温压平衡条件都与习惯上的麻粒岩相和榴辉岩相 岩石存在差别,实际上它是一种特殊和广义的麻粒岩相与榴 辉岩相岩石,有关它的岩石学问题,也许对传统的麻粒岩相 与榴辉岩相是个冲击。

表 3 榴辉岩相石榴辉石岩的形成温度(TC)估计

Table 3 Temperature $(T \cap C)$ estimation of eclogite facies garnet-pyroxenolite

		T (°C)			变化范围	Р	计等于计	
WD951	WD954	WD957	WD958	WD958B *	(°C)	(GPa)	1 异 7 法	
$1083 {\sim} 1092$	$1040 \sim 1049$	$1056\!\sim\!1064$	1111~1117	965~1057 * *	$1072 \sim \! 1080$	1.3~1.5	Ellis & Green(1979)	
$1077 {\sim} 1085$	$1029\!\sim\!1037$	$1048 \sim 1056$	$1107 {\sim} 1115$		$1065 \!\sim\! 1073$	1.3~1.5	Powell(1985)	

* 尖晶石二辉橄榄岩; * * 采用 Wells(1977)和 Wood and Banno(1973)方法计算

5 REE 地球化学

的 REE 分布模式,两个上地幔顶部的榴辉岩相石榴辉石岩 (WD951, WD958) 具有相似的 REE 模式,由于单斜辉石富 LREE、石榴石富中、重 REE 和橄榄石 REE 含量极低,导致 呈现单斜辉石与石榴石叠加的 REE 特征,即轻、中 REE 呈 V型和重 REE 高而平坦的分布模式。下地壳底部主体的麻 粒岩相斜长二辉岩(QY9806)和少量出现的斜长石榴二辉岩 (WD9524),均显示相似的正 Eu 异常(Eu/Eu*分别为 1.25 和 1.45), 类似于全球镁铁质麻粒岩(Eu/Eu*为 1.23) (Rudnick and Fountain, 1995), 明显不同于上地幔顶部无 Eu 异常(Eu/Eu*~0)的榴辉岩相石榴辉石岩 REE 分布特征。 顶部榴辉岩相堆晶岩的矿物组合类型和百分含量都变化很 大,其全岩化学包括主微量元素也随之而变。REE 分布模式 从下地壳底部麻粒岩相的正 Eu 异常(不含斜长石的辉石麻 粒岩也不显示 Eu 异常)变化到上地幔顶部榴辉岩相的无 Eu 异常,显示了岩浆底侵成因的壳-幔过渡带镁铁质堆晶岩 REE 地球化学特点。

6 结论

汉诺坝新生代玄武岩中麻粒岩相-榴辉岩相镁铁质堆晶 岩捕虏体是幔源岩浆底侵于壳-幔边界形成的一套壳-幔过渡 带岩石,由下地壳底部的镁铁质麻粒岩相斜长辉石岩类过渡 到上地幔顶部的榴辉岩相石榴辉石岩 + 辉石岩类 + 尖晶石 二辉橄榄岩。榴辉岩相石榴辉石岩是由幔源岩浆侵位于上地 幔顶部,经分异堆晶和榴辉岩相变质作用的产物,提供了壳-幔过渡带存在的新证据。根据估计的榴辉岩相石榴辉石岩的 平衡温度、压力推测,形成深度介于 40~45km 之间的壳-幔 过渡带的下边界,可能厚约数公里。根据该区地震反射剖面 (祝治平等,1997),汉诺坝地区的地震莫霍面深度为 42km, 而本文提供的过渡带岩石学证据,推测该区岩石学莫霍面深 度应略大于地震莫霍面深度。所谓相对清晰的地震莫霍面, 在物质组成方面则表现为模糊和混合过渡的特征,所以莫霍 面还有一个需要长期探索和认识的过程。

不同大陆构造区的壳-幔过渡带可能都经历了不同的演 变过程,在地质与地球物理方面显示相应的差别。赵俊猛等 (1999)根据地震反射资料,对中国西部的天山造山带-准噶尔 盆地盆岭构造(挤压环境)与中国东北部辽东台隆-辽河盆地-燕山台褶带(伸展环境)研究认为,挤压环境与伸展环境构造 区的壳-幔过渡带不同。我们认为,岩浆底侵作用与拆沉作用 是壳-幔相互作用的两个相反过程,主导了不同构造环境下 的壳-幔演化与过渡带的演变。汉诺坝麻粒岩相-榴辉岩相捕 虏体研究证明,岩浆底侵作用是显生宙以来大陆伸展构造区 壳-幔相互作用和地壳垂向增生的重要方式,不同于以拆沉 作用为主的秦岭-大别、天山陆-陆碰撞造山带。

根据汉诺坝下地壳麻粒相斜长辉石岩的年代学(120~ 140Ma)揭示晚侏罗纪-早白垩纪时期强烈的岩浆底侵作用, 导致壳-幔边界的构造-岩浆热事件和地壳垂向增生(樊祺诚 等,1998)。必须指出,晚侏罗纪~早白垩纪(145~140Ma)是 汉诺坝地区燕山期岩浆活动的高潮期,在张家口及其邻近地 区就有大量这一时期的火山岩,翼北燕山期花岗岩的主体钙

图 2 代表性榴辉岩相与麻粒岩相堆晶岩 REE 分布模式 ○榴辉岩相石榴辉石岩;●榴辉岩相石榴辉石岩;□麻粒 岩相斜长二辉岩;■麻粒岩相斜长石榴二辉岩;

Fig. 2 REE dlstritution models of the vepresentative eclogite bacies and granulite bacies cumulates

碱性花岗岩也形成于这一时期(成岩峰期 145~130Ma)(许 保良等,1999)。这可能暗示晚侏罗纪-早白垩纪时期地表与 深部、侵入与喷出的岩浆是同源或有成因联系的岩浆活动, 岩浆底侵作用与壳-幔过渡带岩石学研究的重要性就在于 此。

最近我们测定了榴辉岩相石榴辉石岩的矿物-全岩 Sm-Nd 同位素等时线年龄为 310.3±3.08Ma,推测岩浆底侵作 用可能上溯到古生代石碳纪晚期,说明显生宙以来岩浆底侵 作用的多期性,这一初步结果正在进一步深入研究。原始底 侵岩浆性质、年代学,以及岩浆的底侵作用与喷发岩浆之间 关系等问题仍然是我们需要追寻和深入探索的。

References

- Ellis DJ and Green DH. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. ,71:13-22
- Fan QC and Hooper PR. 1989. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. J. Petrology, 30: 1117-1158
- Fountain DM and Salisbury MH. 1981. Exposed cross-sections through the continental crust: implications for crustal structure, petrology and evolution. Earth Planet. Sci. Lett., 56:263-277
- Griffin WL and O' Reilly SY. 1987. The composition of the lower crust and the nature of the continetal moho-xenolith evidence, in Nixon, P. H. (ed.), Mantle xenoliths:London, Wiley
- Ito K and kennedy GC. 1970. The fine structure of the basalt-eclogite transition. In: Morgan BA (ed.). Fiftieth Anniversary Symposia. Mineral. Soc. Am. Spec. Paper 3
- Kuo BY. 1999. Amplitude of Sdiff across Asia: effects of velocity gradient and Qs in D" region and the asphericity of the mantle. Earth Planet. Sci. Lett., 173:101-112

- Mehnert KR. 1975. The Iverea Zone: a model of the deep crust. Neues. Jahrb. Mineral Abh. , $125\!:\!156\!-\!199$
- Mooney WD and Meissner R. 1992. Multi-genetic origin of crustal reflectivity: continental lower crust and Moho. In: Fountain DM, Arculus RJ, Kay RW (eds.). Continental Lower Crust. Amsterdam: Elsevier, 59-61
- Nelson KD. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J. Inter., 105:25-35
- Powell R. 1985 Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J. Metamorphic Geol., 3:231 243
- Ringwood AE and Green DH. 1966. An experimental investigation of the gabbro-eclogite transformation and some geophysical consequences. Tectonophysics, 3:383-427
- Rivalenti G, Rossi A, Siena F et al. 1984. The layered series of the Ivrea-Verbano igneous complex. Petrogr. Mitt., 33:76-99
- Rudnick R. 1992. Xenoliths-samples of the lower continental crust. In: Fountain DM *et al* (eds.). Continental Lower Crust. Amsterdam: Elsevier, 269-316
- Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. , 33:267-309
- Van der Voo R, Spakman W, Bijwaard H. 1999. Mesozoic subducted slabs under Siberia. Nature, 397:246-249
- White RS. 1988. The earth crust and lithosphere. J. Petrol. , Special Lithosphere Issue, $1\!-\!10$
- Yoder HS and Tilley CE. 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol., 3:342-532

附中文参考文献

- 陈绍海,张国辉,周新华,孙敏,冯家麟,谢漫泽.1998.汉诺坝玄武 岩中麻粒岩类捕虏体的岩石学特征.岩石学报,14(3):366-380
- 樊祺诚,刘若新. 1995. 汉诺坝玄武岩中高温麻粒岩捕掳体. 科学通 报,41(3):235-238
- 樊祺诚,刘若新,李惠民,李霓,隋建立,林卓然. 1998. 汉诺坝捕掳 体麻粒岩锆石年代学与稀土元素地球化学. 科学通报,43(2): 133-137
- 郭锋,范蔚茗,林舸. 1997. 湖南道县辉长岩包体的年代学研究及成 因探讨. 科学通报,42(15):1661-1663
- 韩宝福,王学潮,何国琦,吴泰然,李茂松,刘玉琳,王式洸,1998.西 南天山早白垩纪火山岩中发现地幔和下地壳捕虏体.科学通报, 43(23):2544-2546
- 刘福田,刘建华,和建坤,游庆瑜.2000. 滇西特提斯造山带下扬子 地块的俯冲板片.45(1):79-84
- 邵济安,韩庆军,张履桥,牟保磊.1999.内蒙古东部早中生代堆积 杂岩捕虏体的发现.科学通报,44(5):478-485
- 许保良. 1999. 翼北燕山期三个系列花岗质岩石的地球化学特征及 其成因意义. 岩石学报, 15(2):208-216
- 祝治平,张先康,张建狮,张成科,赵金仁,盖玉杰. 1997. 北京-怀来 -丰镇剖面地壳上地幔构造与速度结构研究. 地震学报,19(5): 499-505
- 赵俊猛,张先康,赵国泽,刘国栋,卢造勋. 1999. 不同构造环境下的 壳-幔过渡带结构. 地学前缘,6(3):165-172
- 周新民,于津海,徐夕生.1992.女山玄武岩中麻粒岩捕掳体的发现 与意义.科学通报,13:1118-1201
- 于津海,方中,赖鸣远,周新民,罗树文,周旋.1998.广东雷州新生 代玄武岩中石榴麻粒岩相岩石捕虏体的发现.科学通报,43 (18):1998-1992