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Hawking Radiation and Entropy from Horizon Degrees of Freedom
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We study the thermodynamic properties of horizons using the dynamical description of the grav-
itational degrees of freedom at a horizon given in [4]. We use the action of the horizon degrees
of freedom to calculate the horizon entropy using the Cardy formula, and obtain the expected
Bekenstein-Hawking entropy. We also couple the gravitational degrees of freedom at the horizon to
a classical background scalar field, and show that Hawking radiation is produced.
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Introduction. Ever since the work of Bekenstein and
Hawking in the 1970s, which established that the laws
of thermodynamics can be adapted to describe black
holes[1, 2], there have been repeated attempts to provide
a microscopic description of black hole horizons, and of
horizons in general.
There have also been attempts to find an effective the-

ory of horizon microstates, that can describe the degrees
of freedom of the horizon without reference to the un-
derlying theory of quantum gravity. This suggestion is
particularly plausible because of the universal appear-
ance of conformal symmetry in the neighbourhood of a
horizon, which indicates that the dynamics of a horizon
will be governed by a two-dimensional conformal field
theory (CFT). There are hints that this CFT will be a
Liouville theory: for example, the dynamical action of
the diffeomorphisms that preserve asymptotically AdS3
spaces has been shown to be a Liouville theory living at
the spatial infinity of AdS3[3].
In [4], we imposed conditions that preserved the ex-

istence and essential characteristics of a horizon, and
found the diffeomorphisms that preserved these condi-
tions. We then derived a dynamical action for these
diffeomorphisms from the Einstein-Hilbert action. The
resulting action was almost exactly the Liouville action
in a curved background, and was found to describe a
free two-dimensional conformal field in an infinitesimal
neighbourhood of the horizon.
In this paper we study the thermodynamic properties

of this theory. First we use the fact that the gravitational
degrees of freedom at a horizon exhibit a two-dimensional
conformal symmetry to calculate the entropy of the hori-
zon. Using the Cardy formula, we find that we can re-
produce the Bekenstein-Hawking entropy.
A derivation of the Bekenstein-Hawking entropy is a

useful criterion for judging the validity of a theory that
describes horizon microstates: however, it is far from be-
ing a proof that the theory is correct. Another valuable
indicator is seeing whether or not the theory predicts the
emission of Hawking radiation. Many different methods
have been devised for deriving Hawking radiation[1, 5–7].
One common feature of all these works is that they ana-

lyze quantum matter fields in a classical black hole back-
ground, and derive Hawking radiation as a consequence
of quantum fields living in a curved space. In order to
have a complete picture of horizon thermodynamics, it
is important to do the reverse: couple quantized gravita-
tional degrees of freedom to classical matter, and produce
the blackbody spectrum of Hawking radiation.
A few steps have been taken in this direction: in [8],

the near-horizon region was modeled by a Liouville con-
formal field theory, which was used to derive the flux of
Hawking radiation (though not the spectrum.) An al-
ternative approach was taken in [9], where the Liouville
theory of diffeomorphism degrees of freedom at the spa-
tial infinity of AdS3 was coupled to scalar field matter.
It was shown that the decay rate of the BTZ black hole
exactly matched the spectrum of Hawking radiation, in-
cluding greybody factors. In this work we follow a similar
approach, but instead of coupling a classical scalar field
to a conformal field theory at the boundary, we identify
a coupling in a neighbourhood of the horizon, and obtain
the Hawking radiation spectrum.
Conformal Field Theory at the Horizon. We first re-

view some of the notation and concepts used to study the
diffeomorphism degrees of freedom at the horizon in [4].
We use the system of Gaussian null coordinates (de-
noted “GN coordinates”)[10], which are well suited for
studying horizons as they are adapted to null hypersur-
faces. In the neighbourhood of any null hypersurface ∆,
we can define coordinates (u, r, xi) such that the metric
takes the form:

ds2 = rFdu2 + 2dudr+2rhi du dx
i +gij dx

i dxj . (1)

We will also use the coordinate r̃ := − ln r, which puts
the metric in the form

ds2 = e−r̃
(

Fdu2 − 2 dudr̃+2hi du dx
i
)

+ gij dx
i dxj , (2)

where F, hi, and gij are now taken to be functions of r̃.
The horizon is now located at r̃ → ∞. We call these
coordinates tortoise Gaussian null coordinates. Fi-
nally, we may define conformal coordinates (x+, x−) in
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terms of (u, r) such that the metric takes the form

ds2 = 2g+−

(

dx+ dx− +h+i dx
+ dxi

)

+ gij dx
i dxj , (3)

and g+− has a simple root at r = 0. Without loss of
generality, we can impose ∂+u = 0 and ∂rx+ = 0.
Our horizon boundary conditions are based on the no-

tion of weakly isolated horizons (WIHs)[15]. We assume
that we have a weakly isolated horizon ∆ in our space-
time, and that we can define GN coordinates in a neigh-
bourhood of ∆ so that the horizon lies at r = 0. In order
for ∆ to be a WIH, it should have zero expansion θ(l) = 0
for all normal vectors lµ, where the expansion is defined
as θ(l) = qab∇alb for an inverse qab of the intrinsic met-
ric qab on ∆. In GN coordinates, the requirement that
the horizon satisfy θ(l) = 0 is equivalent to saying that
∂ugij = O(r). We then impose conditions that preserve
the essential characteristics of the horizon by demanding
that, after applying a diffeomorphism:

1. There is still a null hypersurface at r = 0.

2. In conformal coordinates, the metric remains in the
form given by Eq.(3).

3. The induced metric on the r = 0 hypersurface is
preserved. This also ensures that the null hyper-
surface continues to satisfy θ(l) = 0.

The diffeomorphisms preserving these conditions were
found in [4] to have the form:

ξ+ = ξ+(x+) +O(r) (4)

ξ− = ξ−(x−) +O(r)

ξi = O(r)

A dynamical action was derived for these diffeomorphism
degrees of freedom in a neighbourhood of the horizon, by
evaluating the Einstein-Hilbert action for the new metric
g′µν := gµν + Lξgµν after applying the diffeomorphism,
and taking the background metric on-shell in the near-
horizon region. This allows us to isolate the gravitational
fluctuations about the background metric that preserved
the existence and characteristics of the horizon. Defining
the field φ = φ(x+, x−) by g′µν := eφgµν ≈ (1 + φ)gµν ,
the action has the form:

Ihor =
a∆

16πG

∫

d2x
√

−ĝ
(

∂aφ∂
aφ− φR̂ + λeφ

)

(5)

where a∆ is the cross-sectional area of the horizon, ĝ
is the induced metric on the (x+, x−) submanifold, and
λ = 4Λ

n−2 (except in the case n = 2, when λ = 0). The
equation of motion for φ becomes that of a free two-
dimensional conformal field infinitesimally close to the
horizon.
Horizon Entropy. We now calculate the entropy of a

large class of horizons using the Cardy formula, a re-
markable result that allows us to determine the entropy

of any system with a two-dimensional conformal symme-
try. The Cardy formula states that, given any unitary
two-dimensional conformal field theory, the asymptotic
density of states at eigenvalues ∆+ and ∆− is given by:

ln ρ(∆+,∆−) ∼ 2π

√

c+∆+

6
+ 2π

√

c−∆−

6
(6)

As we have found that the gravitational degrees of free-
dom at a horizon have an effective description as a 2D
CFT, we can apply the Cardy formula to calculate the
entropy of the horizon.
The energy-momentum tensor derived from Ihor is

Tab =
a∆

16πG

[

∂aφ∂bφ− ĝab

(

1

2
∂aφ∂

aφ+
λ

2
eφ
)

− (ĝab�φ−∇a∇bφ)
]

(7)

The first step in calculating the horizon entropy is to
compute the algebra of charges corresponding to the sym-
metries of the CFT. The symmetries are given by the
diffeomorphisms ξ+(x+) and ξ−(x−). In order to obtain
a countable set of charges, we impose a cutoff scale l and
define

ξ±n =
l

2π
e

2πi

l
nx± (8)

The generators of the corresponding conformal transfor-
mations are:

L±
n =

∫ l/2

−l/2

dx± ξ
±
n T±±

=
a∆

16πG

l

2π

∫ l/2

−l/2

dx± e
2πi

l
nx±

[

(∂±φ)
2 + ∂2±φ

]

(9)

Classically, we do not allow incoming modes from the
horizon, so we will only consider the generators L+

n when
calculating physical charges, and drop the superscript
“+” from now on for clarity of notation.
To evaluate the algebra, we define coordinates (t, ρ)

such that x+ = t + ρ, x− = t − ρ, and define t to be
the time coordinate. We see from the action in (5) that
the canonical momentum Π conjugate to the field φ is
Π := δL/δ(∂tφ) = a∆

16πG∂tφ. We thus obtain the Poisson
bracket

{φ(t, ρ), ∂tφ(t, ρ′)} =
16πG

a∆
δ(ρ− ρ′) (10)

Using the Poisson bracket to evaluate the algebra of
charges, we find that

{Ln, Lm} = i(n−m)Ln+m +
ic

12
n3δn+m,0 (11)

with central charge

c =
3a∆
4G

(12)
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Now we simply need to determine the eigenvalue of L0

for a given horizon in order to calculate its entropy. We
present two different ways of calculating L0.
Calculation 1. We would like to evaluate L0 for the

classical horizon configuration: this corresponds precisely
to the case when there are no fluctuations about the hori-
zon, so that φ = 0, giving L0 = 0. This is not a serious
problem: it is merely due to the fact that the overall
normalization of L0 has not been fixed. One way to de-
termine the normalization is to posit a ground state for
the theory, and demand that L0 be zero on the ground
state.
In order to determine the ground state, we look at the

form of static metrics with Killing horizons. A general
static metric with non-extremal Killing horizon at r = 0
can be written in the form[16]:

ds2 = eσ(x,r)
(

−dt2 +
β2
Hdr2

4r2
+
gij(x, r)

r
dxi dxj

)

(13)
with σ(x, r) = ln r + σ0(x) + O(r), and gij(x, r) =

g
(0)
ij (x) + O(r). The parameter βH is the inverse Hawk-
ing temperature of the horizon. The metric can be put
in Gaussian null form by defining u := t + βH

2 ln r, and
then put in conformal form by defining x+ := u and
x− := −(u+ βH ln r).
Extremal black holes have zero temperature. There-

fore it is reasonable to assume that the ground state of
the horizon theory is the extremal horizon configuration,
when the function F (u, r, xi) in the Gaussian null co-
ordinate system has a simple pole at r = 0. For static
metrics with a Killing horizon, this corresponds to a fluc-
tuation φ of the metric such that eφ = r, or equivalently,
φ = − 1

βH

(x+ + x−). We claim that the same conclu-
sion holds for all other horizons satisfying our boundary
conditions. Evaluating L0 for this solution gives

L0 =
a∆l

2

32π2Gβ2
H

(14)

We can now calculate the horizon entropy using the
Cardy formula, and find:

SH =
a∆l

8GβH
(15)

We obtain the desired result of SH = a∆

4G with l = 2βH .
Calculation 2. Another way to fix the normalization

of L0 is by demanding that the charges Ln satisfy the
usual form of the Virasoro algebra, so that the charges
L−1, L0, and L1 form a proper sl(2,R) sub-algebra. This
can be achieved by shifting L0 by a constant. By shifting

L0 → L0 +
c

24
, (16)

the algebra becomes

{Ln, Lm} = i(n−m)Ln+m +
ic

12
(n3 − n)δn+m,0 (17)

Since L0 is originally zero evaluated on the classical con-
figuration, we find that L0 = a∆

32G , and the horizon en-
tropy is

SH =
πa∆
8G

(18)

This result differs by a factor of 2
π from the Bekenstein-

Hawking entropy, but we have at least obtained an an-
swer that is proportional to the desired result, with the
constant of proportionality being a pure number.
Hawking Radiation. We now investigate another as-

pect of horizon thermodynamics: Hawking radiation. We
couple the gravitational degrees of freedom in the near-
horizon region to a classical scalar field, and show that
we can produce Hawking radiation from this coupling.
Unlike most derivations of Hawking radiation, we will
quantize the gravitational theory, and treat the scalar
field as a classical background, as in [9].
To proceed, it is enough to know that the gravitational

degrees of freedom in a neighbourhood of a horizon can
be described by a 2D CFT, and to know how the met-
ric components change under the infinitesimal conformal
transformations of the CFT. As previously discussed, we
eliminate incoming modes from the horizon when eval-
uating the charges that generate the conformal trans-
formations. As a result, when we quantize the CFT,
we obtain only a chiral half of the original theory, with
infinitesimal conformal transformations x+ → x′+(x+).
The fields and operators of the CFT are the components
of the metric and objects constructed from the metric,
since the metric is the only dynamical field in our frame-
work.
For convenience, we use the tortoise GN coordinates

given in (2) as well as conformal coordinates. As x+ =
x+(u) and u = u(x+), infinitesimal transformations of
u are equivalent to transformations of x+. Conversely,
since ∂r̃x+ = 0, we find that the coordinate r̃ does not
transform under transformations of x+. It follows that
the conformal weight of a metric component in tortoise
GN coordinates is equal to the number of lower u indices
it has. For example, gur̃ has conformal weight 1.
In tortoise GN coordinates, the scalar field action in

the near-horizon region is

Is =

∫

M

√
−ggµν∂µψ∂νψ +

∫

∆

√
−ggr̃µψ∂µψ (19)

The boundary term is evaluated at the horizon. Inspect-
ing the action, we see that all of the couplings at the
boundary have conformal weight 0, while the following
terms in the bulk action exhibit a coupling of the classi-
cal scalar field to an operator of conformal weight 1:

Iint =

∫

M

√
−g

(

gr̃r̃∂r̃ψ∂r̃ψ + gij∂iψ∂jψ
)

=

∫

M

gur̃
(

gr̃r̃∂r̃ψ∂r̃ψ + gij∂iψ∂jψ
)

(20)
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When we quantize the near-horizon CFT, these couplings
add a perturbation to the CFT action in the form of an
operator O(u) of conformal weight 1. This perturbation
will induce transitions between closely spaced states of
the CFT, resulting in the emission of radiation.
We assume that the form of the scalar field is not af-

fected by small deformations of the metric. It is not nec-
essary to know the specific form of ψ, but it is instructive
to work out a simple example. If the background metric
is a spherically symmetric, static metric with a Killing
horizon that has the form

ds2 = −f(x)dt2 + 1

f(x)
dx2 + x2dΩ2, (21)

with f(x) = 2
βH

(x−xh)+O((x−xh)2), then we can write
this metric in GN coordinates by defining r := x − xh
and u := t + βH

2 ln r. We can describe ψ as an infinite
collection of 2-dimensional scalar fields ψl,m of the form

ψl,m = ei(t−r̃) + ei(t+r̃) (22)

where r̃ := βH

2 ln r is the radial tortoise coordinate[5]. In
this simple case of a static metric with a Killing horizon,
substituting the modes ψl,m into (20) gives a coupling
that remains finite even infinitesimally close to the hori-
zon.
This coupling will lead to transitions between the

states of the CFT, so that the horizon produces Hawking
radiation. We can compute the macroscopic decay rate
using standard conformal field theory methods, follow-
ing the approaches of [13] and [9]. The operator O(u)
introduced by the coupling to the scalar field will lead
to a transition amplitude between initial and final states
of the horizon in the presence of an external flux with
frequency ω of the form:

M ∼
∫

du〈f |O(u)|i〉e−iωu. (23)

Squaring and summing over final states, we get:

∑

f

|M|2 ∼
∫

dudu′〈i|O(u)O(u′)|i〉e−iω(u−u′) (24)

for the decay rate. Since we are assuming that the hori-
zon is in thermal equilibrium and is therefore a thermal
state with a well-defined temperature, we average over
the intial states assuming that the distribution is given
by a Boltzmann spectrum. If the temperature of the
horizon is TH , then the decay rate is given by finite tem-
perature two-point functions, which have the form

〈O†(0)O(u)〉TH
∼

[

πTH
sinh(πTHu)

]2

(25)

In order to evaluate the integrals in (24), we use standard
techniques of contour integration and assume that we are

calculating emission rates. We find that the emission rate
is given by

Γ ∼ πω

e
ω

TH − 1
, (26)

where we have divided by a factor of ω to account for the
normalization of the outgoing scalar. Thus we obtain the
familiar blackbody spectrum of Hawking radiation. This
method works for any horizon that has a well-defined
temperature and can therefore be regarded as a thermal
state of our horizon CFT. As we have already stated,
we can define the surface gravity κ (and therefore, the
temperature) of any horizon that satisfies our boundary
conditions as κ = − 1

2F |r=0.

Conclusion. We have investigated the thermodynamic
properties of horizons by using the dynamical description
of the diffeomorphism degrees of freedom obtained in [4].
Using the Cardy formula, we computed the entropy of the
horizon and found it to be at least proportional to the
Bekenstein-Hawking entropy. This result suggests that
the classical conformal symmetry imposed by boundary
conditions at a horizon is enough to determine the en-
tropy of the horizon, without reference to the underlying
theory of quantum gravity. The wide applicability of the
result to many kinds of horizons, including cosmological
and acceleration horizons, indicates that the universal-
ity of the Bekenstein-Hawking entropy formula is results
from the fact that a two-dimensional conformal symme-
try is always induced near a horizon. We also provided
evidence for the validity of the effective description of
horizon degrees of freedom as a 2D CFT by coupling
the effective theory to a classical scalar background and
showing that this produces Hawking radiation. Our re-
sult shows that although the effective theory is not the
“true” theory of quantum gravity, it can provide a way
of quantizing the gravitational degrees of freedom at a
horizon.
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