
ar
X

iv
:1

01
1.

14
73

v1
  [

gr
-q

c]
  4

 N
ov

 2
01

0

A SIMPLIFIED, BOHR QUANTUM THEORETICAL

DERIVATION OF THE UNRUH TEMPERATURE,

ENTROPY AND EVAPORATION
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Abstract

In this work we reproduce Unruh temperature for a spherical physical system using a
simplified rule, very similar to Bohr angular momentum quantization postulate interpreted
via de Broglie relation, and using a thermal equilibrium stability condition. (Our rule, by a
deeper analysis that goes over basic intentions of this work, corresponds, for Schwarzschild
black hole, to a closed string loop theory of Copeland and Lahiri.) Firstly, we suppose
that at the surface of a large system gravitational field of this system can generate some
quantum excitations, i.e. small quantum systems. Mass spectrum of this small quantum
system is determined using a rule that states that circumference of the large system
holds integer numbers of the reduced Compton wavelengths of this small quantum system.
Secondly, we suppose that absolute value of the classical gravitational interaction between
large system and small quantum system in the ground state is equivalent to thermal
kinetic energy of the small quantum system interacting with large system as thermal
reservoir. It is very similar to virial theorem of the ideal gas and it yields directly and
exactly Unruh temperature. Finally, using Unruh temperature and thermodynamical
law, we originally propose corresponding Unruh entropy and Unruh evaporation of the
system and demonstrate that for Schwarzschild black hole Unruh temperature, entropy
and evaporation can be exactly reduced in the Hawking temperature, Bekenstein-Hawking
entropy and Hawking evaporation.

As it is well-known, Unruh radiation [1]-[4] represents an important, general relativistic
and quantum effect whose exact derivation needs a relatively complex theoretical formalism
of the quantum gravity. Some simplifications of the derivation of Unruh radiation can be
done too [5]. In this work ”without knowing the details of quantum gravity” (we paraphrase
Fursaev [6]) we shall reproduce exactly final form of the remarkable Unruh temperature for a
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spherical physical system. Firstly, we shall use a simplified rule, very similar but not identical
to Bohr angular momentum quantization postulate interpreted via de Broglie relation and
by a thermal equilibrium stability condition. (This rule, by a deeper analysis that goes over
basic intentions of this work, corresponds, for Schwarzschild black hole, to a closed string loop
theory of Copeland and Lahiri [7].) Concretely, firstly, we suppose that at the surface of a
large system gravitational field of this system (eventually interacting with quantum vacuum)
can generate some quantum excitations, or simply small quantum systems. Mass (energy)
spectrum of this small quantum system is determined so that circumference of the large system
holds integer numbers of the reduced Compton wavelengths of this small quantum system.
Secondly, we suppose that absolute value of the classical gravitational interaction between
large system and small quantum system in the ground state is equivalent to thermal kinetic
energy of the small quantum system interacting with large system as thermal reservoir. It
is very similar but not identical to virial theorem of the ideal gas and it yields directly and
exactly Unruh temperature. Moreover, using Unruh temperature and thermodynamical law,
we originally propose corresponding Unruh entropy (proportional to product of the system
surface and logarithm of the system mass) and Unruh evaporation of the system (during time
interval approximately inversely proportional to third degree of the Planck mass. Finally, we
demonstrate that in the especial case when physical system represents a Schwarzschild black
hole Unruh temperature, entropy and evaporation can be exactly reduced in the Hawking
temperature, Bekenstein-Hawking entropy and Hawking evaporation (time).

Consider a large, massive spherical system with mass M, characteristic radius R and surface
gravity

a =
GM

R2
(1)

where G represents the Newtonian gravitational constant. Suppose that in the general case
there is no functional dependence between R and M.

Firstly, suppose that at distance R, i.e. at large system surface, gravitational field of large
system (eventually interacting with quantum vacuum) can create some quantum excitations,
or simply - small quantum systems, whose quantized masses (energies) are determined by the
following condition

mncR = n
h̄

2π
, for mn ≪ M and n = 1, 2, ... (2)

where mn and En = mnc
2for mn ≪ M and n = 1, 2, represent the mass and energy spectrum

of mentioned small quantum system, while h̄ represents the reduced Planck constant.
It implies

2πR = n
h̄

mnc
= nλrn for mn ≪ M and n = 1, 2, .... (3)

where 2πR represents the circumference of the large system, i.e. circumference of a great circle
at large system surface, while

λrn =
h̄

mnc
(4)

represents n-th reduced Compton wavelength of the small quantum system with mass mn for
n = 1, 2, . Expression (3) simply means that circumference of the large system holds exactly
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n corresponding n-th reduced Compton wave lengths of the small quantum system with mass
mn for n = 1, 2, .

All this it is very similar to Bohr angular momentum quantization postulate interpreted via
de Broglie relation. But, of course, (2) cannot be completely consistently interpreted as angular
momentum by simple rotation of the small system along great circle at large system surface.
(Such simple interpretation of (2) as a classical rotation of the small quantum system leads to
rotation speed 2π times smaller than c. Namely, if we suppose m1c =

h̄ω1

c
and v1 = ω1R, then,

according to (2), it follows v1 =
c

2π
.) Simply speaking (2) represents a postulate on the quantum

field theoretical characteristic of gravitational field of the large system (eventually interacting
with quantum vacuum) at surface of the system. Or, expression (2) represents a postulate
on the effective reduction of the quantum field theory of gravitational field of large system at
its surface. (Detailed discussion of this postulate goes over basic intention of this work. We
can only point out that Copeland and Lahiri [7] showed that basic results of the Schwarzchild
black hole thermodynamics can be obtained by consideration of the small excitations of a closed
string loop which is full agreement with our postulate.)

According to (2) it follows too

mn = n
h̄

2πRc
≡ nm1 for mn ≪ M and n = 1, 2, ... (5)

m1 =
h̄

2πRc
(6)

represents the minimal, i.e. ground mass of the small quantum system. Obviously, mass
spectrum (5), i.e. corresponding energy spectrum En = mnc

2 = nm1c
2 = nE1, for n = 1, 2,

represent practically mass, i.e. energy spectrum of an linear harmonic oscillator.
Secondly, suppose now that potential energy gravitational interaction between large system

and small quantum system in the ground state

V =
Gm1M

R
=

Gh̄M

2πRc
(7)

is equivalent to the statistical average kinetic energy of the small system kT in the contact with
large system as thermal reservoir, i.e. that the following is satisfied

kT = V =
Gm1M

R
(8)

where k represents the Boltzmann constant. It, according to (1), (6), implies

T =
1

k

Gm1M

R
=

1

k

h̄

2πc

GM

R2
=

1

k

h̄

2πc
a (9)

representing exactly the Unruh temperature in the general case.
It can be observed that all this is conceptually very similar to theory of the ideal gas by

virial expansion. In this analogy Unruh temperature corresponds to the temperature of the
gas, while small perturbations of the thermodynamical equilibrium can be described only by
second virial coefficient analogous to Planck law of the black body radiation or to Bose-Einstein
distribution (which implies that here Stefan-Boltzmann law can be satisfied too).
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In the especial case of the Schwarzschild black hole, for which there is an especial functional
dependence between R and M

R =
2GM

c2
(10)

representing the Schwarzschild radius, expressions (6), (9), turn out in

m1 =
h̄c

4πGM
(11)

T =
h̄c3

8πGM
. (12)

Last expression represents the Hawking temperature.
Further, Unruh radiation must satisfy thermodynamical law

dMc2 = TdS (13)

where Mc2 represents total energy of the large system and S - corresponding Unruh entropy.
It, implies

dS =
1

T
c2dM (14)

or, according to (6), (9),

dS = k
2πc3)

h̄

R2

GM
dM =

k

2

4πR2

h̄G

c3

d(ln[
M

M0

]) =
k

2

A

L2

P

d(ln[
M

M0

]) (15)

and

S =
k

2

4πR2

h̄G

c3

ln[
M

M0

] =
k

2

A

L2

P

ln[
M

M0

]. (16)

Here
A = 4πR2 (17)

represents the surface of the large system, LP = ( h̄G
c3
)
1

2 - the Planck length and M0 - some

constant mass for which it can be supposed that it represents Planck mass MP = ( h̄c
G
)
1

2 . In this
way Unruh entropy is pratically proportional to the product of the large system surface and
logarithm of the large system mass. It represents an original and interesting result.

In the especial case of the Schwarzschild black hole thermodynamical law, (14), according
to (12), implies

dS =
k8πGM

h̄c
dM = d[k4πGM2h̄c] (18)

and

S = k4πGM2h̄c =
k

4

A

L2

P

(19)

where A represents the Schwarzschild black hole horizon surface that satisfy (17) for Schwarzschild
radius (10). Expression (19) represents, of course, the Bekenstein-Hawking entropy of the
Schwarzschild black hole.
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Suppose that differential form of (14) is changed by corresponding finite difference form,
which according to (6), (9), and (19) yields

∆Sn =
1

T
c2∆M =

1

T
c2mn = n

1

T
c2m1 = nk

Rc2

GM
for mn ≪ M and n = 1, 2, ... (20)

∆An =
4

k
L2

P
∆Sn = n4

Rc2

GM
L2

P
for mn ≪ M and n = 1, 2, .... (21)

Expressions (20), (21) can be considered as the Unruh entropy and surface quantization.
In the especial case of the Schwarzschild black hole, according to (10)-(12), (20), (21) turn

out in
∆Sn = n2k for mn ≪ M and n = 1, 2, ... (22)

∆An =
4

k
L2

P
∆Sn = n8L2

P
for mn ≪ M and n = 1, 2, .... (23)

representing Bekenstein quantization of the black hole entropy and horizon surface.
Suppose now that large system radiates analogously to the black body at the Unruh tem-

perature so that Unruh-Stefan-Boltzmann law is satisfied

−
1

A

dM

dt
c2 = σT 4 (24)

where σ represents the Stefan-Boltzmann constant. It according to (9), (17), implies

−
dM

dt
=

σA

c2
(
1

k

h̄

2πc

GM

R2
)4 =

σA

c2
(
1

k

h̄

2πc

G

R2
)4M4

≡ αM4 (25)

where α = σA

c2
( 1
k

h̄

2πc

G

R2 )
4. After simple integration, where t increases from initial, zero time

moment to final time moment of the Unruh evaporation τ , while M decrease from initial mass
Min to Planck mass MP , (25) yields

τ =
1

3α

M3

in
−M3

P

M3
inM

3

P

≃
1

3αM3

P

forM ≫ MP . (26)

(It can be pointed out that it is chosen that final mass cannot be smaller than Planck mass,
especially that it cannot be zero, since then Unruh evaporation time tends toward infinity. All
this is full agreement with quantum field theory.) In this way for practically all macroscopic
large system, with mass much larger than Planck mass, Unruh evaporation time is the same
and it is inversely proportional to the third degree of the Planck mass. It represents an original
and interesting result.

In the especial case of the Schwarzschild black hole, according to (10), (12), (17), and
Hawking-Stefan-Boltzmann law, analogous to the general form of Unruh-Stefan-Boltzmann law
(24) with changed sign, it follows

1

A

dM

dt
c2 = σT 4 (27)

which implies
dM

dt
=

σ

c2
16π

G2M2

c4
(
h̄c3

k8πG
)4M−4 = βM−2 (28)
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where β = σ

c2
16πG2M2

c4
( h̄c3

k8πG
)4. After simple integration, where t increases from initial, zero time

moment to final time moment of the Hawking evaporation τ , while M decrease from initial mass
Min to final mass that here can be formally used to be zero, (28) yields

τ =
1

3β
M3

in. (29)

It means that Hawking evaporation time is proportional to the third degree of the initial black
hole mass. This final result is principally different from the final result obtained for Unruh
evaporation in the general case (26), but both results are deduced in the formally completely
analogous way.

In conclusion we can shortly repeat and point out the following. In this work we reproduce
exactly final form of the remarkable Unruh temperature for a spherical physical system using
a simplified rule, very similar but not identical to Bohr angular momentum quantization pos-
tulate interpreted via de Broglie relation and using a thermal equilibrium stability condition.
(Our rule, by a deeper analysis that goes over basic intentions of this work, corresponds, for
Schwarzschild black hole, to a closed string loop theory of Copeland and Lahiri.) Concretely,
firstly, we suppose that at the surface of a large system gravitational field of this system (eventu-
ally interacting with quantum vacuum) can generate some quantum excitations, or simply small
quantum systems. Mass (energy) spectrum of this small quantum system is determined using
a rule that states that circumference of the large system holds integer numbers of the reduced
Compton wavelengths of this small quantum system. Secondly, we suppose that absolute value
of the classical gravitational interaction between large system and small quantum system in the
ground state is equivalent to thermal kinetic energy of the small quantum system interacting
with large system as thermal reservoir. It is very similar but not identical to virial theorem
of the ideal gas and it yields directly and exactly Unruh temperature. Moreover, using Unruh
temperature and thermodynamical law, we originally propose corresponding Unruh entropy
(proportional to product of the system surface and logarithm of the system mass) and Unruh
evaporation of the system (during time interval approximately inversely proportional to third
degree of the Planck mass. Finally, we demonstrate that in the especial case when physical
system represents a Schwarzschild black hole Unruh temperature, entropy and evaporation can
be exactly reduced in the Hawking temperature, Bekenstein-Hawking entropy and Hawking
evaporation (time).
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