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Intermediate–mass–ratio–inspirals in the Einstein Telescope.

II. Parameter estimation errors.
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We explore the precision with which the Einstein Telescope (ET) will be able to measure the
parameters of intermediate–mass–ratio inspirals (IMRIs), i.e., the inspirals of stellar mass compact
objects into intermediate-mass black holes (IMBHs). We calculate the parameter estimation errors
using the Fisher Matrix formalism and present results of a Monte Carlo simulation of these errors
over choices for the extrinsic parameters of the source. These results are obtained using two different
models for the gravitational waveform which were introduced in paper I of this series. These two
waveform models include the inspiral, merger and ringdown phases in a consistent way. One of the
models, based on the transition scheme of Ori & Thorne [1], is valid for IMBHs of arbitrary spin,
whereas the second model, based on the Effective One Body (EOB) approach, has been developed
to cross–check our results in the non-spinning limit. In paper I of this series, we demonstrated
the excellent agreement in both phase and amplitude between these two models for non–spinning
black holes, and that their predictions for signal–to–noise ratios (SNRs) are consistent to within
ten percent. We now use these waveform models to estimate parameter estimation errors for binary
systems with masses 1.4M⊙+100M⊙, 10M⊙+100M⊙, 1.4M⊙+500M⊙ and 10M⊙+500M⊙ and var-
ious choices for the spin of the central intermediate–mass black hole (IMBH). Assuming a detector
network of three ETs, the analysis shows that for a 10M⊙ compact object (CO) inspiralling into a
100M⊙ IMBH with spin q = 0.3, detected with an SNR of 30, we should be able to determine the
CO and IMBH masses, and the IMBH spin magnitude to fractional accuracies of ∼ 10−3, ∼ 10−3.5

and ∼ 10−3, respectively. We also expect to determine the location of the source in the sky and the
luminosity distance to within ∼ 0.003 steradians and ∼ 10%, respectively. We also compute results
for several different possible configurations of the third generation detector network to assess how
the extrinsic parameter determination depends on the network configuration.

PACS numbers:

I. INTRODUCTION

Significant progress has been made over the last few years in the quest for the first direct detection of gravitational
waves (GWs). During the most recent published data–taking run of the ground-based GW detectors five instruments
were operational. The three LIGO detectors started their Science Run 5 (S5) in November 2005 [2]. Subsequently,
the GEO 600 detector [3] joined the S5 run in January 2006 and the Virgo detector [4] started its Science Run 1
(VSR1) in May 2007. All five detectors worked in triple–coincidence until the beginning of October 2007. The data set
gathered during the first calendar year of the LIGO S5 (S5y1) run has already been analysed for GW burst signals in
the frequency band 64–6000 Hz [5],[6] although this failed to identify any GW candidates. The data collected during
the rest of the S5/VSR1 run, referred to as “S5y2/VSR1”, is the first long–term observation with the worldwide
network of interferometric detectors. An all–sky search for GW burst signals has also been conducted on S5y2/VSR1.
The performance of this search has improved by more than one order of magnitude both in the analyzed frequency
bandwidth and the level of instrumental noise [7]. Even though the S5y2/VSR1 search also failed to identify plausible
GW candidates, this analysis benefited from substantially improved data quality and analysis algorithms relative to
earlier searches, e.g., LIGO S4 in 2004 [8] and the first year of LIGO S5 in 2005–2006 [5],[6]. For instance, S5y2/VSR1
combined with the S5y1 results, which had comparable observation time, has yielded an improved upper limit on the
rate of gravitational wave bursts of 3.75 events per year for the 64–2048 Hz band, and 5.4 per year for higher–frequency
bursts up to 6 kHz. These improved upper limits are more than an order of magnitude better than the upper limits
from S4 or S5 events per year [7]. Towards the end of this year, the LIGO and Virgo detectors will be taken offline
and the upgrade to the Advanced detectors will begin. It is expected that Advanced LIGO and Virgo will increase the
detection range of future searches by as much as a factor of 10, so that the monitored volume of the universe would
increase by a factor of ∼ 1000. If this is achieved, the detection of GW signals from binary mergers should become
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routine.
Seismic noise limits the sensitivity of LIGO, Virgo, GEO and their advanced configurations to frequencies ∼> 10 Hz.

This in turn means that ground–based advanced detectors will not be sensitive to signals from coalescing binaries
with mass in the ∼ 100M⊙ − 1000M⊙ range, since the associated gravitational radiation will be in the 0.1–10 Hz
band. This frequency band is also above the sensitivity band of the space-based gravitational wave detector LISA,
which is sensitive in the 0.1mHz− 0.1Hz range. A GW detector operating in this frequency band may shed some light
on astrophysical processes that took place at early cosmic times. Over the last decade evidence has accumulated for
the existence of black holes of intermediate mass (IMBHs). Ultraluminous X-ray sources have been observed that are
not associated with AGN, but which have fluxes which would imply accretion rates many times the Eddington limit
if the accreting object had a mass M ∼< 20M⊙. In addition, the stellar kinematics in the centres of several globular
clusters, e.g., M15 in the Milky Way, and G1 in M31, show evidence for an excess of dark mass in their centres. A full
review of the observational evidence for IMBHs can be found in [9]. Intermediate-mass black holes could form through
two distinct channels. Firstly, they could form in the early universe through the collapse of massive, low–metallicity
“Population III” stars. In the cold dark matter framework, galaxies formed through a series of mergers between
initially low-mass objects that condensed at early cosmic times. The black holes seen today similarly grew through a
combination of mergers and accretion, from initial seeds. In the Pop-III star model, the initial seed black holes are of
intermediate mass, 100M⊙ − 1000M⊙, but the initial seeds could also have been ‘heavy’, ∼ 105M⊙. The discovery of
IMBHs present at early cosmic times would be a strong discriminator between these alternatives. The second channel
for IMBH formation is the runaway collision of stars in the centre of a dense stellar cluster [10], [11]. If IMBHs are
found to be common in globular clusters, this would be an important probe of the processes taking place in such dense
stellar systems. Observations in the electromagnetic spectrum will improve in coming years, but it is likely that the
first robust mass determination, and hence the first convincing proof of the existence of IMBHs, will come from GW
observations [9]. A GW detection of an IMBH at high redshift will lend strong support to the light seed scenario for
structure formation, no matter how that IMBH was formed, and the detection of large numbers of IMBHs in globular
clusters would indicate that runaway stellar collisions occur generically in such environments.
In order to do this science, we require a detector in the 1− 10Hz frequency range. A design study is ongoing within

Europe at the moment for a third-generation ground-based GW detector, the Einstein Telescope (ET), to follow on
from the Advanced detectors. The target is a sensitivity ten times better than that of the Advanced interferometers,
and a frequency sensitivity band that stretches down into the 1-10 Hz range. The ET will be an outstanding tool
to address problems in fundamental physics, cosmology and astrophysics. It will have the capability to do the same
type of science as the Advanced detectors, but with better sensitivity, and to do new science through the detection
of sources in the 1− 10Hz band. The IMBH sources fall into this second category, and in this paper we will continue
to explore the GWs generated from the mergers of IMBHs with lower mass compact objects, namely neutron stars or
stellar–mass black holes, so-called intermediate–mass–ratio inspirals (IMRIs).
For ET to detect GWs generated during IMRIs, we need accurate waveform models in the intermediate-mass-ratio

regime, which are not yet available. Source modelling is an ongoing effort that has been successful for comparable-
mass-ratio and extreme-mass-ratio systems. In the comparable-mass regime post–Newtonian (PN) theory has provided
waveform templates for the inspiral phase evolution, while numerical relativity (NR) can now be used to model the
final few cycles of inspiral and the plunge and merger [12]. At the other extreme we have extreme–mass–ratio inspirals
(EMRIs) with mass ratios ∼ 10−6–10−4. In this regime, the smaller object may complete several hundred thousand
orbits at a velocity that is a significant fraction of the speed of light before crossing the horizon of the central
supermassive black hole. Modelling the gravitational radiation of EMRIs using NR is presently impractical due to the
excessive computational cost of simulating so many orbits. However, we can model these systems accurately using
Black Hole Perturbation Theory, treating the mass–ratio as a small expansion parameter [13], [14]. The sources we
shall now examine lie somewhere between these two regimes. In paper I of this series [15] we developed two waveform
models that include the inspiral, merger and ringdown phases using the best of what is currently available. We
discussed in detail how to construct a complete waveform for CO inspirals into spinning IMBHs using the scheme
developed by Ori & Thorne [1]. In order to build up confidence in our waveform model, we also used the effective–one–
body (EOB) approach [16, 17] to construct a different waveform model for non–spinning systems. The two models
showed an excellent level of agreement in both the phase and the amplitude. We used these models to compute
signal–to–noise ratios (SNRs) for a selection of IMRI systems. We cross–checked our results for the non–spinning
systems and found that the two models made predictions which were consistent to better than ten percent. We
used these SNRs to estimate the number of events that could be detected by ET and found that this could be as
many as hundreds of IMRI coalescences per year up to redshift z ∼ 5 if the systems are light, and up to as many
as tens of IMRI coalescences up to redshift z ∼ 0.3 if the systems are massive [15]. In this paper, we shall address
a complementary problem, namely to calculate the accuracies with which an ET network will be able to estimate
parameters of any IMRI sources that are detected. This is an important problem because an accurate determination
of the masses of a merging binary and a measurement of the luminosity distance at which the merger is taking place
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will be useful for extracting science from the observations, e.g., choosing between light-seed and heavy-seed models
of structure formation. Since the binary systems are typically short–lived, a single ET will not be able to localise a
source on the sky, so we will assume the existence of a network of detectors. We will consider several different network
configurations in order to assess how this affects the science, which will be useful input for future design decisions.
This paper is organized as follows. In Section II we outline the assumptions we shall adopt for the detector and

detector networks, and describe the binary systems to be used in the subsequent analysis. In Section III we present a
brief description of the waveform models that will be used to estimate parameter errors. In Section IV we summarise
some basics of signal analysis that will be relevant for our studies and briefly describe the noise model we shall use for
our studies, i.e., the official ET noise curve, “ET B” [18]. In Section V we will use our waveform models, as described
in paper I [15], to estimate the parameter errors that would arise due to detector noise, using the Fisher Matrix
formalism. We present results for a 3–ET network for 12 sample IMRI systems and use four of these to explore how
the results change under alternative configurations of the network. Finally, we summarize our work and discuss the
implications of these results in Section VI.

II. ASSUMPTIONS

A. Einstein Telescope Design

We make the same assumptions about the ET sensitivity that we made in paper I. The design sensitivity is usually
quoted for a single right-angle interferometer with 10km arms. In this paper we shall use the most up-to-date sensitivity
curve for ET that is currently available, referred to as “ET B” [18]. The corresponding amplitude spectrum is plotted
in Figure 1.
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FIG. 1: Sensitivity curve for the Einstein Telescope, as described in the text. The Advanced LIGO noise curve is also shown
for reference.

An analytic fit to the ET–B spectral density is given by [18]

S
1/2
h (f) =

{

S
1/2
0

[

a1x
b1 + a2x

b2 + a3x
b3 + a4x

b4
]

if f ≥ fs,
∞ if f < fs,

(1)

where x = f/f0, f stands for the frequency, f0 = 100Hz, S0 = 10−50Hz−1, and fs is a low frequency cut–off that
can be varied, and below which the sensitivity curve can be considered infinite for practical purposes. The various
coefficients take the values

a1 = 2.39× 10−27, b1 = −15.64,

a2 = 0.349, b2 = −2.145,

a3 = 1.76, b3 = −0.12,

a4 = 0.409, b4 = 1.10. (2)
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It is expected that ET will operate with an improved sensitivity over advanced detectors in the frequency range 1–10
Hz. Assuming a low frequency cut–off of 1Hz might be too optimistic as ET may only have sensitivity down to ∼ 3Hz
or higher. Given this uncertainty, we adopt a conservative approach and use a low frequency cut–off of 5Hz.
We take the response of a “single ET” to be that of two right-angle interferometers, coplanar and colocated but

offset from one another by 45◦. The currently favoured ET design is for a triangular configuration comprising three
10km detectors with 60◦ opening angles in a single facility, as this has lower infrastructure costs [19]. The response of
the triangular configuration contains the same information as that of the two right-angle interferometers (assuming

uncorrelated noise), but its sensitivity is a factor of 3/(2
√
2) ≈ 1.06 higher. As in paper I, we ignore this factor since

it is small compared to other uncertainties in the design.
IMRI signals are short–lived, so to enable extrinsic parameter estimation we need to assume the existence of a

network of detectors. Our optimistic reference case will be a network of three detectors, each with the sensitivity of
a single ET. We assume the detectors are sited at the geographic locations of Virgo, LIGO Livingston and in Perth
(Australia). This configuration is highly optimistic, so we shall also explore how parameter estimation accuracies are
modified for four additional network configurations, C1-C4. These configurations are, C1: one ET at the geographic
location of Virgo; C2: as configuration C1 plus a right–angle detector at the location of LIGO Livingston; C3: as
configuration C1 plus another ET at the location of LIGO Livingston; and C4: as configuration C2 plus another
right–angle detector in Perth. We will denote the reference 3-ET network as configuration C5.

B. Sample IMRI systems

We will present parameter estimation errors for the same twelve binary systems that we used in paper I [15]. These
correspond to all possible combinations between four sets of component masses — 1.4M⊙+100M⊙, 1.4M⊙+500M⊙,
10M⊙+100M⊙, and 10M⊙+500M⊙ — and three different values for the spin of the central IMBH — q = 0, 0.3, 0.9.
The mass and spin distributions of IMBHs are extremely uncertain, so we choose these systems to cover the range
of possibilities. The small object masses are chosen to represent mergers with black holes (10M⊙) or neutron stars
(1.4M⊙).
As discussed in paper I [15], if IMBHs gain mass through a series of minor mergers with smaller objects, then

their angular momenta will undergo a damped random walk. Under such evolution, it is expected that IMBHs in
the mass range 100M⊙ − 1000M⊙ would end up with moderate spin parameters, q ∼ 0.3 [20]. We will regard this as
the ‘typical’ case and will use only that spin value when we explore how the parameter estimation accuracies depend
on the network configuration. For the other spin parameters, we shall only quote results for the optimistic 3 ET
network and these should be regarded as ‘best-case’ values for the accuracy with which we may be able to determine
the parameters.

III. IMRI WAVEFORM MODELLING

We will use the two waveform models developed in paper I of this series to explore the precision with which ET will
be able to determine the source parameters using the various network configurations. Full details of the waveforms
are given in [15], but we briefly summarise the models here.
Both waveform models include inspiral, merger and ringdown in a consistent way. We model the inspiral phase

evolution, in both models, using the “numerical kludge” waveform model described in [13]. The “numerical kludge”
approach consists of computing the orbital trajectory that the inspiralling body follows in the Boyer–Lindquist coor-
dinates of the Kerr spacetime of the central black hole. We assume an adiabatic evolution in which the inspiralling
body is moving on a geodesic and use the fluxes of energy E and angular momentum Lz derived in [21] to evolve the
parameters of the geodesic. In this paper, we restrict our attention to circular–equatorial geodesics. Subsequently, we
numerically integrate the geodesic equations along this inspiral trajectory and obtain the Boyer–Lindquist coordinates
of the small object as a function of time. Finally, we construct a gravitational waveform from the inspiral trajectory
using a flat–spacetime wave–emission formula. This scheme, which was developed for the modelling of EMRI systems
for LISA, has several useful features: a) the waveforms have been checked against more accurate, Teukolsky–based,
waveforms for test-particles on geodesic orbits and the overlap exceeds 0.95 over a large portion of the parameter
space [13]; b) they are computationally inexpensive; c) conservative self–force corrections to this model have been
derived [14] for Kerr circular–equatorial orbits at 2PN order. Nonetheless, this model is, at present, incomplete in
several ways, e.g., conservative corrections are not yet known for generic orbits; the phase space trajectories are
approximate, although they have been matched to Teukolsky based evolutions; and the waveform is constructed from
the trajectory using a flat–spacetime wave–emission formula. Nevertheless, this approach should capture the main
features of the inspiral waveform accurately.
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The two models differ in their treatment of the plunge and merger phases. The first model, valid for IMBHs of
arbitrary spin, employs the transition scheme developed by Ori & Thorne [1] to smoothly match the inspiral phase onto
the transition to plunge. In the spirit of the “numerical kludge waveform”, we derive an approximate waveform from
this transition trajectory using a flat–spacetime emission formulae applied to the transition orbit and plunge geodesic
given by the transition model [15]. The inspiral waveform includes the dominant modes ℓ = m = 2, ℓ = −m = 2 only
and so, for consistency, we included only the same two dominant modes in the expressions for the waveform during
the merger phase.
The second model, used for non–spinning black holes, uses the EOB prescription [16, 17] to describe the plunge and

merger phases. The EOB model is a framework in which the motion of a binary is represented as the effective motion
of a test object in a background. Although we use the EOB model only in the non-spinning limit, an extension of the
EOB scheme does exist which includes leading–order spin–orbit and spin–spin dynamical effects of a binary system
for an “effective test particle” moving in a Kerr–type metric [22], and next–to–leading–order spin–orbit couplings
[23]. However, it has been recently found [24] that it is not straightforward to include higher–order non–spinning
PN couplings, such as the 4PN and 5PN adjustable parameters that were recently calibrated to numerical relativity
simulations for non-spinning systems [25, 26], using these Hamiltonians [22, 23]. Additionally, the EOB Hamiltonian in
[23] does not reduce to the Hamiltonian of a spinning test particle in Kerr spacetime. This issue was recently resolved
in [27], in which a canonical Hamiltonian was derived for a spinning test particle in a generic curved spacetime at linear
order in the particle spin. The construction of an improved EOB Hamiltonian based on the results of [27] is currently
under development [24]. The Hamiltonian derived in [23] has recently been used in an exploratory study to calibrate
the EOB parameters using numerical relativity simulations of spinning, non–precessing, equal mass BHs. This is the
same approach that was previously used with great success for non-spinning black hole systems, e.g., to derive fits for
the final mass and spin of a BH after merger that are consistent with NR to about ∼ 2% accuracy [28]. We used the
non-spinning EOB model only in this work because that model is more mature. However, the EOB model has recently
been used to model circular–equatorial extreme–mass–ratio inspirals (EMRIs) around spinning supermassive black
holes, using fits of various post–Newtonian parameters to Teukolsky–based waveforms [29]. Comparisons between an
IMRI model based on this spinning EOB framework and the waveforms constructed using the transition model should
be pursued in the future.
The final ingredient, again common to both models, is the ringdown waveform. This originates from the distorted

Kerr black hole formed after merger, and consists of a superposition of quasinormal modes (QNMs). Each mode
has a complex frequency, whose real part is the oscillatory frequency, and whose imaginary part is the inverse of the
damping time. Following Berti, et. al. [30], and Buonanno, et. al. [31], we developed a RD model that includes the
fundamental mode (ℓ = 2,m = 2, n = 0) and two overtones (n = 1, 2). QNMs always come in “pairs”. In general,
a mode with a given (ℓ,m) will always contain a superposition of two different damped exponentials [30], one with
positive real part of the frequency, and the other with negative real part of the frequency and different damping time,
the so–called, “twin modes”. Omitting these modes would have no serious consequences for non–rotating black holes,
but it is conceptually inconsistent for rotating black holes. Furthermore, a single–mode expansion restricts attention
to circularly polarized gravitational waves. We have not overlooked these problems and have modelled the RD phase
with a general superposition of modes. On the other hand, to uniquely determine the frequencies and damping times
of the newly formed Kerr BH after merger, we used fits for the final mass and spin found in [16, 32]. The various
QNMs are attached to the plunge and merger waveform by imposing the continuity of the waveform and all necessary
higher order time derivatives.
Part of the motivation in developing a waveform model using the transition model of Ori & Thorne is to enable a

more straightforward extension of this present waveform model for circular–equatorial IMRIs to a waveform model
for generic (eccentric–inclined) IMRIs. The “numerical kludge” inspiral waveform [21] and the transition model [33]
are both already available for generic orbits. The mass–ratio regime that we explore in these papers has not been as
exhaustively explored as the comparable–mass–ratio and extreme–mass–ratio regimes. While the present paper was
being prepared, results of a numerical simulation were published which shed light on the gravitational energy and
momenta radiated by BH binaries with mass–ratios 100:1 [34]. However, this was the first numerical simulation in the
IMRI regime. The schemes described here combine elements of comparable mass and extreme-mass-ratio models in a
logical way, but it cannot presently be tested against accurate simulations. As numerical and analytic models improve,
these models should be refined. Nonetheless, the models should capture the main features of real IMRI waveforms
and thus should be adequate for our purposes, namely to scope out the parameter estimation accuracies that might
be achievable with ET. By using two alternative models we can build up further confidence in the results. In [15] we
compared the two waveform models for non–spinning systems and demonstrated that the waveforms agreed well in
both phase and amplitude, with differences at the level of a few percent. We show sample waveforms computed using
the two models in Figure 2. The close agreement for non-spinning systems is clear from the figure in the lower panel.
In this paper, we will now use these models to estimate the precision with which different third-generation detector
networks will be able to estimate the parameters of the various binary systems described above.
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FIG. 2: We show complete gravitational waveforms for compact objects of masses 10M⊙ —top left panel, and 1.4M⊙ —top
right panel, orbiting around a 500M⊙ BH with spin parameter q = 0.3. The bottom panel shows gravitational waveforms for
a binary system consisting of a compact object of mass 10M⊙ and an IMBH of mass 500M⊙, computed using both the EOB
and transition models. In each case, the various extrinsic parameters were chosen randomly.

IV. SIGNAL ANALYSIS

In this section we will briefly review the aspects of signal analysis relevant to our calculations. A GW detector is
a linear system whose input is a GW we want to detect and whose output is a time series, which is a combination of
both GW signals and instrumental noise. As mentioned above, any number of coplanar and colocated detectors have
a response to GWs that can be written as a linear combination of the responses of two right–angle detectors offset by
45◦. The output of these two equivalent two arm Michelson detectors can be represented as

sα(t) = hα(t) + nα(t), α = I, II, (3)

where I, II denote the data streams from the two detectors. The detection problem is to distinguish hα(t) from nα(t).
With the assumptions that (a) each Fourier component of the noise ñα(f) has a Gaussian probability distribution;
and (b) the noise is stationary, i.e., the different Fourier components are uncorrelated, the ensemble average of the
Fourier components of the noise have the property

〈ñα(f) ñβ(f
′)∗〉 = 1

2
δ(f − f ′)Sn(f)δαβ . (4)

This relation defines the one-sided spectral density of the instrumental noise, Sn(f).
We wish to estimate the parameters of a system from which we have detected gravitational waves. If the expected

waveform h(t; θ) depends on parameters θ = {θ1, ..., θN}, we want to construct the posterior probability of the
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parameters given the data and from that we will find the most probable value of the parameters of the source and
their respective errors.
There is a natural inner product on the vector space of signals, which for any two signals pα(t), qα(t), takes the

form

(p |q) ≡ 2
∑

α

∫ ∞

0

[

p̃∗α(f)q̃α(f) + p̃α(f)q̃
∗
α(f)

Sn(f)

]

df. (5)

The probability distribution for Gaussian noise, n(t), is given by

p(n0) = Nexp

(

− (n0 |n0)

2

)

, (6)

where N is a normalization factor. This relation gives the probability that the actual noise realization is n0. If the

source had parameters ~θ, the output would have the form s(t) = h(t; ~θ)+n0(t). Using this relation and Equation (6),

we obtain the likelihood of observing the output s(t) if the signal had parameters ~θ

Λ
(

s|θ̃
)

= Nexp



−

(

s0 − h(~θ)| s0 − h(~θ)
)

2



 . (7)

We can re–write Eq. (7) using Bayes’ theorem, which states that the posterior probability is proportional to the
product of the likelihood function and the prior probability. The prior describes the degree of belief that a GW

signal in the data would have parameters ~θ in the data before the measurement is made, and the posterior probability

describes the degree of belief after. Denoting the prior by p0(~θ), the posterior probability for the parameters ~θ, given
the observed output s, is given by [35]

p
(

h(~θ) | s
)

∝ p0(~θ)exp

(

(

h(~θ) | s
)

− 1

2

(

h(~θ) |h(~θ)
)

)

. (8)

As p
(

h(~θ) | s
)

is a distribution in ~θ for a fixed output s, the term (s | s) /2 can be absorbed into the normalization

factor. This probability distribution function describes the information we can extract from the data stream once the
prior is given.
In the absence of an actual data set, we cannot compute this posterior probability distribution, but we can estimate

how broad the posterior will be and hence how well we might constrain the parameters. Assuming a flat prior (or
a locally-flat prior which would be a reasonable assumption for a signal of high signal-to-noise ratio), the maximum
posterior probability is the maximum-likelihood value, which minimizes (s− h | s− h). This is also the point in
parameter space with the highest matched filtering signal–to–noise ratio (SNR)

S

N
[h(θi)] =

(s |h)
√

(h |h)
. (9)

We can expand Eq. (8) about this peak, θ̂ by setting θi = θ̂i +∆θi to obtain

p(∆θ | s) ≈ N e−
1

2
Γij∆θi

∆θj

, Γij ≡
(

∂h

∂θi

∣

∣

∣

∣

∂h

∂θj

)

|θ=θ̂

. (10)

Γij is the Fisher Information Matrix. This approximation is valid for large SNR. The correlation matrix of the errors
∆θi is given by

〈

∆θi∆θj
〉

= (Γ−1)ij . (11)

We shall make use of Eq. 11 to estimate parameter errors for the various binaries described in Section II B. For white
noise, i.e., Sn(f) = const., Parseval’s theorem allows us to rewrite the inner product (5) in the simple form [36]

2
1

Sn

∑

α

∫ ∞

−∞

pα(t)qα(t)dt. (12)



8

We can use this definition of the inner product to simplify our analysis. If we define the “noise–weighted” waveform

ĥα(t) ≡
hα(t)

√

Sh

(

f(t)
)

, f(t) =
1

π

dφ

dt
, (13)

we can then rewrite the Fisher matrix approximately as [36]

Γab = 2
∑

α

∫ T

0

∂aĥα(t)∂bĥα(t)dt , where ∂a ≡ ∂/∂θa. (14)

As discussed in [15], the binaries we shall consider have relatively low SNR and it is known that in such situations
the Fisher Matrix may overestimate measurement accuracies. Vallisneri [37] gave a mismatch criterion to determine
whether Fisher Matrix results were reliable in a particular context. This idea is to compute the ratio r(θ,A) of the
linearized signal amplitude (LSA) likelihood to the exact likelihood. This ratio r is given by [37]

| log r(θ,A)| = (∆θjhj −∆h(θ),∆θkhk −∆h(θ)) , (15)

where A represents the signal strength, ∆h(θ) = h(θ)−h(θ̂), with θ = θ̂+∆θ, and θ̂ the observed location of maximum
LSA likelihood for a given experiment. We use the consistency criterion, Eq. (15), to explore the 1–σ likelihood surface
predicted by the Fisher Matrix to verify that the mismatch between the LSA and the exact likelihoods is small. Ratios
below a fiducial value, say | log r(θ,A)| ∼ 0.1, are considered acceptable [37].
As an example of typical results obtained from this analysis, for (10M⊙, 100M⊙) binaries with q = 0.3, we found that

systems near the lower quartile of the distribution had | log r(θ,A)| ∼ 0.2. From this threshold onwards, the ratio r
decreases gradually so that at the upper quartile of the distribution we obtain | log r(θ,A)| ∼ 0.04. This indicates that
the results we get from the Fisher Matrix should be a reasonable estimate of the measurement precisions achievable
for IMRIs using ET. Our results may be somewhat optimistic and at some point should be verified using Monte Carlo
simulations to recover the full posterior probability distributions. Such an exercise is beyond the scope of this present
work. Nonetheless, the results should be fairly accurate, and we will see in Section V that, for parameters which can
be compared, these results are in good accord with previous results that have been derived for other types of binary
and different waveform models.
The Fisher matrix for a network of detectors is given by the sum of the individual Fisher Matrices for each detector.

When modelling the response of the various detectors, it is necessary to account for their relative positions on the
surface of the Earth, as the corresponding time delays are what allow source triangulation. In computing the waveforms
used in the Fisher Matrix, we found it convenient to use two different timesteps in order to separately resolve the
(slow) inspiral and (fast) merger/ringdown phases. We checked that varying the choice of timesteps and the location
of the transition between the two timesteps did not significantly affect the results for any of the systems considered.
We will discuss the convergence of the Fisher Matrix scheme further in Section V.

V. PARAMETER ESTIMATION ERROR RESULTS

The parameter space of the signals we shall consider is 10 dimensional. Four of these are intrinsic parameters,
namely lnm, lnM, q, t0. The other six are extrinsic parameters. We summarize the physical meaning of all the
parameters in Table I.
To explore parameter estimation errors using the inverse Fisher Matrix we fix the values of the intrinsic parameters

of the source, and carry out a Monte Carlo over possible values for the extrinsic parameters. The parameter error
scales with the SNR of the source as 1/SNR, so we quote results at a fixed SNR=30. To do this, we first compute
the Fisher Matrix for a source at a fixed distance, D = 6.6348Gpc, and obtain the SNR at that distance from the
expression

SNR2 = 2
∑

α=I,II

∫ tLSO

tinit

ĥ2

α(t)dt. (16)

We then multiply the errors estimated from the Fisher Matrix by (SNR/30) to normalise an SNR of 30. The
observation time starts when the GWs from the inspiral reach a frequency of 5Hz and finishes when the RD waveform
is no longer contributing to the SNR.
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lnm mass of compact object (CO)

lnM mass of SMBH

q magnitude of (specific) spin angular momentum of SMBH

t0 time at which orbital frequency sweeps through a reference value

φ0 Initial phase of CO orbit

θS source sky colatitude in an ecliptic–based system

φS source sky azimuth in an ecliptic–based system

θK direction of SMBH spin (colatitude)

φK direction of SMBH spin (azimuth)

lnD distance to source

TABLE I: This table shows the physical meaning of the parameters used in our model. The angles (θS ,φS) and (θK ,φK) are defined in
a fixed ecliptic–based coordinate system.

A. Dependence of parameter estimation errors on system parameters

We consider the twelve different binary systems described in Section II B. For the sources with q = 0.3, 0.9 we
present results computed from the transition model for the waveform. For the non-spinning systems, q = 0, we present
results from both the transition model and the EOB model. The Tables II–V list the mean, standard deviation, median
and lower and upper quartiles of the distribution of the log to base 10 of the Fisher Matrix errors computed in the
Monte Carlo simulation. There is one table for each of the four mass combinations we consider. These results assume
the optimistic 3 ET network configuration, and hence should be considered as upper bounds on the accuracy with
which we may be able to measure the various parameters.
In Figure 5 we show histograms of the error estimates for several parameters found in the Monte Carlo simulation

for the m = 10M⊙, M = 100M⊙, q = 0.9 system. This figure, and Table II, indicate that a network of 3 ETs might be
able to determine the location of the source in the sky to an accuracy of ∼ 10−3 steradians, i.e., ∼ 4 square degrees.
This estimate is the statistical mean of the Monte Carlo distribution at SNR of 30 assuming the optimistic detector
network of three ETs in the geographic locations of Virgo, LIGO Livingstone and Perth, Australia (AIGO). Recent
work has shown that for the existing LIGO-Virgo detector network, assuming uniform distribution of sources, at an
optimal network SNR of around 15, 50% of inspiral sources can be located within 23 sq–degs (best case) at the 95%
confidence level. For burst sources, without any knowledge of the waveform, 50% of the sources can be localized within
50 sq–degs (worst case) at an SNR of 10, but this can be reduced to 8 sq–degs if predicted waveforms are available [38].
These estimates are similar for the initial or advanced detectors [38], at a fixed SNR. The inclusion of an additional
detector in the Southern Hemisphere, such as AIGO, can further improve these values as it contributes a longer
baseline, additional energy flux, extended signal space, and breaks the plane–degeneracy formed by the three detector
network of LIGO Livingstone, LIGO Hanford and Virgo [38]. Just before submitting this paper, [39] presented results
for the accuracy with which sources can be localized with a network of GW detectors, using only timing information in
the various detectors. Fainhurst [39] has found that increasing the number of detectors at different sites increases both
the absolute number of observable sources, and greatly increases the fraction of sources that can be well localized.
For instance, at fixed SNR of 8, and using the advanced detector network comprising the two LIGO detectors at
Hanford (HH) and LIGO Livingstone (L), no sources can be localized within 20 sq–degs. Adding another detector
at a different site, e.g., a LIGO detector in Australia (A), or advanced Virgo (V), or the Japane LCGT detector (J),
the networks HLA, HHLV, HHJL, can localize up to 50% of the signals within 20 sq–degs, and the loudest signals
within 5 sq–degs. In all these results, it was found that for the networks involving an Australian detector, the peak
of the localization distributions takes place between 5 and 10 sq–degs. Our results imply that we can determine the
location of the source in the sky to an accuracy of ∼ 12 sq–degs at an SNR of 8, and this estimate is the statistical
median value found in the Monte Carlo simulation. Our results are therefore in good accord with existing estimates
of the angular resolution that could be achieved by the advanced detector network. Furthermore, Table II shows that
in the non–spinning limit, we can resolve the plunge time t0 to within ∼ 22 ms at SNR of 10. This estimate is also
in good accord with the results obtained independently by Ajith et al. [40] and Luna et al. [41].
The Monte Carlo simulations also show that we expect to determine the total mass of m = 10M⊙ ,M = 100M⊙

binaries to an accuracy of ∼ 0.1% in the non–spinning limit at SNR of 8. This predicted accuracy is in good accord
with previous estimates for related systems. In [42] it was estimated that using exactly the same 3ET detector network
that we have considered in this paper, we would be able to determine the total mass of m = 23M⊙ ,M = 100M⊙

binaries with mass ratio η = 0.16, to an accuracy of ∼ 0.1% in the non–spinning limit at a network SNR of 8. This
estimate was obtained using the phenomenological waveform model described in [43], which includes the inspiral,
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merger and ringdown for non–spinning binaries of comparable mass in a consistent way. Figure 3 shows the accuracy
with which we expect to determine the masses of the small CO and the IMBH for spinning systems, as well as the
IMBH’s spin parameter q.
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FIG. 3: Left panel: expected errors in the masses of the small CO and the IMBH for a fixed value of the IMBH’s spin parameter
q = 0.3. There is a pair of candlesticks for each of the four binary systems. For each binary, the candlestick representing the
CO’s mass error estimate is to the left of that for the IMBH’s mass error estimate. Notice that the errors are reported as the
logarithm to base ten log

10
(∆) on the vertical axis. The error bars indicate the lower and upper quartiles found in the Monte

Carlo simulation. Right panel: expected errors in the IMBH’s spin parameter for two different values for the spin parameter
q. For each system, the candlestick corresponding to a central IMBH with q = 0.3 is to the right of that associated with
the error estimate for a system with q = 0.9. The continuous, long–dashed, dashed and dotted lines represent systems B1:
m = 10M⊙ ,M = 100M⊙, B2: m = 1.4M⊙ ,M = 100M⊙, B3: m = 10M⊙ ,M = 500M⊙, and B4: m = 1.4M⊙ ,M = 500M⊙,
respectively.

Figure 3 shows that for binaries that stay the longest in band, namely the m = 1.4M⊙ ,M = 100M⊙, q = 0.3
system ( ∼ 291 seconds in band), we can determine the masses of the CO and the IMBH to an accuracy of 0.01%,
0.005%, respectively, at an SNR of 30. The accuracy gradually decreases for the shorter–lived events. For instance,
for binaries with m = 10M⊙ ,M = 500M⊙, q = 0.3, which stay in band about ∼ 8.3 seconds, we expect to measure
the CO’s and IMBH’s masses to an accuracy of ∼ 0.15%, ∼ 0.05%, respectively, at an SNR of 30.
We expect to determine the spin parameter more accurately for rapidly rotating binaries. For instance, the estimated

accuracy with which we can measure the IMBH’s spin for binaries with m = 10M⊙ ,M = 100M⊙, q = 0.9 is ∼ 0.05%.
This is about a factor of 2 better than for binaries with the same component masses but with spin q = 0.3. We would
expect this trend since, for more rapidly spinning systems, the small CO comes much closer to the outer horizon of
the Kerr IMBH before merging, and this is the regime where the CO can more strongly feel the effects of the IMBH’s
spin.
In general, we expect that the precision with which we can measure the parameters of a binary depends on the

number of GW cycles that are observed. Therefore, we might expect the precision to depend on the source masses as,
from best to worst, 1.4M⊙ +100M⊙, 1.4M⊙ +500M⊙, 10M⊙ +100M⊙, 10M⊙ +500M⊙. Tables II–V, and Figure 3
confirm this expectation. These Tables also show that the precision improves for more rapidly spinning IMBHs. This
is because, for greater spins, the inspiral phase evolution lasts longer and so there are more cycles of information in
the waveform. The SNR of the spinning systems will also be larger at a given distance, as compared with slowly
spinning IMBHs, so these systems can be seen further away. This does not affect the results quoted here, which are
normalised to fixed SNR=30. Tables II–V also confirm that our two independent waveform models make predictions
for the parameter estimation errors for non-spinning systems that are consistent to better than ten per cent.
Finally, we note that the consistency of the distributions of Figure 5, in the sense that they are smooth with

few outliers, is an indication that the results are convergent. It is well known that Fisher Matrices encountered in
parameter estimation calculations for GW sources can have very large condition numbers. However, the results we
shall present here were obtained from Fisher Matrices that exhibited convergence over at least two orders of magnitude
in the offsets used to compute the numerical waveform derivatives. The inverse matrices were computed using an
LU decomposition, and we verified that the Inverse Fisher matrices were also convergent to ∼< 10% over an order of
magnitude in the numerical offsets. We also found that the offsets required for the various network configurations
were consistent, as we would expect, since the convergence of the FM should depend on the intrinsic waveform, rather
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than the choice of network.

B. Dependence of parameter estimation errors on network configuration

We shall now consider the more modest network configurations C1–C4 described earlier, which consist of combi-
nations of ET’s and right–angle detectors at 2 or 3 sites from Virgo, LIGO Livingstone and Perth. These results are
shown in Tables VI–IX1 for the four different mass combinations, but with the central IMBH spin fixed at q = 0.3.
As expected, we find that a single ET is sufficient for accurate intrinsic parameter determination. This is because
the signature of the intrinsic parameters is encoded in the phase evolution. Having normalised intrinsic parameter
errors to a fixed network SNR of 30, Figure 4 shows clearly that the accuracy with which we can measure the intrinsic
parameters of a binary is not dramatically increased as a function of the network configuration.
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FIG. 4: Arranged from left to right in the panel, we show expected errors in the CO’s mass, IMBH mass and IMBH spin
parameter, as a function of the network configuration for binary systems with 10M⊙ + 100M⊙ and IMBH’s spin q = 0.3. In
each group the candlesticks are arranged in order C1–C5 from left to right.

However, it is not possible to constrain the location of the source in the sky nor the luminosity distance using a
single detector. This is also expected, as the determination of the extrinsic parameters comes from the time–delays
between different detectors. It appears that the inclusion of an additional right–angle detector (configuration C2)
is enough to constrain the source sky position and luminosity distance to moderate precision ∼ 30 sq–degs, ∼ 15%
for a 10M⊙ BH IMRI into a 100M⊙ IMBH with spin q = 0.3 at SNR of 30. Replacing this right–angle detector by
another ET at the same location (configuration C3) enhances the determination of these parameters to ∼ 12 sq–degs,
∼ 10%, respectively. If we consider a configuration consisting of 1 ET, plus two right–angle detectors (configuration
C4) these estimates are further improved to ∼ 11 sq–degs, ∼ 10%, respectively. These two estimates are rather close
to the precision we expect to obtain using a 3 ET network, namely, ∼ 8 sq–degs, ∼ 10%, respectively. These results
also show that the distributions become narrower for the more complex configurations, i.e., there is less variation
in the precisions with which we can determine the extrinsic parameters as we randomise over the source position
and orientation. This is also expected, as a more complex network should provide more complete sky coverage. We
can compare our results for the luminosity distance in the non–spinning limit with those quoted in Table I of [42],
which were quoted at a network SNR of 8. For non–spinning systems and assuming network C1, we find that we can
estimate the luminosity distance to an accuracy of ∼ 40% at an SNR of 8. Using configuration C2, we can determine
the luminosity distance to an accuracy of 30% and for C3, the estimate improves marginally to ∼ 28%. This estimate
is roughly the same for a 3ET detector network. Hence, we conclude that using 1 ET plus one right-angle detector
would be enough to constrain the luminosity distance to within ∼< 40% at an SNR of 8. These estimates are in good

1 Note that only Table VI is included in the main text. Tables VII–IX have been moved to Appendix A to prevent an overload of
information.
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accord with Table I of [42], which were computed for comparable-mass systems using an inspiral-merger-ringdown
waveform model. This comparison illustrates again that even if the IMRI models used in this paper are not accurate
enough to be used for detection of IMRI systems, they do still capture the main features of the systems with sufficient
accuracy that they can be used for parameter estimation studies and to illustrate the potential scientific impact of
the ET.
In summary, a single ET will be enough to measure the intrinsic parameters but will not be sufficient to accurately

reconstruct the extrinsic parameters. Extrinsic parameter determination is possible with the addition of one right-
angle detector, but a 2 ET configuration will improve the accuracy with which we can measure the source’s sky
position and luminosity by roughly a factor of ∼ 2. A more optimistic configuration consisting of a single ET and two
right-angle detectors upgraded to ET’s sensitivity will generate results that are competitive with the highly optimistic
three ET network. This configuration (C3) might be more realistic, since it will have lower overall costs, although it
is not simply an upgrade of existing sites as we are assuming 10km scale right-angle interferometers.
Tables II–IX show that GW observations will produce valuable astrophysical results. A network of 2 ETs operating

in coincidence will be able to measure accurately the masses of two merging black holes and the luminosity distance
at which such an event is taking place. If we see light black holes at high redshift this is important for constraining
models of the early growth of structure. To identify mergers between seed black holes, we need to be able to find out
whether the mass is low, M ∼< 103M⊙, and the redshift is high, z ∼> 3. As discussed in [42], we can translate the
luminosity distance estimate into a redshift estimate, which gives the redshift to a similar precision as the distance.
In paper I of this series we estimated that we could potentially detect hundreds of BHs of mass ∼ 16M⊙, ∼ 100M⊙,
up to redshifts of z ∼ 5, z ∼ 4, if such systems exist. The parameter estimation results suggest that we should be
able to confidently say that any events with M ∼ 100M⊙ and z ∼ 5 that are detected are indeed mergers between
light black holes occurring at high redshift [42]. As mergers between ∼ 100M⊙ seed black holes generate GWs in the
0.1Hz–10Hz band, ET will be the first detector able to probe such systems. It could therefore play a fundamental
role in probing the hierarchical assembly of structure in the Universe by detecting the first epoch of mergers and
probing the mass distributions of seeds. By contrast, LISA will primarily detect subsequent mergers between more
massive black holes that have grown from these seeds. In this sense, ET will provide complementary observations
to LISA. Future missions like the space–based detector DECIGO will perform a complete survey of MBHB mergers
taking place during its lifetime. It is not inconceivable that DECIGO will operate concurrently with ET, allowing
simultaneous observations. If DECIGO flies after ET, then the detections it makes will confirm the earlier results of
ET and LISA. In summary, the information provided by these GW detectors will be essential to falsify the standard
cosmological models for galaxy formation and growth, and to constrain the heavy–seed model. Another particularly
promising possibility for GW astronomy is the detection of IMBHs in globular clusters. With regard to black hole
formation in these environments, it is expected that a fraction ∼ 10−6 to 10−4 of the ∼ 106 initial stars will become
stellar–mass BHs via normal stellar evolution [44]. All these BHs should have formed before ∼ 10 Myr, with the most
massive BHs forming at around ∼ 3 Myr [45]. These black holes should be more centrally concentrated that main
sequence (MS) stars for various reasons, namely, significant mass segregation of the initial, higher mass progenitor
[46], preferential formation of stars near the cluster centre [47], and because BH birth kicks are not expected to
displace BHs into the cluster halo [48]. Even if we assume that the BHs were distributed throughout the cluster,
mass segregation should be able to assemble a subcluster of BHs near the centre after at most ∼ 100 Myr, assuming
a typical cluster with relaxation time of 1 Gyr [49]. During mass segregation, BH–MS binaries will undergo three
body and four body interactions that will replace the MS star by a heavier BH. Simulations conducted by [49, 50]
suggest that, whether formed through successive BH mergers or stellar collisions, it is more likely to find an IMBH in
clusters with dense cores, i.e., IMBHs may exist in some tens of percent of current globulars. In this type of clusters,
the first formation of IMBHs with mass ∼ 100M⊙ occurs at ∼ 10 Myr after the subcluster of BHs is formed. BHs
may stay in the cluster, and not be ejected by hardening and eventual recoil, by means of the Kozai mechanism in
stable hierarchical triples. With regard to BH–BH mergers, these can occur only through GW emission in binaries,
possibly enhanced by dynamical interactions in the cluster. This is so because BHs have negligible cross sections for
direct collisions. A combination of these various mechanisms, e.g., secular Kozai resonance, binary exchange processes,
gravitational radiation, three and four–body interactions, may drive the merger of these IMBHs and lower–mass COs,
and in turn, increase the likelihood that IMRIs in globular clusters will be detectable by their gravitational radiation
by ground–based laser interferometers [10]. As discussed in this paper, these GW observations will provide rigorous
measurements of the masses of IMBHs and, hopefully, will allow direct evidence, beyond doubt, for their existence
[9].
The Monte Carlo results we present in this paper are the first results for IMRI source detectable by ET to appear

in the literature. The results must be taken with some caution, because of the approximations in the waveform
models that have been made, as discussed earlier. However, these results should accurately reflect the likely order-
of-magnitude of the parameter measurement errors that could be achievable. The precise astrophysical implications
will depend primarily on the number of events that are seen, which is very difficult to predict given the existing
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uncertainties in the astrophysics of IMBHs.

Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -3.13 -3.60 -3.43 -1.73 -0.59 -1.39 -1.26 -1.01 -0.91 -0.94

St. Dev. 0.192 0.329 0.446 0.355 0.133 0.164 0.268 0.526 0.553 0.397

q=0.9 L.Qt. -3.19 -3.74 -3.50 -1.85 -0.63 -1.52 -1.46 -1.36 -1.30 -1.25

Med. -3.09 -3.57 -3.40 -1.69 -0.54 -1.38 -1.29 -1.19 -1.06 -1.06

U. Qt. -3.01 -3.41 -3.21 -1.52 -0.50 -1.26 -1.11 -0.81 -0.65 -0.68

Mean -3.03 -3.57 -3.11 -1.82 -0.67 -1.38 -1.25 -0.99 -0.86 -0.87

St. Dev. 0.279 0.320 0.203 0.331 0.232 0.207 0.270 0.591 0.656 0.479

C5 L.Qt. -3.05 -3.75 -3.20 -1.95 -0.70 -1.53 -1.45 -1.38 -1.31 -1.24

Med. -2.95 -3.55 -3.07 -1.78 -0.62 -1.38 -1.28 -1.20 -1.05 -1.00

U. Qt. -2.89 -3.37 -2.93 -1.63 -0.57 -1.25 -1.11 -0.78 -0.58 -0.63

Mean -3.35 -3.64 N/A -1.85 -0.79 -1.37 -1.24 -0.97 -0.84 -0.86

St. Dev. 0.553 0.435 N/A 0.412 0.306 0.200 0.272 0.573 0.604 0.448

q=0 L.Qt. -3.33 -3.77 N/A -2.03 -0.80 -1.51 -1.45 -1.35 -1.28 -1.22

Med. -3.31 -3.60 N/A -1.88 -0.73 -1.37 -1.27 -1.16 -1.03 -0.98

U. Qt. -3.17 -3.41 N/A -1.77 -0.68 -1.25 -1.09 -0.71 -0.53 -0.57

Mean -3.55 -3.68 N/A -1.94 -0.91 -1.39 -1.27 -1.02 -0.89 -0.91

St. Dev. 0.229 0.195 N/A 0.224 0.157 0.174 0.244 0.598 0.631 0.464

EOB L. Qt. -3.71 -3.81 N/A -2.14 -1.01 -1.53 -1.46 -1.38 -1.30 -1.26

Med. -3.53 -3.68 N/A -1.97 -0.93 -1.39 -1.30 -1.21 -1.07 -1.04

U. Qt. -3.36 -3.54 N/A -1.89 -0.80 -1.26 -1.13 -0.81 -0.68 -0.69

TABLE II: Summary of Monte Carlo results for parameter estimation errors. We show the mean, standard deviation, median
and quartiles of the distribution of the logarithm to base ten of the error in each parameter. Results are given for a m = 10M⊙

CO inspiralling into a M = 100M⊙ IMBH for various choices of the IMBH spin, q, computed using the transition model
waveform. We also show results for q = 0 computed using the EOB waveform model.

VI. CONCLUSIONS

In this paper, we have used the gravitational waveform models for IMRIs developed in paper I of this series [15] to
estimate the precision with which the Einstein Telescope will be able to determine the parameters of circular–equatorial
IMRIs. We have presented results for a set of twelve “typical” systems, comprising four different combinations of
component masses — 1.4M⊙+100M⊙, 1.4M⊙+500M⊙, 10M⊙+100M⊙, and 10M⊙+500M⊙ — and three different
IMBH spins — q = 0, 0.3, 0.9. For the non–spinning systems, we have compared the results from the transition model
and the EOB waveform model and found that these models make predictions that are consistent to better than ten
percent. This final check provides confidence in these results.
We have also explored how the accuracy of parameter determination depends on the configuration of the detector

network using the “ET–B” noise curve and assuming a cut–off frequency of 5Hz. We have shown that a single
ET is sufficient to accurately determine the intrinsic parameters of these systems. However, a network of detectors
is required to obtain accurate estimates of the extrinsic parameters. A network of 2 ETs should be sufficient to
measure the source’s sky position and luminosity distance to accuracies of ∼ 12 sq–degs and ∼ 10%, respectively,
for a BH IMRI into a 100M⊙ IMBH with spin q = 0.3. A more sophisticated network comprising 1 ET and two
right-angle detectors would have comparable precisions and these results are comparable to the precisions possible
with a 3 ET network, which are ∼ 8 sq–degs, 10%, respectively (at a source SNR of 30). Any of these ET networks
would simultaneously constrain the BH and IMBH masses and the IMBH spin magnitude to fractional accuracies
of ∼ 10−3 , 10−3.5 and10−3, respectively. The amount of variation in the parameter precision over random choices of
the source location and orientation also decreases for more complex network configurations. A 3 ET network is a
highly optimistic assumption about a future third–generation GW detector network, but our results indicate that a
more modest network comprising one ET and right-angle interferometers in LIGO Livingston and Perth can recover
parameters to almost the same precision. This network would have lower associated costs and might therefore be
more feasible. On the other hand, our results should be regarded as conservative, in the sense that using a lower
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FIG. 5: Distribution of errors in various parameters computed in the Monte Carlo simulations. We show the system with
m = 10M⊙, M = 100M⊙, q = 0.9. The panels show the error distributions in the following order, top row, from left to right,
log

10
(∆(lnm)), log

10
(∆(lnM)); middle row, log

10
(∆q), log

10
(∆t0); bottom row, log

10
(∆θS), log10(∆φS).
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Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -5.09 -5.39 -3.88 -1.71 -0.71 -1.40 -1.27 -0.91 -0.78 -0.91

St. Dev. 0.261 0.271 0.318 0.333 0.262 0.163 0.260 0.599 0.616 0.461

q=0.9 L.Qt. -5.19 -5.49 -3.95 -1.88 -0.88 -1.53 -1.46 -1.32 -1.23 -1.27

Med. -5.05 -5.35 -3.87 -1.73 -0.82 -1.38 -1.31 -1.08 -0.91 -1.05

U. Qt. -4.93 -5.21 -3.74 -1.60 -0.51 -1.28 -1.14 -0.64 -0.48 -0.66

Mean -4.09 -4.23 -3.87 -1.78 -0.73 -1.40 -1.29 -0.99 -0.86 -0.95

St. Dev. 0.233 0.308 0.198 0.375 0.167 0.179 0.265 0.500 0.543 0.459

q=0.3 L.Qt. -4.26 -4.43 -3.91 -1.89 -0.83 -1.53 -1.47 -1.38 -1.30 -1.30

Med. -4.11 -4.24 -3.84 -1.77 -0.75 -1.38 -1.31 -1.21 -1.06 -1.14

U. Qt. -3.94 -4.04 -3.69 -1.68 -0.63 -1.27 -1.13 -0.75 -0.57 -0.73

Mean -4.09 -4.22 N/A -1.87 -0.78 -1.41 -1.29 -0.96 -0.85 -0.92

St. Dev. 0.320 0.349 N/A 0.390 0.165 0.166 0.256 0.597 0.636 0.463

q=0 L.Qt. -4.33 -4.48 N/A -2.03 -0.90 -1.52 -1.47 -1.36 -1.30 -1.28

Med. -4.17 -4.28 N/A -1.89 -0.81 -1.39 -1.33 -1.15 -1.02 -1.07

U. Qt. -3.94 -3.99 N/A -1.75 -0.67 -1.28 -1.15 -0.74 -0.58 -0.68

Mean -4.06 -4.20 N/A -1.92 -0.79 -1.39 -1.28 -0.97 -0.84 -0.89

St. Dev. 0.130 0.189 N/A 0.197 0.091 0.166 0.261 0.648 0.678 0.496

EOB L.Qt. -4.15 -4.38 N/A -1.96 -0.84 -1.52 -1.47 -1.37 -1.28 -1.25

Med. -4.07 -4.22 N/A -1.90 -0.78 -1.38 -1.32 -1.20 -1.05 -1.05

U. Qt. -3.97 -4.09 N/A -1.86 -0.74 -1.26 -1.14 -0.78 -0.60 -0.66

TABLE III: As Table II, but now for binary systems with a CO of mass m = 1.4M⊙.

cut–off frequency or asumming a different ET design, e.g., the xylophone configuration, 2 may improve the various
results quoted in these papers. At present we have made use of the official “ET–B” noise curve [18], but a study of
the potential applications of ET using both lower cut–off frequencies and more optimistics designs should be explored
in the future. One of the potentially exciting payoffs of using these configurations to observe ET IMRI sources is the
ability to test whether the central object of an IMRI is described by the Kerr metric of general relativity. During the
inspiral, the CO traces out the geometry of the spacetime of the central object. Hence, the GWs emitted during the
inspiral encode a map of the spacetime. [53, 54] showed that any axisymmetric, vacuum spacetime in relativity can
be decomposed into mass, Mℓ, and current, Sℓ, multipole moment. Ryan [55] went on to show that these multipole
moments are redundantly encoded in gravitational wave observables, namely, the periapsis precession frequency, the
orbital plane precession frequency and the gravitational wave energy spectrum, for nearly equatorial, nearly circular
orbits. Additionally, Hansed [54] showed that all the multipoles of a Kerr black hole are determined by its mass, M ,
and spin S1, trough the relation [54]

Mℓ + iSℓ = M (ia)
ℓ
, (17)

where a = S1/M is the reduced spin of the black hole. Extracting three moments of the spacetime from GW emission,
and finding them inconsistent with (17), would suffice to demonstrate that the central object is not a Kerr black hole.
Tests of this nature have been conducted for EMRI observations with LISA. Using a kludge model that included
a non–Kerr value for the quadrupole moment of the central black hole, Barack and Cutler [56] showed that LISA
could measure the quadrupole moment, Q = −S2/M , of the central black hole to an accuracy ∆Q/M3 ∼ 10−3,
while simultaneously measuring the mass and spin to an accuracy ∼ 10−4. In the context of Advanced LIGO, it has
been shown that it is possible to measure an 0(1) fractional deviation in the mass quadrupole moment for typical
systems [57]. The results we have obtained in this series of papers suggest that ET may improve this estimate by an
order of magnitude. Reasons for such expectation include the fact that the SNR of a source at fixed distance will
increase by a factor of ten or more, as compared with Advanced LIGO. Furthermore, ET’s enhanced sensitivity will

2 The xylophone configuration consists of two detectors within the same vacuum system, one optimised for low–frequency sensitivity and
the second for high–frequency sensitivity.
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Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -2.91 -3.29 -3.07 -1.65 -0.74 -1.39 -1.26 -0.95 -0.83 -0.89

St. Dev. 0.196 0.163 0.416 0.157 0.122 0.171 0.269 0.542 0.552 0.410

q=0.9 L.Qt. -3.00 -3.34 -3.04 -1.80 -0.79 -1.52 -1.46 -1.32 -1.24 -1.22

Med. -2.91 -3.29 -2.95 -1.70 -0.74 -1.38 -1.31 -1.11 -0.97 -1.04

U. Qt. -2.77 -3.22 -2.91 -1.60 -0.66 -1.25 -1.10 -0.69 -0.55 -0.61

Mean -2.85 -3.44 -2.69 -1.96 -0.90 -1.36 -1.22 -0.88 -0.76 -0.81

St. Dev. 0.362 0.364 0.346 0.386 0.208 0.221 0.304 0.536 0.511 0.458

q=0.3 L.Qt. -2.97 -3.70 -2.77 -2.13 -1.00 -1.50 -1.44 -1.29 -1.21 -1.18

Med. -2.80 -3.46 -2.67 -1.94 -0.89 -1.36 -1.26 -1.08 -0.93 -0.94

U. Qt. -2.76 -3.20 -2.62 -1.85 -0.77 -1.25 -1.08 -0.57 -0.45 -0.49

Mean -2.36 -2.81 N/A -1.97 -0.96 -1.36 -1.21 -0.90 -0.80 -0.83

St. Dev. 0.388 0.208 N/A 0.444 0.204 0.219 0.316 0.596 0.641 0.473

q=0 L.Qt. -2.53 -2.92 N/A -2.15 -1.06 -1.51 -1.44 -1.30 -1.24 -1.22

Med. -2.34 -2.82 N/A -1.93 -0.98 -1.36 -1.26 -1.10 -0.91 -0.95

U. Qt. -2.16 -2.70 N/A -1.89 -0.86 -1.24 -1.07 -0.60 -0.42 -0.48

Mean -2.53 -2.87 N/A -1.99 -1.02 -1.38 -1.25 -0.96 -0.85 -0.85

St. Dev. 0.187 0.158 N/A 0.203 0.165 0.183 0.274 0.510 0.541 0.385

EOB L.Qt. -2.66 -2.97 N/A -2.10 -1.12 -1.52 -1.45 -1.33 -1.25 -1.18

Med. -2.52 -2.86 N/A -2.00 -1.02 -1.38 -1.28 -1.12 -0.99 -0.92

U. Qt. -2.41 -2.77 N/A -1.86 -0.92 -1.24 -1.09 -0.64 -0.53 -0.58

TABLE IV: As Table II, but now for binary systems with a central IMBH of mass M = 500M⊙.

significantly improve Advanced LIGO’s ability to measure multipole moments, as these can be determined with the
number of gravitational–wave cycles observed. For instance, for a 1M⊙ +100M⊙ system at leading–order Newtonian
approximation, Advanced LIGO will be able to measure ∼ 500 cycles until plunge. In sharp contrast, ET will be able
to measure up to ∼ 25000 at a frequency of 1Hz [58]. Future work on this issue should be conducted to quantify the
actual ability of ET to carry out tests of the nature of IMBHs.
There is much science that could be done with ET detections of IMRIs. For instance, a detection of a light black

hole at high redshift would be important for constraining light–seed versus heavy–seed models for the formation of
structure in the Universe. Based on the results obtained in these papers, ET could detect a significant number of
IMRIs involving seed black holes, which will provide constrains on the mass and spin distributions of black hole seeds
along with their early accretion history. A more exciting prospect for GW astronomy will be the detection of IMBHs
in the centres of globular clusters. ET will test whether IMBHs form at all in these stellar environments. If they
do exist, and are not ejected from the host cluster by hardening and eventual recoil, then, according to numerical
simulations [49, 50], we may expect numerous lower–mass CO IMRIs into IMBHs, driven by the combination of
various mechanisms, i.e., binary exchange processes, gravitational radiation, secular evolution of hierarchical triple
systems, and three and four body interactions [10]. Among these various GW sources, stellar mass BH IMRIs into
IMBH will be some of the most promising sources of GWs detectable by ET [49]. Additionally, we may expect the
IMRI event rate for ET to be as high as a few hundred per year [10, 15].
Our results are a first attempt to explore the precision of IMRI parameter estimation that is achievable with the

Einstein Telescope. Our results have been derived using a particular waveform model, which reflects the best of what
is currently available, and combines results from both comparable mass binaries and extreme-mass-ratio inspirals.
These waveforms are unlikely to be accurate enough to be used in a search to recover source parameters, but they
should capture most of the main features of true IMRI waveforms and therefore provide a decent estimate of the level
of precision that could be achieved by GW measurements. The waveform models could be improved in various ways,
by including conservatives corrections, by generalizing the waveform models to consider both eccentric and inclined
orbits to the equatorial plane, and by including the leading order effects of the spin of the smaller object. The EOB
model can also now be extended to spinning systems, for circular-equatorial inspirals at least [29]. These will be
important improvements to consider in the future in order to confirm our present results, and extend the calculations
to eccentric and inclined binary systems.
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Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -3.57 -4.06 -3.86 -1.85 -0.59 -1.39 -1.27 -0.88 -0.77 -0.90

St. Dev. 0.268 0.153 0.282 0.147 0.320 0.166 0.243 0.593 0.614 0.455

q=0.9 L.Qt. -3.67 -4.13 -3.83 -1.91 -0.83 -1.52 -1.46 -1.31 -1.23 -1.27

Med. -3.54 -4.05 -3.77 -1.83 -0.73 -1.38 -1.29 -1.08 -0.94 -1.03

U. Qt. -3.42 -3.98 -3.74 -1.76 -0.40 -1.26 -1.12 -0.52 -0.41 -0.61

Mean -3.56 -4.24 -3.74 -1.94 -0.92 -1.39 -1.24 -0.94 -0.83 -0.95

St. Dev. 0.162 0.208 0.298 0.204 0.491 0.164 0.266 0.543 0.570 0.410

q=0.3 L.Qt. -3.73 -4.25 -3.86 -1.99 -1.22 -1.52 -1.44 -1.32 -1.24 -1.27

Med. -3.50 -4.20 -3.76 -1.93 -1.10 -1.38 -1.27 -1.13 -0.99 -1.08

U. Qt. -3.43 -4.13 -3.61 -1.78 -0.60 -1.26 -1.10 -0.64 -0.52 -0.72

Mean -3.60 -3.97 N/A -1.98 -0.96 -1.39 -1.27 -0.97 -0.85 -0.95

St. Dev. 0.189 0.194 N/A 0.241 0.401 0.167 0.257 0.533 0.542 0.396

q=0 L.Qt. -3.60 -3.97 N/A -2.20 -1.22 -1.51 -1.46 -1.34 -1.24 -1.26

Med. -3.58 -3.93 N/A -1.96 -1.13 -1.39 -1.29 -1.14 -0.99 -1.06

U. Qt. -3.53 -3.91 N/A -1.90 -0.75 -1.26 -1.13 -0.70 -0.52 -0.72

Mean -3.54 -3.90 N/A -1.97 -1.15 -1.36 -1.24 -0.97 -0.83 -0.86

St. Dev. 0.187 0.191 N/A 0.252 0.205 0.223 0.292 0.581 0.622 0.469

EOB L.Qt. -3.64 -3.99 N/A -2.10 -1.25 -1.52 -1.45 -1.35 -1.27 -1.22

Med. -3.56 -3.92 N/A -1.98 -1.18 -1.38 -1.29 -1.16 -0.99 -0.97

U. Qt. -3.51 -3.87 N/A -1.91 -1.10 -1.24 -1.08 -0.73 -0.55 -0.61

TABLE V: As Table III, but now for binary systems with a central IMBH of mass M = 500M⊙.
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Appendix A: Dependence of parameter estimation errors on network configuration

This Appendix contains Tables VII–IX. These Tables show how parameter determination depends on the network
configuration. We explore how parameter estimation accuracies are modified for five network configurations, C1–C5.
These configurations are, C1: one ET at the geographic location of Virgo; C2: as configuration C1 plus a right–angle
detector at the location of LIGO Livingston; C3: as configuration C1 plus another ET at the location of LIGO
Livingston; and C4: as configuration C2 plus another right–angle detector in Perth. We will denote the reference
3-ET network as configuration C5.

Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -4.01 -4.11 -3.73 -1.58 -0.52 0.40 0.49 0.78 0.87 0.86

St. Dev. 0.260 0.337 0.206 0.354 0.221 .764 0.748 0.481 0.522 0.373

C1 L. Qt. -4.20 -4.35 -3.76 -1.76 -0.70 -0.11 -0.08 0.50 0.61 0.71

Med. -4.04 -4.15 -3.68 -1.60 -0.53 0.51 0.62 0.84 0.91 0.94

U. Qt. -3.84 -3.93 -3.64 -1.45 -0.35 1.02 1.20 1.14 1.23 1.11

Mean -4.06 -4.18 -3.83 -1.75 -0.69 -1.19 -1.07 -0.72 -0.63 -0.68

St. Dev. 0.254 0.341 0.199 0.363 0.165 0.340 0.391 0.520 0.560 0.450

C2 L. Qt. -4.24 -4.39 -3.84 -1.87 -0.81 -1.42 -1.39 -1.14 -1.14 -1.08

Med. -4.10 -4.21 -3.72 -1.78 -0.72 -1.22 -1.12 -0.86 -0.74 -0.78

U. Qt. -3.91 -3.99 -3.66 -1.65 -0.59 -1.03 -0.81 -0.50 -0.30 -0.42

Mean -4.08 -4.20 -3.85 -1.78 -0.72 -1.36 -1.24 -0.97 -0.84 -0.92

St. Dev. 0.246 0.331 0.194 0.353 0.159 0.202 0.293 0.510 0.512 0.413

C3 L. Qt. -4.24 -4.42 -3.89 -1.89 -0.83 -1.53 -1.46 -1.36 -1.27 -1.28

Med. -4.11 -4.25 -3.73 -1.81 -0.75 -1.34 -1.26 -1.18 -0.89 -1.10

U. Qt. -3.92 -4.01 -3.69 -1.67 -0.61 -1.22 -1.10 -0.75 -0.57 -0.74

Mean -4.09 -4.23 -3.85 -1.78 -0.72 -1.39 -1.27 -0.98 -0.85 -0.94

St. Dev. 0.224 0.304 0.203 0.379 0.157 .180 0.275 0.501 0.509 0.411

C4 L. Qt. -4.24 -4.44 -3.89 -1.88 -0.83 -1.49 -1.48 -1.35 -1.31 -1.28

Med. -4.12 -4.24 -3.74 -1.77 -0.75 -1.37 -1.28 -1.14 -1.00 -1.09

U. Qt. -3.92 -4.02 -3.66 -1.67 -0.61 -1.27 -1.14 -0.75 -0.57 -0.71

Mean -4.09 -4.23 -3.87 -1.78 -0.73 -1.40 -1.29 -0.99 -0.86 -0.95

St. Dev. 0.233 0.308 0.198 0.375 0.167 0.179 0.265 0.500 0.543 0.459

C5 L.Qt. -4.26 -4.43 -3.91 -1.89 -0.83 -1.53 -1.47 -1.38 -1.30 -1.30

Med. -4.11 -4.24 -3.84 -1.77 -0.75 -1.38 -1.31 -1.21 -1.06 -1.14

U. Qt. -3.94 -4.04 -3.69 -1.68 -0.63 -1.27 -1.13 -0.75 -0.57 -0.73

TABLE VII: Summary of Monte Carlo results for parameter estimation errors. We show the mean, standard deviation, median
and quartiles of the distribution of the logarithm to base ten of the error in each parameter. Results are given for a m = 1.4M⊙

CO inspiralling into a M = 100M⊙ IMBH with spin parameter q = 0.3, and assuming four alternative configurations for the
detector network, C1–C4, as described above. Configuration C5 is the network of three ETs which has been used for all results
elsewhere in this paper.
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Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -2.67 -3.30 -2.63 -1.68 -0.63 -0.03 0.10 0.37 0.46 0.43

St. Dev. 0.388 0.399 0.252 0.380 0.242 0.630 0.653 0.545 0.554 0.487

C1 L. Qt. -2.75 -3.58 -2.71 -1.99 -0.79 -0.69 -0.63 0.03 0.13 0.11

Med. -2.60 -3.30 -2.63 -1.79 -0.61 -0.03 0.11 0.34 0.43 0.36

U. Qt. -2.50 -3.06 -2.58 -1.57 -0.47 0.67 0.82 0.73 0.78 0.72

Mean -2.77 -3.39 -2.66 -1.88 -0.82 -1.12 -0.99 -0.62 -0.54 -0.57

St. Dev. 0.380 0.383 0.272 0.374 0.241 0.432 0.471 0.530 0.540 0.470

C2 L. Qt. -2.90 -3.68 -2.74 -2.06 -0.95 -1.42 -1.34 -1.03 -0.97 -0.94

Med. -2.64 -3.43 -2.66 -1.89 -0.83 -1.19 -1.05 -0.77 -0.67 -0.65

U. Qt. -2.54 -3.14 -2.60 -1.69 -0.68 -0.97 -0.75 -0.30 -0.15 -0.18

Mean -2.83 -3.42 -2.68 -1.91 -0.87 -1.32 -1.18 -0.85 -0.74 -0.79

St. Dev. 0.375 0.372 0.314 0.372 0.224 0.270 0.353 0.512 0.510 0.453

C3 L. Qt. -2.98 -3.67 -2.75 -2.09 -0.98 -1.51 -1.43 -1.27 -1.18 -1.14

Med. -2.67 -3.45 -2.67 -1.90 -0.89 -1.32 -1.24 -1.05 -0.89 -0.91

U. Qt. -2.57 -3.17 -2.61 -1.72 -0.76 -1.20 -1.03 -0.56 -0.42 -0.50

Mean -2.82 -3.43 -2.68 -1.92 -0.89 -1.34 -1.20 -0.86 -0.75 -0.79

St. Dev. 0.370 0.370 0.310 0.370 0.221 0.261 0.337 0.510 0.500 0.451

C4 L. Qt. -2.94 -3.71 -2.77 -2.12 -0.98 -1.46 -1.41 -1.28 -1.20 -1.17

Med. -2.68 -3.47 -2.67 -1.91 -0.88 -1.35 -1.24 -1.06 -0.91 -0.92

U. Qt. -2.58 -3.17 -2.61 -1.73 -0.79 -1.26 -1.08 -0.57 -0.41 -0.52

Mean -2.85 -3.44 -2.69 -1.96 -0.90 -1.36 -1.22 -0.88 -0.76 -0.81

St. Dev. 0.362 0.364 0.346 0.386 0.208 0.221 0.304 0.536 0.511 0.458

C5 L.Qt. -2.97 -3.70 -2.77 -2.13 -1.00 -1.50 -1.44 -1.29 -1.21 -1.18

Med. -2.80 -3.46 -2.67 -1.94 -0.89 -1.36 -1.26 -1.08 -0.93 -0.94

U. Qt. -2.76 -3.20 -2.62 -1.85 -0.77 -1.25 -1.08 -0.57 -0.45 -0.49

TABLE VIII: As Table VII, but for binary systems with a CO of mass m = 10M⊙, and a central IMBH of mass M = 500M⊙.
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Statistics of distribution of log
10
(∆X) for error, ∆X, in parameter X =

Model ln(m) ln(M) q t0 φ0 θS φS θK φK ln(D)

Mean -3.45 -4.13 -3.67 -1.56 -0.33 -0.09 0.01 0.29 0.33 0.30

St. Dev. 0.184 0.140 0.241 0.286 0.494 0.755 0.753 0.397 0.463 0.404

C1 L. Qt. -3.46 -4.16 -3.81 -1.65 -0.65 -0.61 -0.50 0.04 0.06 0.05

Med. -3.39 -4.11 -3.69 -1.57 -0.17 0.02 0.09 0.29 0.35 0.31

U. Qt. -3.53 -4.09 -3.57 -1.42 0.05 0.46 0.61 0.55 0.64 0.59

Mean -3.52 -4.19 -3.71 -1.74 -0.80 -1.16 -1.03 -0.67 -0.59 -0.68

St. Dev. 0.183 0.204 0.251 0.280 0.498 0.389 0.429 0.391 0.460 0.427

C2 L. Qt. -3.63 -4.21 -3.85 -1.79 -1.17 -1.45 -1.39 -1.07 -1.02 -1.02

Med. -3.41 -4.15 -3.74 -1.70 -0.97 -1.22 -1.07 -0.77 -0.69 -0.76

U. Qt. -3.37 -4.11 -3.59 -1.59 -0.43 -0.99 -0.78 -0.35 -0.21 -0.38

Mean -3.55 -4.21 -3.73 -1.79 -0.90 -1.35 -1.21 -0.92 -0.80 -0.93

St. Dev. 0.181 0.201 0.243 0.276 0.477 0.210 0.313 0.381 0.450 0.401

C3 L. Qt. -3.70 -4.21 -3.87 -1.83 -1.20 -1.53 -1.48 -1.28 -1.19 -1.25

Med. -3.42 -4.15 -3.75 -1.75 -1.09 -1.35 -1.24 -1.09 -0.97 -1.05

U. Qt. -3.38 -4.11 -3.60 -1.65 -0.61 -1.22 -1.03 -0.62 -0.49 -0.70

Mean -3.54 -4.22 -3.73 -1.92 -0.91 -1.38 -1.23 -0.92 -0.81 -0.93

St. Dev. 0.175 0.200 0.235 0.271 0.472 0.191 0.296 0.376 0.420 0.405

C4 L. Qt. -3.68 -4.21 -3.86 -1.97 -1.23 -1.51 -1.46 -1.28 -1.23 -1.26

Med. -3.42 -4.15 -3.75 -1.91 -1.09 -1.37 -1.25 -1.07 -0.97 -1.03

U. Qt. -3.39 -4.12 -3.61 -1.76 -0.60 -1.27 -1.08 -0.64 -0.50 -0.70

Mean -3.56 -4.24 -3.74 -1.94 -0.92 -1.39 -1.24 -0.94 -0.83 -0.95

St. Dev. 0.162 0.208 0.298 0.204 0.491 0.164 0.266 0.543 0.570 0.410

C5 L.Qt. -3.73 -4.25 -3.86 -1.99 -1.22 -1.52 -1.44 -1.32 -1.24 -1.27

Med. -3.50 -4.20 -3.76 -1.93 -1.10 -1.38 -1.27 -1.13 -0.99 -1.08

U. Qt. -3.43 -4.13 -3.61 -1.78 -0.60 -1.26 -1.10 -0.64 -0.52 -0.72

TABLE IX: As Table VII, but for binary systems with a central IMBH of mass M = 500M⊙.


	I Introduction
	II Assumptions
	A Einstein Telescope Design
	B Sample IMRI systems

	III IMRI waveform modelling
	IV Signal analysis
	V Parameter estimation error results
	A Dependence of parameter estimation errors on system parameters
	B Dependence of parameter estimation errors on network configuration

	VI Conclusions
	 Acknowledgments
	 References
	A Dependence of parameter estimation errors on network configuration

