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Quasinormal modes, scattering and Hawking radiation of Kerr-Newman black holes in
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We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes),
transmission/reflection coefficients and Hawking radiation for a massive charged scalar field in the
background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic
field. There are two main effects: the Zeemann shift of the particle energy in the magnetic field
and the difference of values of an electromagnetic potential between the horizon and infinity, i.e.
the Faraday induction. We have shown that “turning on” of the magnetic field induces stronger
energy emission rate and leads to “re-charging” of the black hole. Thus, a black hole immersed in
a magnetic field evaporates much quicker achieving thereby an extremal state in a shorter period
of time. Quasinormal modes are moderately effected by the presence of a magnetic field which is
assumed to be relatively small compared to the gravitational field of the black hole.

PACS numbers: 04.30.Nk,04.50.+h

I. INTRODUCTION

Magnetic field is one of the most important con-
stituents of the cosmic space and is one of the main
sources of dynamics of the interacting matter in the Uni-
verse. Weak magnetic fields of about a few µG exist in
galaxies and clusters of galaxies, while very strong mag-
netic fields up to 104 − 108G are supposed to exit near
super-massive black holes in the Active Galactic Nuclei
(AGN) and even around stellar mass black holes [1–3].
Magnetic field near a black hole leads to a number of
processes, such as extraction of rotational energy from a
black hole, known as a Blandford-Znajek effect [4], the
charging of a black hole due to accretion of charged mat-
ter [5], the formation of an induced electric field on the
black hole surface [6], negative absorption (masers) of
electrons [7] and so on. In addition to stellar mass and
galactic black holes, miniature black holes could be im-
mersed in a strong magnetic field if created in a labora-
tory or observed in cosmic showers [8].
Even a relatively weak magnetic field can considerably

effect the behavior of charged particles/fields due-to usu-
ally not weak coupling eB between the particle charge
e and the magnetic field B. Therefore, charged massive
fields are interesting models for theoretical study of inter-
action of a magnetized black hole with its surroundings.
As the simplest one may case neglect the spin of the field
and consider the complex massive charged scalar field.
Still, the interaction of particles due to the spin can also
significantly effect particles‘ state and thus deserves a
separate consideration. As a first step in this direction,
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we shall consider here a charged rotating black hole, given
by the Kerr-Newman solution, and a charged massive
scalar field propagating on its background, and immersed
in an asymptotically homogeneous magnetic field. The
magnetic field is supposed to be weak enough, so that the
metric does not deviate from the Kerr-Newman one, i.e.
the magnetic field does not distort the geometry of the
space-time but only interacts with other electromagnetic
charges in the system.
Particles and fields in the vicinity of a black hole

change slightly the background space-time of a sys-
tem. Therefore, the addition of a field to a black hole
space-time can be considered as a perturbation. At
the classical level the perturbation can be described by
its damped characteristic modes, called the quasinormal
modes [10, 11] and by the scattering properties, which
are encoded in the S-matrix of the perturbation. Quasi-
normal modes are proper oscillations of the perturbation
which dominate at late time in the response of a black
hole to z perturbation. The complex frequencies of such
oscillations do not depend on the way of excitation but
only on the parameters of the black hole and the field
under consideration. Therefore, they are usually called
“the fingerprints” of a black hole.
In the same way, as quasinormal modes are essential

classical characteristic of a black hole, the thermal Hawk-
ing radiation is its essential quantum feature that carries
information about the dynamics of evaporation of the
black hole. For large astrophysical black holes the ef-
fect of Hawking evaporation is certainly negligible for the
black hole dynamics, but not for the behavior of particles
in its vicinity. Emission of Hawking radiation is signif-
icant for primordial black holes and huge for miniature
black holes which are considered in the higher dimen-
sional gravity and string theory. According to brane-
world scenarios our world is assumed to be a (3+1)-
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dimensional brane which is embedded in a higher dimen-
sional bulk. Gravity is supposed to be much stronger
at small distance creating possibilities for the formation
of an event horizon in particle collisions even at energies
achievable at the Large Hadron Collider [8]. Estimates
show that once such a black hole is created it will almost
immediately evaporate, so that the life time of the mini-
black holes is about 10−25−10−32 sec. Although created
in this way mini black holes would be intrinsically higher
dimensional. Nevertheless, our consideration here of the
four dimensional black holes can be useful because of the
two reasons: First, it is known that the higher dimen-
sional black hole emits particles mainly “on the brane”,
i.e. the process of quantum evaporation of the higher di-
mensional black holes is probably qualitatively similar in
many aspects to the one for four dimensional black holes.
Second and more important point is that in the pro-
posed approach we can realize how a magnetic field can
influence the process of evaporation. Thus, when talk-
ing about QNMs and Hawking radiation of black holes
immersed in a magnetic field we have in mind not only
astrophysical black holes but also primordial and mini-
black holes.
Thus, we could say that quasinormal spectrum and

Hawking radiation are respectively classical and quan-
tum “fingerprints” of a black hole. Quasinormal modes
and Hawking radiation have also one technical point in
common: analysis of QNMs as well as of the Hawking ra-
diation (in semi-classical approximation) begins from the
linear perturbations of fields under consideration whose
dynamics should be reduced to a single wave-like equa-
tion, called the master equation.
Up to now there are two kinds of analysis of quasi-

normal modes which, in a sense, are complimentary to
the present work. Quasinormal modes of the massive
and massless charged scalar field around charged black
holes (without a magnetic field) were studied in [12–14].
Quasinormal modes of a neutral scalar field around black
holes immersed in a strong magnetic field was calculated
in [15, 16]. In [15, 16], the black hole was described by the
Ernst-Schwarzschild solution which contains a magnetic
field as a parameter because the magnetic field is implied

to be strong enough in order to deform significantly the
black hole geometry. However, such strong, deforming
geometry, magnetic fields have little probability to exist
in nature [3].
Here, we shall consider a more realistic situation and

assume that the magnetic field is not strong enough to
deform the Kerr-Newman black hole metric. The correla-
tion of the quasinormal frequencies, the reflection coeffi-
cients and the energy emission rates with the parameters
of the black hole (mass M , charge Q, angular momentum
a) and of the scalar field (mass µ, charge e) are analyzed
here through a comprehensive numerical study.
In a system under consideration the coupling of parti-

cle charge e with the magnetic field B leads to the Zee-
man shift of the energy µ2 → µ2 − eBm [9]. The ro-
tation of a black hole in the magnetic field, in its turn,
leads to appearance of the induced charge on the black
hole surface, and to the difference of values of the elec-
tromagnetic potential at the horizon and at infinity, that
is the Faraday induction. We shall observe how these
two effects, the Zeeman effect and the Faraday induc-
tion, are reflected in the processes of classical and quan-
tum radiation. Qualitatively these two effects were con-
sidered in the vicinity of the Kerr-Newman black hole
by Galtsov and collaborators [6]. Here we shall give an
accurate quantitative analysis for the above case. We
shall calculate characteristic quasinormal modes, reflec-
tion/transmission coefficients and the emission rates for
Hawking radiation of the charged massive scalar field in
the background of the Kerr-Newman black holes and in
the vicinity of the asymptotically homogeneous magnetic
field.
The paper is organized as follows. Sec. II is devoted to

the separation of variables for the scalar field in the Kerr-
Newman background under non zero magnetic field. In
Sec. III we describe the numerical procedures for find-
ing eigenvalues of the separated angular equation and
quasinormal frequencies and reflection/transmission co-
efficients. Sec. IV is devoted to calculations of the quasi-
normal modes. Sec. V is about the classical scattering
and the calculations of the energy and momentum emis-
sion rates for the Hawking radiation.

II. WAVE-LIKE EQUATION

The Kerr-Newmann metric can be written in the following form

ds2 =
△
Σ
(dt− a sin2 θdφ)2 − sin2 θ

Σ
[adt− (r2 + a2)dφ]2 − Σ

△dr2 − Σdθ2, (1)

where

△ = r2 − 2Mr + a2 +Q2, Σ = r2 + a2 cos2 θ. (2)

Here M is the black hole mass, Q is its charge, and a is the angular momentum per unit mass. The event horizons
are situated at

r = r± = M ±
√

M2 − a2 −Q2. (3)
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In the above description we have not taken into account the influence of the magnetic field onto the black hole
background. Under these conditions the background electromagnetic field can be written as

A = Aµdx
µ =

Qr

Σ
(dt− a sin2 θdφ). (4)

The KN metric does not depend on the coordinates t and φ, so that there exist the two Killing vectors ξ(t) = (1, 0, 0, 0)
and ξ(φ) = (0, 0, 0, 1). One can see that the Killing vectors for vacuum metrics satisfy the same equations as the 4-
potentials Aµ. This suggests the following form of the 4-potential

Aµ =
1

2
B
[

ξµ(φ) + 2aξµ(t)

]

− Q

2M
ξµ(t). (5)

The gauge transformations,

Aµ → Aµ +
∂

∂xµ

((

Q− 2aMB

2M

)

t

)

, (6)

reduce the four-potential to the Coulomb form A0(r = ∞) = 0. Thus, the “full” electromagnetic 4-potential of the
system which includes the electric field of the charged black hole as source and a magnetic field B living “in the
background” of a Kerr-Newman black holes has the form

Aµ =

(

(Q− 2aMB)r(r2 + a2)

△Σ
, 0, 0,

B

2
+

(Q− 2aMB)ra

△Σ

)

AµA
µ = −B2 sin2 θ

4Σ

[

(r2 + a2)2 −△a2 sin2 θ
]

− (Q − 2aMB)
aB

Σ
r sin2 θ +

(Q − 2aMB)2r2

△Σ
. (7)

The Klein-Gordon equation for the charged massive scalar field in the vicinity of a Kerr–Newman black hole and in
the presence of the homogenous magnetic field B has the following general covariant form [9]

gµν(∇µ + ieAµ)(∇ν + ieAν)Ψ + µ2Ψ = 0 (8)

Since ∇µA
µ = 0, the latter can be reduced to the following form [9],

∂

∂r

(

△∂Ψ

∂r

)

+
1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

−
(

(r2 + a2)2

△ − a2 sin2 θ

)

∂2Ψ

∂t2
+ 2a

(

1− r2 + a2

△

)

∂2Ψ

∂t∂φ
+

(

1

sin2 θ
− a2

△

)

∂2Ψ

∂2φ

− 2ie

[

r(r2 + a2)(Q − 2aMB)

△
∂Ψ

∂t
+

(

(Q− 2aMB)ra

△ +
BΣ

2

)

∂Ψ

∂φ

]

+ (e2AµA
µ − µ2)ΣΨ = 0. (9)

As was shown in [9], the separation of radial and angular variables in the whole space is impossible for this equation.
Nevertheless, if one considers only the region which begins at the event horizon and ends up at some distance far from
the black hole r ≫ r+, and use the following approximations

eBr2+ ≪ 1, eQ ≪ 1, (10)

then we get,

AµA
µ =

(Q− 2aMB)2r2

△Σ
.

Under these conditions the separation of variables is possible, that is, we can write

Ψ = e−iωt+imφS(θ)R(r)/
√

r2 + a2. (11)

Here the function S(θ) obeys the equation

(

∂2

∂θ2
+ cot θ

∂

∂θ
− m2

sin2 θ
− (aω)2 sin2 θ + 2maω + λ− (µ2 − eBm)a2 cos2 θ

)

S(θ) = 0. (12)
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This equation can be solved numerically for any value of ω in the same way as the equation for massive scalar field
in the Kerr black hole background [17] with the effective mass µ2

eff = µ2 − eBm. We note, that when µeff = 0, the
equation (12) reduced to the well known equation for the spheroidal functions. In this case, the separation constant
λ(ω) can be found numerically using the continued fraction method [18]. When the effective mass is not zero the
separation constant can be expressed in terms of the separation constant for spheroidal functions as

λ(ω, µeff) = λ(Ω) + 2ma(Ω− ω) + µ2
effa

2,

where

Ω =
√

ω2 − µ2
eff =

√

ω2 − µ2 + eBm.

The sign of Ω might be chosen here arbitrary, but we fix it so that Re(Ω) and Re(ω) are of the same sign. This
allows one to recover easily the limit of µeff = 0 and, later, simplify fixing of the boundary conditions for the radial
part. When a = 0, one can find that λ = ℓ(ℓ+1), ℓ = 0, 1, 2 . . .. For the non-zero values of a, the separation constant
can be enumerated by the integer multi-pole number ℓ ≥ |m|.
Using the new tortoise coordinate r∗, the radial part can be written as a wave-like equation

(

d2

dr2∗
− V (r)

)

R(r) = 0, (13)

where

r∗ =
(r2 + a2)

△ dr,

and where the effective potential has the following form

V (r) =
△

(r2 + a2)2

(

λ+ (µ2 − eBm)r2 +
(r△)′

r2 + a2
− 3△r2

(r2 + a2)2

)

−
(

ω − ma

r2 + a2
− er

Q− 2aMB

r2 + a2

)2

. (14)

From this form of the effective potential one can realize the two effects: the mass of the field gained an effective
term µ2 − eBm, and the black hole charge gained an addition as well, Q → Q − 2aMB. The first effect is the well
know Zeeman effect, which is the shift of energy of a charged particle (with a charge e) in the magnetic field due
to interaction of a magnetic field B with an azimuthal momentum m. In systems which are more symmetric than
ours, i.e. with degenerated m-states, the Zeeman effect leads to splitting of the m-degeneration, and is well known
in quantum mechanics. In case when the effective potential allows for non-degenerated m-states, the Zeeman effect
simply ccrresponds to a shift in the particle’s energy.
The second effect is more remarkable. Once a rotating black hole is immersed into a magnetic field, the electrostatic

potential between the horizon and infinity acquires a difference due to the presence of a magnetic field, which is

δA = Ahor −Ainf =
Q− 2aMB

2M
.

In other words the black hole receives an additional induced electrostatic force Find = 2aMB/r2+. This is nothing but
the Faraday induction. It should be noted that this effect can be significant even for neutral black holes Q = 0, and
can be applied to large astrophysical black holes which cannot possess large electric charge.
The asymptotics of the effective potential near the horizon and at infinity are

V (r) → −Ω2, r → ∞, Ω =
√

ω2 − µ2 + eBm, (15)

V (r) → −ω̃2, r → r+, ω̃ = ω − ma+ er+(Q − 2aMB)

a2 + r2+
. (16)

During super-radiance the black hole can be charged until it reaches the “extremal” charge Q = 2aMB.
In the following sections we will study the influence of the above mentioned Zeeman and Faraday effects on the

classical (quasinormal) and quantum (Hawking) radiation of black holes. However, before starting numerical study of
the wave-like equation (13), let us mention one more constraint related to our analysis. If the electric field 2aMB/r+
induced on the horizon is as strong as the Schwinger field µ2/e, then the electrodynamic process of particle production
is initiated and continues until the maximum values of the charge is reached. This maximum values of the charge
is Q = 2aMB. Indeed, imagine vacuum as consisting of virtual pairs e+e− where electrons and positrons, after



5

transforming to the real ones, become separated by distance of order of the Compton wavelength λ = 2πµ−1. If the
work done by the electric field, which is eEλ, is as large as the rest mass of the two particles 2µ, then the virtual pair
turns into a real one: 2πµ−1eE > 2µ and consequently E ≈ µ2/e, where E is the induced electric field. We did not
take into consideration this Schwinger mechanism in the present paper. However, in the conclusion we shall suggest
simple arguments showing that the Schwinger mechanism of pair production will enhance the process of “re-charging”
of a black hole and forces the black hole to evaporate faster.

III. NUMERICAL METHODS

In this section we shall briefly discuss the two classi-
cal numerical methods used for calculations of the quasi-
normal modes (Frobenius and WKB methods) and the
shooting method used for calculations of the transmis-
sion/reflection coefficients.

A. Quasinormal modes

In order to calculate quasinormal modes we impose
the quasinormal mode boundary conditions for the wave
equation (13), we require that at the black hole horizon
we have only purely ingoing waves

R(r∗ → −∞) ∝ exp(−iω̃r∗),

while we should have only purely outgoing waves at spa-
tial infinity, i.e.

R(r∗ → ∞) ∝ exp(iΩr∗).

Thus, no waves are coming from the horizon or infinity,
which implies that ω are proper oscillation modes in the
black hole response to a “instantaneous” perturbation.
In other words, when the perturbation decays the source
of the initial perturbation is not acting anymore.
Equation (13) has an irregular singularity at spatial

infinity and four regular singularities at r = r+, r =
r− = (Q2 + a2)/r+ and r = ±ia. The latter singularities
appear due to the pre-factor (r2 + a2)−1/2 in (11). The
appropriate Frobenius series is determined as

R(r) =

(

r − r+
r − r−

)−iω̃/4πTH

eiΩr(r − r−)
iσy(r),

where

σ =

(

Ω+
µ2 − eB(m− 2aω)

2Ω

)

(r+ + r−),

and TH is the Hawking temperature

TH =
∆′(r+)

4π(r2+ + a2)
.

The function y(r) must be regular at the horizon and
spatial infinity and

y(r) =

√
r2 + a2

r − r−

∞
∑

k=0

ak

(

r − r+
r − r−

)k

.

The coefficients ak satisfy the three-term recurrence re-
lation.

αnan+1+βnan+γnan−1 = 0, n ≥ 0, γ0 = 0, (17)

where αn, βn, γn can be found in an analytic form. We
do not write down these coefficients here because they
have quite a cumbersome form. Notice that the factor√

r2+a2

r−r
−

removes the singularities r = ±ia of y(r). But

for this factor we would have had a five-terms recurrence
relation due to the additional singular points.
By comparing the ratio of the series coefficients

an+1

an
=

γn
αn

αn−1

βn−1 − αn−2γn−1

βn−2−αn−3γn−2/...

− βn

αn
,

an+1

an
= − γn+1

βn+1 − αn+1γn+2

βn+2−αn+2γn+3/...

, (18)

we obtain an equation with a convergent infinite contin-

ued fraction on its right side:

βn − αn−1γn
βn−1 − αn−2γn−1

βn−2−αn−3γn−2/...

= (19)

αnγn+1

βn+1 − αn+1γn+2

βn+2−αn+2γn+3/...

,

which can be solved numerically by minimizing the ab-
solute value of the difference between its left and right
sides. Equation (19) has an infinite number of roots, but
the most stable root depends on n. Generally the larger
number n corresponds to the larger imaginary part of the
root ω [19].
Note, that the case under consideration allows one to

use the Nollert procedure [20], in order to improve con-
vergence of the infinite continued fraction, which is useful
for searching roots with a very large imaginary part.
For an additional check of the accurate numerical re-

sults obtained by the convergent Frobenius method we
shall use also the WKB formula of the 6th order beyond
the eikonal approximation [21], [22]. The latter has the
following form

iV0
√

2V ′′
0

−
i=6
∑

i=2

Λi = n+
1

2
, n = 0, 1, 2 . . . , (20)

and the correction terms Λi were obtained in [21], [22]
and depends on higher derivatives of V at its maximum
with respect to the tortoise coordinate r⋆, and n labels
the overtones. The WKB approach was developed by
Schutz and Will [21] and extended to the 3rd [21] and
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6th [22] orders. It can be effectively used not only for
finding low laying quasinormal modes (see for instance
[23] and references therein), but also for calculations of
the transmission/reflection coefficients in various prob-
lems [25].

B. Reflection coefficients

For calculations of the emission rates of particles due to
Hawking radiation, one needs first to solve the problem
of classical scattering in order to obtain the gray-body
factors. This implies the posing of classical scattering
boundary conditions. At the event horizon this again
means the boundary condition which corresponds to a
purely ingoing wave, while at spatial infinity (r → ∞)
we have a different condition from the one used for the
quasinormal modes,

R(r) ≃ Zin exp(−iΩr⋆) + Zout exp(iΩr⋆),

where Zi and Zo are integration constants which corre-
spond to the ingoing and outgoing waves respectively.
Thus, we would like to know which portion of particles
will be able to pass through the barrier of the effective
potential.
Introducing the new function

P (r) = R(r)

(

r − r+
r − r−

)iω̃/4πTH

,

and choosing the integration constant as P (r+) = 1, we
expand equation (13) near the event horizon and find
P ′(r+), which completely fixes the initial conditions for
the numerical integration. Then, we integrate numeri-
cally equation (13) from the event horizon r+ until some
distant point rf ≫ r+ and find a fit for the numerical
solution far from the black hole in the following form

P (r) = ZinPin(r) + ZoutPout(r), (21)

where the asymptotic expansions for the corresponding
functions are found by expanding (13) at large r as

Pin(r) = e−iΩrr−iσ
(

1 + P
(1)
in r−1 + P

(2)
in r−2 + . . .

)

,

Pout(r) = eiΩrriσ
(

1 + P
(1)
outr

−1 + P
(2)
outr

−2 + . . .
)

.

The fitting procedure allows us to find the coefficients Zin

and Zout. In order to check the accuracy of the calculated
coefficients one should increase the internal precision of
the numerical integration procedure, the value of rf and
the number of terms in the series expansion for Pin(r)
and Pout(r), making sure that the values of Zin and Zout

do not change within desired precision.
If the coefficients Zin and Zout are calculated, one can

find the absorbtion probability

|Aℓ,m|2 = 1− |Zo/Zi|2. (22)

2 4 6 8 10 12
r

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0
VHrL+Ω2

FIG. 1: The effective potentials for the charged scalar field
(ℓ = m = 2) in the Schwarzschild background (r+ = 1) with
the magnetic field eB = 0.04 (blue, top), eB = 0.1 (green),
eB = 0.25 (red, bottom). One can see that the potential

is negative only deeply in the region r ≫ 1/
√
eB, which is

beyond the region of validity of the approximation (10).

This will be used later for calculations of the emission
rates for energy momentum and charge of the black hole.
This approach was also used for analysis of Hawking ra-
diation of higher dimensional simply rotating black holes
[27], and of Gauss-Bonnet black holes [28] and showed an
excellent agreement with the analytical approach.

IV. QUASINORMAL MODES

First, let us briefly review previous works on quasi-
normal modes of Kerr-Newman black holes. Apparently
the first work on QNMs of Kerr-Newman black holes
was by one of us [31], where gravitational perturbations
with a frozen Maxwell field were considered. A more ac-
curate numerical results for gravitational perturbations
were presented in [32]. Quasinormal modes of the Dirac
field were considered in [33]. The case of charged scalar
and Dirac modes was analyzed in the background of Kerr-
Newman black holes allowing for a positive cosmological
constant [14]. All the above papers observed no unstable
modes in the quasinormal spectrum (except the superra-
diant ones), though unstable modes of a charged scalar
field were found for an asymptotically anti-de Sitter back-
grounds [34].
Before examining the dependence of QNMs on vari-

ous parameters of the system we should first discuss the
stability of the system. The effective potential Eq. (14)
contains a term proportional to µ2 − eBm which works
as effective mass term, and when µ2 < eBm this term is
negative. It is well known that a massive scalar field with
negative µ2 is unstable even for tiny negative values of
the square of mass [29]. Thus, the instability is expected
when formally considering exact solutions of the wave
equations (13), but certainly not for a real physical situ-
ation. The reason is that the instability due to negative
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TABLE I: QNMs of the massless scalar field in the background of non-rotating uncharged black hole, eB = 0.05. The
Frobenius method gives the unstable mode, which does not appears, when we use the WKB method, supposing asymptotically
flat background.

mode unstable stable WKB fundamental

ℓ = m = 1 0.2236i 0.5747 − 0.2020i 0.5747 − 0.2022i

ℓ = m = 2 0.3162i 0.9516 − 0.1988i 0.9515 − 0.1989i

ℓ = m = 3 0.3873i 1.3331 − 0.1973i 1.3331 − 0.1973i

ℓ = m = 4 0.4472i 1.7162 − 0.1963i 1.7162 − 0.1963i

ℓ = m = 5 0.5000i 2.0999 − 0.1956i 2.0999 − 0.1956i

-0.04 -0.02 0.02 0.04
eB

0.12

0.14

0.16

0.18

0.20

0.22

ReHΩL

-0.04 -0.02 0.02 0.04
eB

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

ImHΩL

FIG. 2: Real and imaginary parts of the fundamental (n = 0)
QNM as a function of eB for ℓ = m = 0, Q = 0, a=0.2
(blue), a=0.4 (green), a=0.6 (orange), a=0.8 (red), a=0.99
(magenta) (left panel: from top to bottom, right panel: from
bottom to top).

square of mass comes from infinite negative fall-off of the
effective potential for scalar field at spatial infinity. In
our case, however, “infinity” is located at r ≈ r+(eB)−1

and further from this distance the wave equation is not
valid because of the approximation (10) which has been
used for the separation of variables. On Fig. 1 one can
see that the effective potential is positive definite in the
region of its validity and is negative only for values of r
which are seemingly larger than (eB)−1.

There are reasons to expect that the true effective po-
tential for the black hole immersed in an asymptotically
uniform magnetic field will inevitably lead to instability
due to the infinite energy of the magnetic field. Anal-
ysis of particle motion around Ernst-Schwarzschild and
Ernst-Kerr black holes shows that the effective potential
for such particles diverges at infinity. This means that
the magnetic field which fills in all the Universe will cre-
ate an effective confining box. Thus, at infinity it will
be appropriate to use Dirichlet boundary conditions. A
rotating black hole in such a confining box will inevitably
be unstable through the mechanism of superradiance. In
a real world the magnetic field is certainly assumed to
vanish at infinity, so that no confining box will appear.
When using approximation (10) we “cut” the effect of
the confining box at infinity in a natural way.

In nature, infinity means a region far from the black
hole r ≫ r+ which can be approximately treated as
asymptotically flat. In practice, one should match the
considered solution with asymptotically homogeneous
magnetic field at “infinity” r ≈ r+(eB)−1 with some
asymptotically flat solution. Fortunately, as it was shown
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FIG. 3: Real and imaginary parts of the fundamental (n = 0)
QNM as a function of eB for ℓ = 1, m = 0, Q = 0, a=0.2
(blue), a=0.4 (green), a=0.6 (orange), a=0.8 (red), a=0.99
(magenta) (left panel: from top to bottom, right panel: from
bottom to top).
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FIG. 4: Real and imaginary parts of the fundamental (n = 0)
QNM as a function of eB for ℓ = 1, m = 1, Q = 0, a=0.2
(blue), a=0.4 (green), a=0.6 (orange), a=0.8 (red), a=0.99
(magenta) (left panel: from top to bottom (except for a =
0.2), right panel: from bottom to top).

in [30] the major scattering properties of fields, including
the low-laying quasinormal modes, depend on the behav-
ior of the effective potential only in some region near the
black hole (if the black hole is non-AdS one), while the
form of the effective potential far from the black hole
has no any impact on the results. This can be easily ex-
plained because the process of scattering occurs mainly
near the maximum of the potential barrier.

When computing QNMs with the help of the Frobe-
nius method, we do not take account of this peculiar-
ity of “infinity” and treat infinity as mathematical one.
Thus, in addition to a number of damped stable modes
we must find some “unstable” modes by the Frobenius
method. Indeed, we find and tabulate them on Table
I, where one can also find estimations of QNMs derived
using the WKB method. Unlike the Frobenius method,
WKB formula [22] implies that one has a positive definite
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FIG. 5: Real and imaginary parts of the fundamental (n = 0)
QNM as a function of eB for ℓ = 1, m = −1, Q = 0, a=0.2
(blue), a=0.4 (green), a=0.6 (orange), a=0.8 (red), a=0.99
(magenta) (left panel: from top to bottom, right panel: from
bottom to top).

decaying potential at infinity. Therefore, WKB formula
approximates mainly the behavior near the maximum of
the potential and does not reproduce those “unstable”
modes. That is physically adequate as the growing modes
appear within Frobenius approach only due to improper
“extension” of the wave equation (13) outside the region
of its validity.
Finally, another instability occurs due to the so-called

super-radiance: massive field has a local minimum far
from the black hole which works as an effective potential
wall, so that the wave amplified due to extraction of ro-
tational energy of the black hole (super-radiance) can be
reflected back from the distant wall. Repetition of this
process leads to unbounded growth of the perturbation.
Super-radiant instability is shown to be always negligi-
bly small [35], so that the evaporation time of mini-black
holes is much shorter than the characteristic time of the
instability growth. For large, astrophysical black holes,
superradiant instability of massive fields means that the
quantum field will go over to the higher non-superradiant
state. In addition, unstable modes are not in the quasi-
normal sector of the black hole spectrum. Therefore we
do not need to give a detailed analysis of superradiant
modes here. Moreover, such an analysis would be tech-
nically not accurate within our approach because the ef-
fective potential is known only in some proximity of the
black hole and is not exactly known far from the black
hole where the local minimum is localized.
Quasinormal modes of the Kerr-Newman black hole

immersed in a magnetic field for massive charged scalar
field will be determined by a number of parameters, seven
all together: the black hole parameters Q, M , a, the
magnetic field B, the scalar field parameters µ, e and its
quantum numbers m and ℓ. Therefore, complete inves-
tigation of the quasinormal modes correlation on these
parameters would include an enormous number of nu-
merical data. We shall show here only the most repre-
sentative plots for dependence of QNMs on various pa-
rameters. We present all our quantities in units of the
black hole horizon.
On Fig. 2, 3, 4, 5 one can see for the Q = 0 case, that

the m = 0 modes and the modes with non-vanishing
azimuthal number behave quite differently. Actually,
modes with m = 0 (Fig. 2, 3) have decreasing damping

rate as the angular momentum per unit mass a increases.
In the regime of relatively small values of eB the damping
rate increases roughly linearly with eB. The real oscil-
lation frequency Re(ω) decreases linearly with eB and
also decreases for growing a. We can see also that eB
coupling has greater influence on Re(ω) than on Im(ω),
which remains almost unchanged within region of small
eB.

For modes with m > 0, both Re(ω) and Im(ω) lin-
early decrease with eB (Fig. 4), with one peculiarity: for
moderate negative values of eB the Re(ω) is not mono-
tonically decreasing with a for all eB anymore. In a
large region of both positive and negative values of eB,
the Re(ω) is monotonically decreases with a up to some
minimal value and then increases. This explains the in-
tersection of curves on Fig. 4. For negative m, we did
not observe such a minimum (Fig. 5) and the behavior
is quite similar to the m = 0 case.

On Fig. 6 one can see that Re(ω) of the fundamental
mode (ℓ = m = 0) is monotonically decreasing with Q
for eB < 0 and monotonically increasing for eB > 0. For
eB < 0, Im(ω) monotonically grows with Q, while for
eB > 0, Im(ω) as a function of charge Q decreases up
to a minimum at some moderate value of Q, and then
starts growing. As in the limit m = 0 and Q = 2aMB
equations (12), and (13) do not depend on the field charge
e, the upper and lower curves on Fig. 6 coincide for
Q = 2aMB. On Fig. 6, the quasinormal behavior for
ℓ = 1,m = 0 is similar to Fig. 7 where modes with
positive and negative e also coincide in the limit Q =
2aMB. Modes with ℓ = m = 1 have also monotonically
decreasing (increasing) Re(ω) as a function of the charge
Q for eB < 0 (eB > 0), while Im(ω) is monotonically
increasing for both positive and negative eB (see Fig. 7).
The same monotonic growth of Im(ω) happens for ℓ =
1,m = −1 mode, so the Re(ω) has an opposite behavior:
it grows for eB < 0 and decreases for eB > 0.

Finally, let us discuss the dependence of quasinormal
modes on the charge of the field e. On Fig. 8 on can
see ℓ = 0, 1 m = 0 modes and ℓ = 1, m = ±1 modes
with a charge Q which is equal to the “extremal” value
2aMB. Modes with m = 0 naturally form an almost
horizontal line, because e enters into the wave equation
in combination with m or Q − 2aMB. Thus, exactly in
the limit Q = 2aMB we have a single mode which is
independent of e. For ℓ = 1, m = 1, Re(ω) decreases
as a function of e, so this decrease has some small local
peaks at larger negative values e. In a similar way, ℓ = 1,
m = −1 modes have both real and imaginary part of ω
which almost monotonically increase up to small peaks
for moderate values of |e|. For sufficiently small values
of |e| the dependence of ω on e is strictly monotonic.

Summarizing, we can say that the Zeeman effect and
the Faraday induction influence quasinormal spectrum
in a rather complicated way, where one cannot easily
distinguish these two effects. This happens because the
magnetic field acts in a different way on modes with dif-
ferent azimuthal numbers m: m = 0 modes are usually
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FIG. 6: Real and imaginary parts of the fundamental (n = 0) QNM as a function of Q for Q = 0, 2aMB/3, aMB, 2aMB,
B = 0.2, a = 0.6, µ = 0, e = +0.2: ℓ = 0 (red, right panel: bottom), ℓ = 1 (magenta, left panel: top) and e = −0.2: ℓ = 0
(blue, left panel: bottom), ℓ = 1 (green, right panel: top), m = 0.
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FIG. 7: Real and imaginary parts of the fundamental (n = 0) QNM as a function of Q for Q = 0, 2aMB/3, aMB, 2aMB,
B = 0.2, a = 0.6, µ = 0, from top to bottom: ℓ = m = 1 e = +0.2 (red) and e = −0.2 (blue), ℓ = −m = 1 e = −0.2 (green)
and e = +0.2 (magenta).
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FIG. 8: Real and imaginary parts of the fundamental (n = 0)
QNM as a function of e for µ = 0.1, a = 0.25 Q = 0.9,
B = 1440/749 ≈ 1.92, l = m = 0 (blue, bottom horizontal)
l = 1, m = 0 (red, top horizontal), l = 1, m = 1 (cyan, top),
l = 1, m = −1 (green).

only slightly affected by the magnetic field, while m 6= 0
are strongly influenced due to extra coupling term Bm.
Also, the quasinormal behavior is different for negative
and positive charge of the field e. One common feature

of quasinormal modes is that the larger magnetic field B
is, the longer the QNMs are living, if m ≤ 0, while m > 0
they live shorter. A similar longer life of the quasinor-
mal modes (yet, for all m and not only for m ≤ 0) has
been observed for the Ernst solution, i.e. for black holes
immersed in a strong magnetic field that deforms the ge-
ometry [15]. However, in [15] a neutral scalar field was
considered, so that the mechanism that influenced the
quasinormal spectrum was the induced deformation of
the space-time geometry due to magnetic field and not
the Zeeman shift and the Faraday induction. For the
Ernst black hole a superradiant instability can be also
considerably enhanced [16], for huge values of the mag-
netic field strength which seems to be very difficult to be
achieved. Quasinormal modes of charged scalar fields for
non-rotating black holes were also considered in a number
of papers [12–14].
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FIG. 9: Energy-emission rate of the Kerr-Newman black hole (left panels: a = 0.5, Q = 0.1, right panels: a = 0.5, Q = 0.5)
without the magnetic field (top panels) and with the magnetic field B = 2/3 (bottom panels) due to massless charged particles
(e = 3/20). The red (top) and blue (bottom) lines correspond respectively to the same and the opposite signs of the charges
of the black hole and the emitted particles.

V. SCATTERING AND HAWKING RADIATION

A classical black hole in equilibrium does not emit any-
thing. Nevertheless, when considering quantized fields
around the black hole, the Hawking radiation appears: a
black hole can create pairs of particles from the vacuum
on the edge of its horizon. Particles with negative en-
ergy go beyond the horizon, while particles with positive
energy partially leave the black hole. When analyzing
Hawking radiation of black holes we shall assume that the
black hole is in thermal equilibrium with its surroundings
in the following sense: the black hole temperature does
not change between the emission of two consequent par-
ticles. This implies the canonical ensemble as a model
for the system.

Not all positive energy particles can leave the back
hole: part of them is reflected from the potential barrier
surrounding the black hole. Thus, the energy emission
rate depends on the grey-body factors which give the
fraction of particles penetrating the barrier.

The emission rates for the energy, charge and angu-
lar momentum are proportional to the grey-body factors.

The energy-emission rate is

− dM

dt
=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

∫

|Aℓ,m|2 ω

exp(ω̃/TH)− 1

dω

2π
, (23)

the charge-emission rate is

− dQ

dt
=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

∫

|Aℓ,m|2 e

exp(ω̃/TH)− 1

dω

2π
. (24)

and the angular-momentum emission rate has the form

− dJ

dt
=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

∫

|Aℓ,m|2 m

exp(ω̃/TH)− 1

dω

2π
. (25)

Here, we perform the summation over all the possible
values of the quantum numbers ℓ and m. The grey-body
factors are shown on Fig. 12 as functions of ω. There
one can see that for negative m grey-body factors are
larger for negatively charged particles than for positively
ones, while for m ≥ 0, on the contrary, positively charged
particles have larger grey-body factors than negatively
charged ones. This is indirect influence of the Zeeman



11

0.5 1.0 1.5 2.0
Ω

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-

¶
2 J

¶Ω ¶ t

e = -0.15

e = +0.15

B=0, Q=0.1, a=0.5 HM=0.63L

-

â J

â t
= 0.000568

0.5 1.0 1.5 2.0
Ω

0.0001

0.0002

0.0003

-

¶
2 J

¶Ω ¶ t

e = -0.15

e = +0.15

B=0, Q=0.5, a=0.5 HM=0.75L

-

â J

â t
= 0.000224

0.5 1.0 1.5 2.0
Ω

0.0002

0.0004

0.0006

0.0008

-

¶
2 J

¶Ω ¶ t

e = -0.15

e = +0.15

B=2�3, Q=0.1, a=0.5 HM=0.63L

-

â J

â t
= 0.000697

0.5 1.0 1.5 2.0
Ω

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

-

¶
2 J

¶Ω ¶ t

e = -0.15

e = +0.15

B=2�3, Q=0.5, a=0.5 HM=0.75L

-

â J

â t
= 0.000359

FIG. 10: Angular momentum emission rate of the Kerr-Newman black hole (left panels: a = 0.5, Q = 0.1, right panels: a = 0.5,
Q = 0.5) without the magnetic field (top panels) and with the magnetic field B = 2/3 (bottom panels) due to massless charged
particles (e = 3/20). The red (top) and blue (bottom) lines correspond respectively to the same and the opposite signs of the
charges of the black hole and the emitted particles.

term eBm whose contribution depends on the sign of m
and e. At the first glance, negatively (relatively the black
hole charge) charged particles which are emitted radially
should have smaller transmission coefficient than posi-
tively charged ones: electromagnetic attraction of oppo-
site charges diminishes the transmission of negative par-
ticles. For particles which are radiated in all possible
direction, this is certainly not so strict and the coupling
with the azimuthal number m becomes important.

Let us first discuss Hawking radiation when the mag-
netic field is absent. On Fig. 9, 10, 11, one can see the
emission rates for mass, angular momentum and charge
per unit frequency per unit time, and in boxes of the fig-
ures the results of integration over frequency ω, that is
the total emission rates. When B = 0, the energy, an-
gular momentum and charge emission rates of positively
charged particles are larger than of negatively charged
ones for all values of ω, and, consequently, the total emis-
sion rates for positive particles are larger as well. When
increasing the black hole charge Q, the gap between the
positive and negative particles emission rates increases.
Electrostatic repulsion of positive particles by the black
hole which (being proportional to the charge Q) enhance
the emission of more positive particles. The total en-

ergy emission rate decreases as Q is growing, the same
being true for the momentum emission rate. The total
emission rates include summation of both positive and
negative particles, so that the most interesting correla-
tion occurs for the charge emission rate: when Q grows,
the charge emission rate, unlike energy and momentum
rates, increases. In general in geometrical units, the black
hole looses its mass “quicker” than its charge, reaching
thereby the extremal Kerr-Newman state.

When one turns on the magnetic field, the picture of
Hawking radiation changes drastically. First, at rela-
tively small values of Q the energy and momentum emis-
sion rates of positive particles are not larger than those
of negative ones for all ω anymore. At some values of
ω the energy and momentum emission rates due to posi-
tive particles are smaller than those of negative ones (see
Figs. 9, 10, 11). For large values of charge Q the gap
between emission rates of positive and negative particles
increases, so that the intensity of emission due to pos-
itive particles becomes dominant again. What is more
important, the presence of magnetic field considerably
increases the energy and momentum emission rates and,
at the same time, considerably decreases charge emission
rate, up to the changing of sign of the charge emission
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FIG. 11: Charge-emission rate of the Kerr-Newman black hole (left panels: a = 0.5, Q = 0.1, right panels: a = 0.5, Q = 0.5)
without the magnetic field (top panels) and with the magnetic field B = 2/3 (bottom panels) due to massless charged particles
(e = 3/20).
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FIG. 12: Grey-body factor of the Kerr-Newman black hole (left panel: a = 0.5, Q = 0.1, right panel: a = 0.5, Q = 0.5) in
the magnetic field B = 2/3 due to massless charged particles (e = 3/20, ℓ = 1). From left to right: m = −1 negative charge
particles, m = −1 positive charge particles, m = 0 positive charge particles, m = 0 negative charge particles, m = 1 positive
charge particles, m = 1 negative charge particles. For the “extremal” black hole m = 0 grey-body factors for the particles and
anti-particles are the same (black line).
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rate, which means re-charging of the black hole. This
means that in the presence of magnetic fields the black
hole evaporates much quicker and reaches the extremal
state in a much shorter period of time. This is quite ev-
ident if one notices that the Faraday induction produces
an additional (induced) charge −2aMB on the surface of
the black hole. This charge is opposite to the black hole
chargeQ and attracts positively charged particles and re-
pulses negatively charged ones. At sufficiently large val-
ues of the magnetic field the absorbtion of positive parti-
cles will dominate over the negative ones, which leads to
increasing instead of decreasing of the black hole charge
during the evaporation process. This process consider-
ably decreases the time needed by a black hole to reach
its extremal state. The latter may be relatively small
effect for astrophysical black holes but not negligible for
mini black holes.
Finally, let us remind that if the induced electric field is

as strong as µ2/e, the electrodynamic Schwinger mech-
anism of pair creation will occur. Unlike the Hawking
radiation which occurs on the edge of the black hole, the
Schwinger process will be contributing in the particle pro-
duction outside the black hole horizon. The Schwinger
production will make positive particles move towards the
black hole horizon and negative particles move outwards.
Although we have not done any estimates for this process,
qualitatively the Schwinger production should probably
enhance the re-charging of the black hole and, in this
way, to make the evaporation even quicker.

VI. CONCLUSIONS

We have considered the quasinormal modes, classical
scattering (through calculations of reflection/transition
coefficients) and Hawking radiation of Kerr-Newman
black holes immersed in a homogeneous magnetic field.
As the simplest model the charged massive scalar field

is considered. The equation of motion allows for sepa-
ration of variables in quite large region surrounding the
black hole, so not until spatial asymptotic infinity. We
have shown that quasinormal modes and emission rates
are influenced by the two main effects: the Faraday in-
duction due to rotation in the magnetic field and the
Zeeman effect, which is the energy shift of the particle in
the magnetic field. The most interesting feature of the
dynamics of black holes is in the considerably increased
rate of intensiveness of the Hawking evaporation when
one turns on the magnetic field.
This work can be extended in a number of ways. First,

one could consider D-dimensional (preferably simply ro-
tating) Myers-Perry black holes immersed in a magnetic
field which is localized on the brane. This could provide
more realistic estimates for emission rates and quasinor-
mal frequencies for mini black holes. In addition, for
D > 5 rotating black holes with all different angular mo-
menta the rotation parameter a is not limited anymore.
This suggests interesting phenomena for the regime of
high rotation because the Faraday induction 2aBM is
not limited as well. Then, one could calculate the contri-
bution of the Schwinger pair creations into the emission
process at very large magnetic field. In addition, a good
approach to a more realistic situation would be consid-
eration of the charged massive Dirac field instead of the
scalar one. The interaction of spin of a particle with
the magnetic field should lead to new phenomena for the
Hawking radiation. An analysis of all these questions are
among our nearest future plans [37].
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