
1 

 

On the Black Hole’s Thermodynamics 

and the Entropic Origin of Gravity 

Fernando Porcelli* and Giancarlo Scibona 

Department of Environmental Sciences, University of Tuscia, Viterbo, Italy  

*Author for correspondence:  

Fernando Porcelli 

University of Tuscia 

Largo dell’Università 

01100 Viterbo ITALY 

Phone:+390761357041 

e-mail: porcelli@unitus.it 

 

 

 

Running Title: Black Hole’s Thermodynamics 

Keywords: Black Holes, Entropy, Gravity.  

 

 



2 

 

  

ABSTRACT 

The Schwarzschild’s black hole dynamics in presence of gravity is described on using the 

thermodynamic equations of state for contractile materials. Its entropy and temperature, obtained by 

using classical principles, reproduce the results derived from quantum field theories and statistical 

mechanics. The given results show that, by using the gravitational dynamics to reproduce the 

thermodynamic equation TdS/dx = Fgravity, there is no way to establish the entropic origin of gravity, 

because the results can be seen the other way around. 
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INTRODUCTION 

In black hole physics, quantum theory, gravitation and thermodynamics are strictly correlated, and this 

fact indicates that the black hole’s dynamics can be identified with the thermodynamic laws. In this 

paper progress in this direction is reported. In fact, we show (i) that the thermodynamic equation of state 

for contractile material in closed system accounts for the Schwarzschild’s black hole entropy increase 

due to the gravitational work, and (ii) that its temperature and entropy, obtained from classical principles 

and thermodynamic laws, agree with the Hawking’s temperature and the Bekenstein-Hawking’s 

entropy
1-5

, whose microscopic origin, on counting the number of microstates of extremal black holes in 

string theories
6
 and the number of quantum mechanically distinct ways that the hole could be made

7
, has 

been brought back to statistical mechanics. Moreover, (iii) we discuss the euristic hypothesis
8,9

 that 

gravity is an entropic emergent phenomenon and we draw the conclusion that, using the thermodynamic 

equation TdS/dx = Fgravity, or its relativistic analogue
9
, there is no way to state the gravity entropic 

origin, because the results can be seen the other way around. 

THEORETHICAL BACKGROUND 

Black holes thermodynamics.  

In Black hole physics
1-5

 (i) the Kerr-Newman’s black hole conservation law [d(mc
2
) = ΘdA + Φdq + 

Ωdj] is identified with the first thermodynamic law 

djdqTdSdE  ,        (1) 

and the work [Φdq + Ωdj] done on the black Hole by an external agent, who increases its charge q and 

angular momentum j by dq and dj, respectively,  is identified with (–PdV) in thermodynamics.  

(ii) The black hole’s entropy, proportional to the horizon area A,  

AGcKS B )4/( 3    (Għ/c
3
 Planck length squared),     (2) 
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and the principle that the area cannot decrease
5,10,11

 allow to identify the condition dA≥ 0 for any change 

of the black hole, with dS≥0 for any change of a thermodynamic system.  

Moreover, an incipient black hole is in a radiating state
3,4

, the emergent radiation has to carry enough 

entropy to compensate the black hole’s mass-entropy loss, and its temperature is the Hawking’s 

temperature
3,4

 of the emitted radiation   

)/(  ,2/ 2rGMgcKgT BH   ,        (3) 

a result that is like to the Unruh’s
12

 temperature ( BU cKaT 2/ ) experienced by an observer in a 

frame accelerated by a given force and that can be expressed in equivalent forms 

BBH AcKGMGMKcT /28/3    ,  24 rA  , 2/2 cGMr  .   (4) 

Thermodynamics is a physical science of universal content and, then, is not a case that the black 

holes physics do not violate the thermodynamic laws.  

Temperature and entropy from classical principles. 

In thermodynamics, the energy change for a linear displacement (x) of a particle of mass m 

accelerated by a force in non relativistic 3-space is established by the equipartion principle 

xmaxFETKB 2/ .        (5) 

Hence, using the rationalized acceleration a/4, and for x the Compton length (ħ/mc), the correlation 

between temperature and acceleration is given by 

)2/(2/ cacaTKB    ,   .2/ BcKaT       (6) 

Moreover, when a particle accelerated by the gravity becomes trapped on the black hole’s surface, its 

mass-energy increase is equal to the entropy change (c
2
dM = TdS). Hence, noting the (4) and              

[dA = 4πrdr = (32πG
2
/c

4
)MdM, r = 2GM/c

2
], 

   dAGcKMdMcGKTdMcdS BB  4//8/ 32   ,     (7) 

whose integrals reproduce the Eq. (2) 
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 GAcKcGMKS BB 4//4 32   .       (8) 

In conclusion, the black hole’s temperature (Eq.6 with a =g) and entropy (Eq.8), obtained from 

classical principles, reproduce the Hawking’s temperature (Eq.3) and the Bekenstein-Hawking entropy 

(Eq. 2).  

Thermodynamics and gravity 

In thermodynamics, the equations of state for contractile material in closed system  

FdxPdVTdSdE  .         (9) 

      FxVpxSTxE TTT  /// .       (10) 

have been used to investigate the energy and entropy contributions to the elastic force of rubber and 

steel materials. Here, we extend their use to the black holes and investigate the mass increase of a 

Schwarzschild’s black hole (specified by only the mass M), when an elementary particle of mass m, 

distant one Compton length and considered part of the black hole, shortens its distance from the surface 

under the gravitational force, and becomes trapped on the surface. 

In black holes physics, the horizon is defined by those outgoing light rays that just hover under the 

strong surface’s gravity
13

. For a spherical Schwarzschild’s black hole, the value of the coordinate r at 

the surface is r = 2GM/c
2
 and the horizon area is defined by a transverse measurement of a particular 

spherical surface [A = 4πr
2
 = 8πG

2
M

2
/c

4
].  

The volume inside a black hole, instead, requires a definition of the particular 3-space in which the 

volume is computed, and can be time dependent or zero, as in the Schwarzschild’s solution, where there 

is zero volume inside the black hole in any Schwarzschild time slice of a Schwarzschild’s black hole 

spacetime
13

, and then PdV = 0 in the Eqs.(9,10), as in the case of rubber and steel, where (∂V/∂x)T ≈ 0 at 

low stretching. Therefore, noting (i) (∂V/∂x)T ≈ 0, (ii) the Gibbs equation for closed system [dG = –SdT 

+ Fdx], and (iii) its cross relation 



6 

 

   Tx xSTF  // ,         (11) 

The Eq. (10) becomes 

    FTFTxE xT  // ,       (12) 

and then (Eqs. 10,12) 

  TFxS T //  , when   0/  TxE        (13) 

  FxE T  / ,  when   0/  xTF        (14) 

  0/  TxE ,  when  xTFTF  / .       (15) 

RESULTS 

In the rubber’s case, noting that 

[ ,)constant( TdxKF B ,)/( xTFTF  ,0)/(  TxE     (16) 

the entropy decreases on stretching [(∂S/∂x)T < 0, being (∂F/∂T)x > 0, Eq.11] and the Eq. (13) states the 

entropic origin of the rubber’s elastic force. For steel, instead, the entropy does not change [(∂S/∂x)T= 0, 

being (∂F/∂T)x= 0, Eq.(11)] and the energy gradient is the major contribution to its elastic force (Eq. 

14). These findings agree with the Boltzmann’s entropy definition: the rubber’s molecules, randomly 

kinked coils, become oriented on stretching, and then its entropy decreases, while for steel the 

crystalline order of its structure is hardly affected by the stretching force. 

The black hole case 

In the Schwarzschild’s black hole case, when a particle of mass m (considered part of the black hole) 

shortens its distance from the surface by the amount (–Δx = – ħ/mc) under the gravitational force (FG), 

the condition [   0/  TxE , Eq.15] holds, because the force FG  depend on the temperature (Eq. 13) 

)/(2 mcTKmgF HBG  ,   
xHGHG TFTF  / ,    0/  TxE ,  (17) 

and then the Eq. (13) states the entropic origin of gravity 
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  )/(2///)/( 2 mcKTrGMmTFxS BHHGT  .     (18) 

However, in black holes, (i) any change due to the gravitational work (mgΔx) shows itself only in the 

entropy increase 

[ BH KTxmgS 2/  ,    /2// mcKTmgxS BH  ],   (19) 

(ii) the gravity, already included in the Eqs. (3,18,19) is necessarily reproduced  

    2/)/(2/ rGMmmcKTxST BHH   ,      (20) 

and then the given results (Eqs.18-20) do not establish the gravity entropic origin, because can be 

interpreted the other way around.  

In conclusion, the Eqs (13-15) (i) describe the Schwarzschild’s black hole dynamics in presence of 

gravity, (ii) allow to reproduce its entropy (Eqs.7,8) because, once the particle becomes trapped on the 

horizon, the black hole’s mass increase is equal to the entropy change (THΔS = c
2
ΔM), and (iii) 

strengthen further the correlation between black hole’s physics and thermodynamics, whose laws, on 

using the non equilibrium thermodynamics principles, describe the rate of black hole’s mass-entropy 

change during its life
14,15

.  

DISCUSSION AND CONCLUSIONS 

The given results (Eqs.18-20) – noting that information on the black hole’s internal structure are 

unavailable - can be interpreted in two opposite ways: gravity increases the entropy and gravity is an 

entropic force. In fact, in absence of a definite correlation between the entropy increase and the internal 

structure change of a given system, as in the case of polymer’s elastic force, there is no way, on using 

equations like the (3,19), to state the gravity entropic origin. In fact, the gravitational force, already 

included in the equations is necessarily reproduced (Eqs.18-20), and then the results can be interpreted 

the other way around.  
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The entropic origin of gravity
 8,9

 

In ref.[8], the identity between gravitational field equations and horizon thermodynamics is discussed 

for a wide class of models, but the interpretations of the mathematical results are only euristic 

hypothesis. The given results [pp.77-79], in fact, are based on the same postulates: (i) in an emergent 

spacetime, where quantum and thermal fluctuations are in reciprocal relation, the entropy gradient 

S/x arises from the gradient (n/x) in the microscopic degrees of freedom over a region x; (ii) in 

the motion of a particle accelerated by the potential (V = mgx), the quantum mechanical averages satisfy 

the relation (E = mgx = Fx); (iii) in the local Rindler frame the first law (E = TS) holds. 

Hence, on using [ΔS =2π KB, x ≈ ħ/mc], the Rindler temperature [T = għ/2πKBc] and the entropy 

gradient [S/x = 2π KB/ x = 2πKBmc/ħ] like the Eqs. (3,19), gravity is necessarily reproduced 

[TS/x= mg]. Therefore, noting that gravity is already included in the equations and that in an emergent 

spacetime, where the microscopic degrees of freedom may be uniformly distributed over a region x, 

their agglomeration due to gravity increases disorder and entropy, the given results do not establish the 

gravity entropic origin, because can be interpreted the other way around. 

The same arguments hold in the case of ref. [9, pp.6-9], where the postulated  temperature 

(T=2MGħ/AcKB)  and entropy gradient [ΔS/Δx = 2πKB(mc/ħ)] like the Eqs.(4,19), necessarily reproduce 

the gravity (THΔS/Δx = mg). Moreover [9, p.25], in the context of ADS/CFT (Anti de-Sitter 

Space/Conformal Field Theory), where a black hole is dual to a thermal state on the boundary and the 

particle is represented as a delocalized operator that is gradually thermalized, it is argued that, when a 

particle reaches the horizon and becomes part of the thermal state, gravity becomes an entropic force 

near the horizon, because the black hole’s mass-entropy changes is equal to the gravitational work 

[THΔS = c
2
ΔM = mgΔx], and then (THΔS/Δx = mg). The same result as above that does not establish the 

gravity entropic origin, because can be seen the other way around. 
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In the context of microscopic theories [9, pp.17,18], it is stated that gravity is an entropic force. 

However, this statement is only one of the possible interpretations of the given results. In fact, the 

temperature [ )(2/  
b

bNeT  , with N
b
 a unit outward pointing vector normal to the holographic 

screen surface and to the Killing vector 
b
,  e


 redshift factor, Newton’s potential] and the entropy 

gradient [ aa NmS )/(2  ] are the relativistic analogues of the Eqs (3,19) and, then, the gravity 

relativistic analogue [ 
aa meST  ] is necessarily reproduced. These results, once again, allow a 

twofold interpretation: gravity is an entropic force; gravity increases disorder and entropy. 

In conclusion, gravity is a fundamental force and, in absence of a definite correlation between 

entropy and internal structure changes of a given system, as in the case of polymer’s elastic force, any 

hypothesis on the gravity entropic origin, based on equations like the (3,19), is only one of the possible 

interpretations, because one can also interpret the results the other way around: the entropy increase 

arises from the gravitational work. 
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