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Abstract

We introduce a new class of singular partial differential equations, referred to as the
second-order hyperbolic Fuchsian systems, and we investigate the associated initial value
problem when data are imposed on the singularity. First, we establish a general existence
theory of solutions with asymptotic behavior prescribed on the singularity, which relies on
a new approximation scheme, suitable also for numerical purposes. Second, this theory
is applied to the (vacuum) Einstein equations for Gowdy spacetimes, and allows us to
recover, by more direct arguments, well-posedness results established earlier by Rendall
and collaborators. Another main contribution in this paper is the proposed approximation
scheme, which we refer to as the Fuchsian numerical algorithm and is shown to provide
highly accurate numerical approximations to the singular initial value problem. For the
class of Gowdy spacetimes, the numerical experiments presented here show the interest
and efficiency of the proposed method and demonstrate the existence of a class of Gowdy
spacetimes containing a smooth, incomplete, and non-compact Cauchy horizon.
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1 Introduction

In general relativity and, more generally, in the theory of partial differential equations, singular
solutions play a central role in driving the development of the theory and interpretation of the
results – from the discovery of the Schwarzschild solution to the Penrose and Hawking’s celebrated
singularity theorems (cf. for instance [24]), as well as in the modern efforts to understand the
cosmic censorship and BKL (Belinsky-Khalatnikov-Lifshitz) conjectures [2, 40].

In fundamental and pioneer work, Choquet-Bruhat [10] established that the initial value
problem associated with Einstein’s field equations is well-posed (in suitable Sobolev spaces)
and, later together with Geroch [11], that for each choice of initial data consistent with the
constraints there exists a unique maximal globally hyperbolic development. This theory allows
to define a unique correspondence, between the space of solutions of the Einstein equations and
the space of initial data set on a given (spacelike) hypersurface. In principle, solutions could
be extended until a singularity forms and this theory provides the basis to tackle outstanding
questions about the long-time behavior of solutions, in both future and past directions. Consider
for instance the situation that singularities develop in the past of the given hypersurface, and let
us refer to the construction based on [10, 11] as the “backward approach”. In practice, however,
revealing information about singular solutions requires additional techniques of analysis going
much beyond [10, 11]. On one hand, there is no a-priori information whether a given choice of
initial data evolves into a “singularity” at all. On the other hand, if a singularity arises, it is not
a-priori clear at “which location” it will occur, nor what kind of “singular solution” it will be.
This approach requires a global-in-time control of solutions which is hopeless in many cases due
to the complexity of the nonlinear field equations, the freedom of choice of gauge etc. In fact,
the “backward approach” has so far led to successful conclusions only under strong symmetry
assumptions; cf. Ringström [40] (and the references therein).

The so-called Fuchsian method, which we refer to here as a “forward” approach, provides
an alternative to the above (backward) approach. It has the advantage of being simpler to deal
with in practice (both analytically and numerically) in the class of problems it does apply, but
has the disadvantage that it does not allow – for essential reasons – to handle the full solution
space and the conclusions are stated in terms of “generic data”. Nevertheless it allows to study
particular classes of singular solutions. The main idea is to give data “on the singularity”, that
is, to prescribe the leading-order behavior of solutions in a neighborhood of the singular time
and, then, to evolve forward in time away from the singularity – in contrast to prescribing data
on a Cauchy surface and evolving towards the singularity. (We will make this idea precise below.)
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Our main objective in the present paper is precisely to further study this singular initial value
problem (corresponding to the forward direction).

The Fuchsian method was introduced to general relativity by Kichenassamy and Rendall [28]
who covered a class of singular equations, the so-called “Fuchsian partial differential equations”,
while establishing that Einstein’s field equations under Gowdy symmetry are included in this
class. Under suitable analyticity conditions on the solutions they proved the well-posedness
of the singular initial value problem (without imposing any hyperbolicity condition). Later,
Rendall [36] took the hyperbolicity property into account and generalized the theory to the
smooth solutions to the Gowdy equations. For further results about Fuchsian equations we refer
to [29, 12, 13, 14]; especially, in [13], a generalization of the standard Fuchsian theory was recently
introduced.

Our motivation in this paper now is threefold. First, it is of general interest to find a
reliable numerical scheme for the singular initial value problem of hyperbolic Fuchsian equations,
which would allow us to construct solutions to Einstein’s field equations with prescribed singular
behavior. This was indeed the motivation of Amorim, Bernardi, and LeFloch in [1]. However, the
approximation scheme suggested by the theoretical works above is neither suitable nor natural
for the numerical treatment, and it is not easy to obtain error estimates which are necessary in
practice to judge the quality of the numerical solutions. In this paper, we address this drawback
by introducing a new approximation scheme.

Secondly, we want to perform these studies —both theoretically and numerically— as eco-
nomically as possible. Importantly, the Einstein equations for Gowdy spacetimes are naturally
expressed in a second-order form. This motivates us to develop here a theory of second-order
Fuchsian equations which is advantageous as it saves us from the hassle of turning the system
into a first-order form first, as required by the classical Fuchsian theory. In fact, there is no unique
way of turning a second-order system into a first-order form, and this issue can be particularly
problematic when the solutions are expected to be singular. It has also been recognized in the
numerical literature that the direct discretization in second-order form leads to more accurate
results [31].

Our third motivation for this paper is that the existing works make no statement about how
to guess the leading-order part. This is a delicate issue and we prove here that, for a large class
of systems and in way compatible with the (already mentioned) BKL conjecture, it is possible
to make a “canonical guess”, as we explain below.

These three main issues are addressed in the present paper, which is organized as follows.
Sections 2 and 3 are the main theoretical part. In Section 2.1, we introduce the class of

equations of interest in this work. We focus on a class of hyperbolic Fuchsian equations, the
second-order hyperbolic Fuchsian equations, which are systems of semi-linear wave equa-
tions including certain singular terms. This section includes a rigorous definition of the singular
initial value problem for this class of equations. Section 2.3 is devoted to determine the leading-
order behavior of solutions and hence to make a “canonical guess”. We study the case when
the principal part of the equation dominates over the source-term at t = 0 in a certain sense
and derive a canonical two-term expansion. The reasoning is based on suitable heuristics
compatible with the BKL conjecture. (Later in this paper we derive precise conditions under
which this heuristics is justified.)

The singular initial value problem is discussed rigorously in Section 3. We introduce our new
approximation scheme which, both, yields a simple and direct proof of existence of solutions to
the singular initial value problem, and a natural numerical algorithm (introduced in Section 3.4)
for which practical error estimates can be obtained. The main idea is to approximate the solution
of the singular initial value problem by a sequence of solutions to the standard (regular) initial
value problem.
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Finally, in Section 4, we turn our attention to the class of Gowdy spacetimes satisfying
Einstein’s field equations which is an application of particular interest, and we demonstrate the
practical use of our theory. First, we recapitulate the standard heuristic arguments for Gowdy
spacetimes and demonstrate that these are consistent with the heuristics introduced earlier (with
some important subtleties discussed below). In Section 4.3, the now classical results by Rendall
[36] are recovered while our new approach shed some new light on the Gowdy equations. In
Section 5 we present numerical solutions to the singular initial value problem associated with the
Gowdy equations. After some test cases, we numerically construct solutions with incomplete,
non-compact Cauchy horizons.

2 Second-order hyperbolic Fuchsian systems

2.1 A class of singular equations

Definition 2.1. A second-order hyperbolic Fuchsian system is a set of partial differential equa-
tions of the form

D2v + 2ADv +B v − t2K2∂2
xv = f [v], (2.1)

in which the function v : (0, δ]×U → Rn is the main unknown (defined for some δ > 0 and some
interval U), while the coefficients A = A(x), B = B(x), K = K(t, x) are diagonal n× n matrix-
valued maps and are smooth in x ∈ U and t in the half-open interval (0, δ], and f = f [v](t, x) is
an n-vector-valued map of the following form

f [v](t, x) := f
(
t, x, v(t, x), Dv(t, x), tK(t, x)∂xv(t, x)

)
.

We assume that the time variable t satisfies t > 0 and use the operator D := t∂t to write the
equations. The equation is henceforth assumed to be singular at t = 0. The assumption that U
is a one-dimensional domain makes the presentation simpler, but most results below remain valid
for arbitrary spatial dimensions. For definiteness and without much loss of generality, we assume
throughout this paper that all functions under consideration are periodic in the spatial variable x
and that U is the periodicity domain. All data and solutions are extended by periodicity outside
the interval U . Moreover, we assume that the coefficients A and B do not depend on t, see below.
We denote the eigenvalues of A and B by a(1), . . . , a(n) and b(1), . . . , b(n), respectively. When it
is not necessary to specify the superscripts, we just write a, b to denote any eigenvalues of A,B.
With this convention, we introduce:

λ1 := a+
√
a2 − b, λ2 := a−

√
a2 − b. (2.2)

It will turn out that these coefficients, which might be complex in general, are important to
describe the expected behavior at t = 0 of general solutions to (2.1). Further restrictions on
the coefficients and on the right-hand side will be imposed and discussed in the course of our
investigation.

After a suitable reduction to a first-order form, our choice of singular equations falls into
the class of hyperbolic Fuchsian equations [28, 36, 29, 13]. We make this particular choice of
equations here for the following reasons. First we restrict to hyperbolic equations because this
is the case of interest and allows us to control solutions in much greater detail than without this
assumption. Second, the equations are kept in second-order form here because it is economic
and efficient to do this for the applications we have in mind both analytically and numerically.
Third, the particular class of equations allows us to simplify the presentation of the general
results obtained in this paper. However, all results presented here can be generalized to a

4



general class of symmetric hyperbolic Fuchsian equations – compare to the discussion in Rendall
[36] – for arbitrary spatial dimensions. Even beyond this it is possible to generalize the theory to
equations with time-dependent coefficients A and B. Also the restriction to spatial periodicity
is not essential because these equations obey the domain of dependence property just as usual
non-singular hyperbolic equations under suitable assumptions on K, see below.

The eigenvalues of the matrix K are denoted by k(i) and, in the scalar case (or when there is
no need to specify the index), we simply write k. These quantities are interpreted as characteristic
speeds. Throughout this section, we assume that they have the form

k(i)(t, x) = tβ
(i)(x)ν(i)(t, x),

with β(i) : U → (−1,∞), ν(i) : [0, δ]× U → (0,∞) smooth functions.
(2.3)

In particular, we assume that each derivative of ν(i) has a unique finite limit at t = 0 for each
x ∈ U . Note that we allow for the characteristic speeds to diverge at t = 0. At a first glance,
this appears to conflict with the standard finite domain of dependence property of hyperbolic
equations. A closer look at the requirement β(x) > −1, however, indicates that the characteristic
curves are integrable at t = 0 and, hence that the finite domain of dependence property is
preserved under our assumptions.

The operator associated with the principal part1 of the system is

L := D2 + 2AD +B − t2K2∂2
x =: L̃− t2K2∂2

x. (2.4)

This is a linear wave operator for t > 0 and, indeed, (2.1) is hyperbolic for all t > 0. Later on we
will construct solutions where the first three terms L̃ of the principal part are of the same order
at t = 0 and “dominant”, while the source-term of the equation as well as the second spatial
derivative term are assumed to be of higher-order in t at t = 0 and hence “negligible”. Note that
at this level generality, there is some freedom in bringing terms from the principal part to the
right-hand side of the equation, and absorbing them into the source-function f (or vice-versa).
This freedom has several (interesting) consequences: roughly speaking, some normalization will
be necessary later, yet at this stage, we do not fix the behavior of f at t = 0.

2.2 Singular initial value problem

Consider any second-order hyperbolic Fuchsian system with coefficients a, b, λ1, λ2, satisfying
(2.2). To simplify the presentation, we restrict attention to scalar equations (n = 1) and shortly
comment on the general case in the course of the discussion.

Fix some integers l,m ≥ 0 and constants α, δ > 0. For w ∈ Cl((0, δ], Hm(U)), we define the
norm

‖w‖δ,α,l,m := sup
0<t≤δ

(
l∑

p=0

m∑
q=0

∫
U

t2(<λ2(x)−α)
∣∣∂qxDpw(t, x)

∣∣2 dx)1/2

,

and denote by Xδ,α,l,m the space of all such functions with finite norm ‖w‖δ,α,l,m <∞. Through-
out, Hm(U) denotes the standard Sobolev space and we recall that all functions are periodic
in the variable x with U being a periodicity domain. To cover a system of n ≥ 1 second-order
Fuchsian equations, the norm above is defined by summing over all vector components with
different exponents used for different components. Recall that each equation in the system will
have a different root function λ2. We allow that α = (α(1), . . . , α(n)) is a vector of different
positive constants for each equation. The constant δ, however, is assumed to be common for all

1Our motivation to include first-derivative terms into the principal part will be explained later.
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equations in the system. With this modification, all results in the present section remain valid
for systems of equations. We comment later that in fact, α is not required to be a constant, but
in most of the following results it will be treated like a constant for simplicity. The reason to
include the quantity λ2 into the definition of the norms is motivated by the canonical choice of
the leading-order term introduced later. Throughout it is assumed that <λ2 is continuous and
it is then easy to check that (Xδ,α,l,m, ‖ · ‖δ,α,l,m) is a Banach space.

For the discussion of hyperbolic equations, it makes sense to also introduce the following
Banach spaces. For each non-negative integer l and real numbers δ, α > 0, we define Xδ,α,l :=⋂l
p=0Xδ,α,p,l−p, and introduce the norm

‖f‖δ,α,l :=

(
l∑

p=0

‖f‖2δ,α,p,l−p

)1/2

, f ∈ Xδ,α,l.

As we will see in the course of the following, however, it is not possible to control solutions of
our equations in the spaces Xδ,α,l directly. It turns out that we must use spaces (X̃δ,α,l, ‖ · ‖∼δ,α,l)
instead. These are defined as earlier, but in the norm ‖f‖∼δ,α,l of some function f , the highest

spatial derivative term ∂lxf is weighted with the additional factor tβ+1. Here β is the exponent
of the characteristic speed given by (2.3). It is easy to see under the earlier conditions that
also (X̃δ,α,l, ‖ · ‖∼δ,α,l) are Banach spaces. We also note that Xδ,α,l ⊂ X̃δ,α,l. Let us also define

Xδ,α,∞ :=
⋂∞
l=0Xδ,α,l, and note that Xδ,α,∞ =

⋂∞
l=0 X̃δ,α,l.

For w ∈ X̃δ,α,l we set

wη(t, x) = t−λ2(x)

∫ ∞
−∞

∫ ∞
0

tλ2(y)w(s, y)kη

(
log

s

t

)
kη(x− y)

1

s
dsdy.

Here, kη : R → R+ is a smooth kernel supported in [−η, η], satisfying
∫
R kη(x)dx = 1 for all

positive η. Then wη is an element of X̃δ,α−ε,l ∩C∞((0, δ]×U) for every ε > 0. Furthermore, the
sequence of such mollified functions wη in the limit η → 0 converges to w in the norm ‖ · ‖∼δ,α−ε,l.
Hence any element in X̃δ,α,l can be approximated by smooth functions.

We mentioned earlier that we are interested in solving the “forward problem”, referred to as
the singular initial value problem (SIVP) – in this paper. More precisely, we need to guess
a leading-order term u of solutions v to (2.1) so that the remainder

w(t, x) := v(t, x)− u(t, x),

can be interpreted as “higher order” in t at t = 0. By this we mean that w is an element in
Xδ,α,l for some (sufficiently large) α > 0 on a small time interval (0, δ]. If for a given u such a
solution v exists then we say that v obeys the leading-order behavior given by u. Often u
will be parametrized by certain free functions which we call asymptotic data, see below. For
later convenience, we introduce the operator F as

F [w](t, x) := f [u+ w](t, x). (2.5)

2.3 Canonical leading-order term

The main first step for solving the singular initial value problem is to guess a leading-order
term u. In some applications this can be very tricky, but in many situations, which we will be
most interested in in this paper, one can make a canonical guess. These situations are described
heuristically as follows.
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Canonical two-term expansion

Consider the principal part operator L̃ in (2.4) and note that it incorporates certain lower
derivative terms. The reason for writing L̃ like this is that we expect in many cases that these
terms are significant and of leading-order at the singularity t = 0. In contrast, the source-
term and spatial derivatives can often be anticipated as negligible in some sense under suitable
assumptions below. This is motivated by the BKL conjecture in general relativity. In order to
make this more concrete, let us assume that the leading-order term is an exact solution of the
system of ordinary differential equations (parametrized by x), which is obtained when all terms
in the equation, except for those given by L̃, are set to zero. We refer to this leading-order term
u as the “canonical leading-order term” or the canonical two-term expansion:

u(t, x) =

{
u∗(x) t−a(x) log t+ u∗∗(x) t−a(x), (a(x))2 = b(x),

u∗(x) t−λ1(x) + u∗∗(x) t−λ2(x), (a(x))2 6= b(x),
(2.6)

for some freely prescribed asymptotic data u∗ and u∗∗ ∈ Hm′(U), where m′ is some non-
negative integer. We refer to this as the “Fuchsian heuristics” because the leading-order behavior
will be determined by Fuchsian ordinary differential equations.

We clearly see the dependence of the expected leading-order behavior at t = 0 on the coef-
ficients of the principal part of the equation. If the roots λ1 and λ2 are real and distinct, i.e. if
a2 > b, we expect a power-law behavior. In the degenerate case λ1 = λ2, i.e. if a2 = b, we expect
a logarithmic behavior. Finally, when λ1 and λ2 are complex for a2 < b, the solution is expected
to have an oscillatory behavior at t = 0 of the form

u(t, x) = t−a(x)
(
ũ∗ cos(λI(x) log t) + ũ∗∗ sin(λI(x) log t)

)
+ . . .

for some real coefficient functions ũ∗(x) and ũ∗∗(x); note that in this case, λ1 = λ̄2 = a + iλI
with λI :=

√
b2 − a.

If the coefficients of the equations are such that there is a continuous transition between
the two cases in (2.6), then the asymptotic data functions u∗ and u∗∗ must be renormalized as
follows. Define Γ(x) :=

√
a(x)2 − b(x) which might be real or imaginary dependent on the values

of the coefficients. If there are points x0 ∈ U so that Γ(x0) = 0 and other points x1 ∈ U with
Γ(x1) 6= 0, then let us set

u∗(x) =
û∗(x)− û∗∗(x)/Γ(x)

2
, u∗∗(x) =

û∗(x) + û∗∗(x)/Γ(x)

2
, (2.7)

and choose û∗(x), û∗∗(x) as asymptotic data functions. This guarantees that u(t, x) given by
(2.6) is smooth for all t > 0.

Higher-order canonical expansions

For some applications we require expansions of the solutions at t = 0 with more than two terms
in order to describe the leading-order behavior. A particular important example is the Gowdy
case in Section 4. Following Rendall [36], those can be constructed as follows, without going into
the details. Consider the Fuchsian ODE case of (2.1), written here for the scalar case only,

D2v(t, x) + 2a(x)Dv(t, x) + b(x)v(t, x) = f [v](t, x),

where x is interpreted as a parameter. Let first f [v](t, x) = f0(t, x) be a given function. Under
suitable decay assumption2 on f0 at t = 0, there exists a unique solution v of this equation

2Details can be found in [7, 8].
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obeying the canonical two-term expansion u given by (2.6) for given asymptotic data functions
u∗ and u∗∗. Let H be the operator mapping f0 to the remainder w = v − u of the solution v.
Now consider an arbitrary source-term f [v] and let the operator F be as defined in (2.5) for the
given function u. Let w1 ≡ 0 and

wj+1 := H ◦ F [wj ], j ∈ N.

Finally, set vj = u+wj for all j ∈ N. Clearly, v1 = u. One finds that the order of vj+1 − vj in t
at t = 0 increases with j. Hence vj can be interpreted as an expansion of the solution at t = 0
whose order in t increases with j. Moreover, it turns out that the order of the residual in t at
t = 0, obtained when vj is plugged into the equation, increases with j. Thus vj can be considered
as an asymptotic solution of the Fuchsian ODE. In many situations it is thus meaningful to use
vj as the canonical leading-order term u for any given j ∈ N.

Limitations of this heuristics

At this stage it is of course highly unclear under which conditions there exist solutions of the
equations which obey the leading-order term u given by (2.6) or any of its higher-order version
vj constructed before. The resolution of this problem will be central to this paper. In many
applications in general relativity, the canonical two-term expansion is the correct guess for the
leading-order term, if the asymptotic data are consistent with constraint equations implied by
Einstein’s field equations. However, we know of several cases when the operator L̃ does not give
rise to the dominant term at t = 0. For example for the Gowdy case, nonlinear terms from the
source-term need to be taken into account. As we discuss there, however, the problem can be
reduced to the canonical case by adding a certain term to the equation. For Gowdy solutions with
spikes [6, 37, 34, 3, 4, 35, 41, 38, 40] the situation is significantly more complicated because then,
other nonlinear terms and spatial derivative terms can become significant. Another important
example is given by the mixmaster dynamics [19, 2, 4, 25, 41, 40]. There, one has to control
a complicated interplay between nonlinear terms in the source-term in order to fix the leading-
order term. In general when the equations are generalized to time-dependent coefficients in the
principal part or to the quasi-linear case, the notion of canonical two-term expansions will apply
only under suitable conditions.

3 Well-posedness theory and the Fuchsian numerical algo-
rithm

3.1 An approximation scheme

We begin with some notation. For w ∈ X̃δ,α,1, the operator L in (2.4) is defined in the sense of
distributions, only, via:

〈L[w], φ〉

:=

∫ δ

0

∫
R
t<λ2(x)−α

(
−Dw(t, x)Dφ(t, x) + (2A(x)−<λ2(x) + α− 1)Dw(t, x)φ(t, x)

+B(x)w(t, x)φ(t, x) + tK(t, x)∂xw(t, x)tK(t, x)∂xφ(t, x)

+ (2t∂xK(t, x) + ∂x<λ2(x)K(t, x)t log t)tK(t, x)∂xw(t, x)φ(t, x)
)
dxdt,

where φ is any test function, i.e. a real-valued C∞-function on (0, δ] × R together with some
T ∈ (0, δ) and a compact (i.e. closed and bounded) set K ∈ R so that φ(t, x) = 0 for all t > T
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and x 6∈ K, and each derivative of φ has a finite (not necessarily vanishing) limit at t = 0 for
every x ∈ U . For our later discussion, we note that for any given test function φ, the linear
functional 〈L[·], φ〉 : X̃δ,α,1 → R is continuous with respect to the norm ‖ · ‖∼δ,α,1. This is the

main reason to include the factor t<λ2(x)−α in the definition of L.
If the operator F defined by (2.5) for a given leading-order term u gives rise to a map

X̃δ,α,1 → Xδ,α,0, where w 7→ F [w], it is meaningful to define its weak form by (for all test
functions φ)

〈F [w], φ〉 :=

∫ δ

0

∫
R
t<λ2(x)−αF [w](t, x)φ(t, x)dxdt.

Definition 3.1 (Weak solutions of second-order hyperbolic Fuchsian systems). Let u be a given
function and δ, α > 0 be constants. Then, one says that w ∈ X̃δ,α,1 is a weak solution to the
second-order hyperbolic Fuchsian equation (2.1), provided

P[w] := L[w] + L[u]−F [w] = 0.

Let us now start our discussion with the linear case of second-order hyperbolic Fuchsian
equations and introduce our new approximation scheme. The following conditions are assumed:

1. Vanishing leading-order part: u ≡ 0.

2. Linear source-term:

F [w](t, x) = f0(t, x) + f1(t, x)w + f2(t, x)Dw + f3(t, x)tk∂xw, (3.1)

with given functions f0, f1, f2, f3, so that f1, f2, f3 are smooth spatially periodic on
(0, δ]× U , and near t = 0

sup
x∈Ū

fa(t, x) = O(tµ), a = 1, 2, 3, (3.2)

for some constant µ > 0.

We have not made any assumptions for the function f0 yet, since in the following discussion this
function will play a different role than f1, f2, f3. Moreover, no loss of generality is implied by
the condition u ≡ 0, since the general case can be recovered by absorbing L[u] into the function
f0.

Under these assumptions, we pose the question whether there exists a unique weak solution
w in X̃δ,α,1 for some δ, α > 0 of the given second-order hyperbolic equation. The main idea here
is our new approximation scheme. We approximate a solution of the singular value problem by
a sequence of solutions of the regular initial value problem.

Definition 3.2 (Regular initial value problem (RIVP)). Fix t0 ∈ (0, δ] and some smooth periodic
functions g, h : U → R, and suppose that the right-hand side is of the form (3.1) with given smooth
spatially periodic functions f0, f1, f2, f3 on [t0, δ] × U . Then, w : [t0, δ] × U → R is called a
solution of the regular initial value problem associated with the “regular data” g, h, if (2.1)
holds everywhere on (t0, δ] × U and, moreover, the remainder w := v − u, for some function u,
satisfies

w(t0, x) = g(x), ∂tw(t0, x) = h(x).

For the regular initial value problem, we indeed assume that f0 is smooth, just as f1, f2 and
f3. By the general theory of linear hyperbolic equations, the regular initial value problem is
well-posed, in the sense that there exists a unique smooth solution w defined on [t0, δ] for any

9



choice of smooth regular data. Let u be a choice of leading-order term. Let (tn) be a sequence
of positive times converging to zero so that each tn is smaller than some δ > 0. For each n ∈ N ,
we construct an approximate solutions wn of the singular initial value problem as follows. Let
wn ≡ 0 on the time interval (0, tn]. On the time interval [tn, δ] we set wn to be the solution
of the regular initial value problem with initial time tn and zero regular data. Hence, wn is a
C1-function in time on (0, δ].

The central result of this section is that this sequence of approximate solutions converges to
the solution of the singular initial value problem under suitable conditions.

Proposition 3.3 (Existence of solutions of the linear singular initial value problem in X̃δ,α,1).
Under the assumptions (3.1) and (3.2), the sequence (wn) converges to the unique solution w ∈
X̃δ,α,1 of the singular initial value problem for given δ, α > 0 provided:

1. The matrix

N :=

 <(λ1 − λ2) + α ((=λ1)2/η − η)/2 0
((=λ1)2/η − η)/2 α t∂xk − ∂x<(λ1 − λ2)(tk log t)

0 t∂xk − ∂x<(λ1 − λ2)(tk log t) <(λ1 − λ2) + α− 1−Dk/k


(3.3)

is positive semidefinite at each (t, x) ∈ (0, δ)× U for a constant η > 0.

2. The source-term function f0 is in Xδ,α+ε,0 for some ε > 0.

Then, the solution operator H : Xδ,α+ε,0 → X̃δ,α,1, f0 7→ w, is continuous and there exists a
finite constant Cε > 0 so that

‖H[f0]‖∼δ,α,1 ≤ δεCε‖f0‖δ,α+ε,0,

for all such f0. The constant Cε can depend on δ, but is bounded for all small δ. The approximate
solutions satisfy the following error estimate for all n,m ∈ N:

‖wm − wn‖∼δ,α,1 ≤ C|G(τn)−G(τm)|,

where C > 0 is a constant and

G(t) :=

∫ t

0

s−1‖s<λ2−αf0(s, ·)‖L2(U)ds.

We call N the energy dissipation matrix. We have assumed that α is a positive constant.
If, however, α is a positive spatially periodic function in C1(U), the definition of the spaces
Xδ,α,k and X̃δ,α,k remains the same, and only the (2, 3)- and (3, 2)-components of the energy
dissipation matrix N change to t∂xk−∂x(<(λ1−λ2) +α)(tk log t). In the following, we continue
to assume that α is a constant in order to keep the presentation as simple as possible, but we
stress that all following results hold (with this slight change of N) if α is a function, and hence
no new difficulties arise.

The proof is based on controlling the energy of the approximate solutions. Let us restrict
our presentation here to the scalar case n = 1 for this whole section; the general case can be
obtained with the same ideas. Choose δ, α > 0 and let w ∈ C∞((0, δ]×U) be a spatially periodic
function. Then, we define its energy at the time t ∈ (0, δ] by

E[w](t) :=e−κt
γ

∫
U

t2(λ2(x)−α) e[w](t, x) dx,

e[w](t, x) :=
1

2

(
(η w(t, x))2 + (Dw(t, x))2 + (tk(t, x)∂xw(t, x))2

)
,

(3.4)
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for some constants κ ≥ 0, γ > 0 and η > 0. For convenience, we also introduce the following
notation. For any scalar-valued function w, we define the vector-valued function

ŵ(t, x) := t<λ2(x)−α(ηw(t, x), Dw(t, x), tk(t, x)∂xw(t, x)), (3.5)

involving the same constants as in the energy. Then, we can write

E[w](t) =
1

2
e−κt

γ‖ŵ(t, ·)‖2L2(U),

the norm here being the Euclidean L2-norm for vector-valued functions in x. It is important
to realize that, provided η > 0, the expression sup0<t≤δ ‖ŵ(t, ·)‖L2(U) for functions of the form
(3.5) yields a norm which is equivalent to ‖ · ‖∼δ,α,1, thanks to (2.3). Therefore, the energy (3.4)

is of relevance for the space X̃δ,α,1.
Of central importance for the proof of Proposition 3.3 are energy estimates for the regular

initial value problem.

Lemma 3.4 (Fundamental energy estimate for the regular initial value problem). Fix t0 ∈ (0, δ]
and suppose that the source-term is of the form (3.1) with the conditions (3.2) and that the energy
dissipation matrix (3.3) is positive semidefinite on (0, δ]×U for given constants α, η > 0. Then,
there exist constants C, κ, γ > 0, independent of t0, so that for all solutions w of the regular
initial value problem with smooth regular data at t = t0, we have

‖ŵ(t, ·)‖L2(U) ≤ C e
1
2κ(tγ−tγ0 )

(
‖ŵ(t0, ·)‖L2(U) +

∫ t

t0

s−1‖s<λ2−αf0(s, ·)‖L2(U)ds
)
,

for all t ∈ [t0, δ].

The proof of this lemma is standard. However, one has to confirm that the energy stays
uniformly finite at t = 0, and this is guaranteed by the positivity condition for N in (3.3).
Moreover, this results demonstrates the importance of the assumption β(x) > −1 in (2.3).
Namely, if β(x) ≤ −1 at a point x ∈ U , then for any choice of α and η, the matrix N would
not be positive semidefinite for small t at x. While the energy estimate would still be true for a
given t0, we would nevertheless lose uniformity of the constants in the estimates with respect to
t0. We stress that this uniformity is crucial in the proof of Proposition 3.3. All proofs and more
details can be found in [7].

3.2 Nonlinear theory

In turns out that the space X̃δ,α,1 is too large for our nonlinear theory. Namely, we will need
to require a Lipschitz property of the source-term for which this space rules out natural nonlin-
earities, for instance quadratic ones. Moreover, the statement that the solution of the Fuchsian
equation w is an element of X̃δ,α,1 yields only weak information about the behavior of the first
spatial derivative at t = 0, which is indeed not sufficient to interpret w and all its first derivatives
as the remainder of the solution. We resolve these problems by going to X̃δ,α,k for some k > 1.
The first issue above disappears for k = 2 in one spatial dimension. In some applications, the
spaces X̃δ,α,k still impose a too strong restriction due to the weak control of the highest spatial
derivative. In such a case we are required to formulate the theory in the space Xδ,α,∞.

The first step is to reconsider the linear case and derive a result analogous to Proposition 3.3
in the spaces X̃δ,α,k for arbitrary k by making suitable stronger assumptions on f0. With this at
hand, the central result of this section, which we write for k = 2 for definiteness, is the following.
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Proposition 3.5 (Existence of solutions of the nonlinear singular initial value problem in X̃δ,α,2).
Suppose that we can choose α > 0 so that the energy dissipation matrix (3.3) is positive semidef-
inite at each (t, x) ∈ (0, δ) × U for a constant η > 0. Suppose that u ≡ 0 and that the operator
F has the following Lipschitz continuity property: For a constant ε > 0 and all sufficiently small
δ, the operator F maps X̃δ,α,2 into Xδ,α+ε,1 and, moreover, for each r > 0 there exists Ĉ > 0
(independent of δ) so that

‖F [w]− F [w̃]‖δ,α+ε,1 ≤ Ĉ ‖w − w̃‖∼δ,α,2 (3.6)

for all w, w̃ ∈ Br(0) ⊂ X̃δ,α,2. Then, there exists a unique solution w ∈ X̃δ,α,2 of the singular
initial value problem.

Proof of Proposition 3.5: We define the operator G := H ◦F . Here H is the solution operator as
in Proposition 3.3 and F is the source-term operator as before. We find that under the hypothesis,
the operator G is a contraction on compact subsets of X̃δ,α,2 if δ is a sufficiently small. Hence the
iteration sequence defined by wj+1 = G[wj ] for j ≥ 1 and, say, w1 = 0 converges to a fixed point

w ∈ X̃δ,α,2 with respect to the norm ‖ · ‖∼δ,α,2. Because of the properties of H, a fixed point of G
is a solution of the SIVP. Hence, we have shown existence of solutions. Uniqueness can be shown
as follows. Given any other solution w̃ in X̃δ,α,2, it is a fixed point of the iteration wj+1 = G[wj ].
Because G is a contraction, there, however, only exists one fixed point, and hence w̃ = w.

For the analogous result of infinite differentiability, we only need to substitute the Lipschitz
continuity property in the previous result as follows. For a constant ε > 0, every sufficiently
small δ > 0 and every non-negative integer k, the operator F maps Xδ,α,k+1 into Xδ,α+ε,k and,

moreover, for each r > 0, there exists Ĉ > 0 (independent of δ) so that

‖F [w]− F [w̃]‖δ,α+ε,k ≤ Ĉ ‖w − w̃‖∼δ,α,k+1 (3.7)

for all w, w̃ ∈ Br(0) ∩ Xδ,α,k+1 ⊂ X̃δ,α,k+1. Then, there exists a unique solution w ∈ Xδ,α,∞
of the singular initial value problem. In order to prove this result, we first proceed as in the
previous proposition for finitely many derivatives. The only remaining task is to show that for
k → ∞, we are allowed to choose some non-vanishing δ. This can be done with a standard
argument for hyperbolic equations. The set Br(0) is defined with respect to the norm ‖·‖∼δ,α,k+1.

We note that the constant Ĉ is allowed to depend on k and is not required to be bounded for
k → ∞. Note that the Lipschitz estimate involves the norm ‖ · ‖∼δ,α,k+1, while the elements for
which this estimates needs to be satisfied are required to be only in the subspace Xδ,α,k+1 of

X̃δ,α,k+1. The main advantage of the C∞ result over the finite differentiability case is that we

only need to check that F maps Xδ,α,k+1 into Xδ,α+ε,k, instead of X̃δ,α,k+1 into Xδ,α+ε,k.

3.3 Standard singular initial value problem

The following discussion is devoted to the case when the function u is given by the canonical
two-term expansion (2.6). In this case, we speak of the standard singular initial value
problem.

Theorem 3.6 (Well-posedness of the standard singular initial value problem in X̃δ,α,2). Given
arbitrary asymptotic data u∗, u∗∗ ∈ H3(U), the standard singular initial value problem admits
a unique solution w ∈ X̃δ,α,2 for α, δ > 0, provided δ is sufficiently small and the following
conditions hold:
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1. Positivity condition. Suppose that we can choose α > 0 so that the energy dissipation
matrix (3.3) is positive semidefinite at each (t, x) ∈ (0, δ)× U for a constant η > 0.

2. Lipschitz continuity property. For the given α > 0, the operator F satisfies the Lipschitz
continuity property stated in Proposition 3.5 for all asymptotic data u∗, u∗∗ ∈ H3(U) for
some ε > 0.

3. Integrability condition. The constants α and ε satisfy

α+ ε < 2(β(x) + 1)−<(λ1(x)− λ2(x)), x ∈ U. (3.8)

We note that the regularity assumptions on the asymptotic data can certainly be improved.
An analogous theorem can be formulated for the C∞-case.

Proof. We can apply Proposition 3.5 if we are able to control the additional contribution of the
term L[u] which has to be considered as part of the source-term. It has no contribution to the
Lipschitz estimate (3.6), but we have to guarantee that under these hypotheses, L[u] ∈ Xδ,α+ε,1

for the given constant ε. This is indeed the case if (3.8) holds.

Example 3.7. Consider the second-order hyperbolic Fuchsian equation

D2v − λDv − t2∂2
xv = 0,

with a constant λ. This is the Euler-Poisson-Darboux equation. In the standard notation it is

∂2
t v − ∂2

xv =
1

t
(λ− 1)∂tv.

Note that λ = 1 is the standard wave equation, and in this case, the standard singular initial
value problem reduces to the standard Cauchy problem.

1. Case λ ≥ 0. With our notation, we have λ1 = 0, λ2 = −λ, β ≡ 0, ν ≡ 1 and f ≡ 0. Thus
the leading-order term for the standard singular initial value problem is

u(t, x) =

{
u∗(x) + u∗∗(x)tλ λ > 0,

u∗(x) log t+ u∗∗(x) λ = 0.

The positivity condition of the energy dissipation matrix (3.3) is satisfied precisely for
α ≥ 1 − λ and all sufficiently small η > 0. The integrability condition (3.8) is satisfied
precisely for λ < 2 − α. Hence, our previous proposition implies that the singular initial
value problem is well-posed, provided

0 ≤ λ < 2. (3.9)

Namely, in this case there exists a solution w in X̃δ,α,2 for some α > 0 for arbitrary
asymptotic data in H3(U).

2. Case λ < 0. With our notation, we have λ1 = |λ|, λ2 = 0, β ≡ 0, ν ≡ 1 and f ≡ 0. The
positivity condition of the energy dissipation matrix (3.3) is satisfied precisely for α ≥ 1−|λ|
and all sufficiently small η > 0. The integrability condition (3.8) is satisfied precisely for
|λ| < 2−α. Hence, our previous proposition implies that the singular initial value problem
is well-posed, provided

−2 < λ < 0.

Namely, in this case there exists a solution w in X̃δ,α,2 for some α > 0 for arbitrary
asymptotic data in H3(U).
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It turns out that general smooth solutions to the Euler-Poisson-Darboux equation can be
expressed explicitly by a Fourier ansatz in x and by Bessel functions in t. It is then easy to check
that (3.9) (and similarly for λ < 0) is sharp: While for 0 ≤ λ < 2, all solutions of the equation
behave consistently with the two-term expansion at t = 0, this is not the case for λ ≥ 2 for
general asymptotic data. Hence the standard singular initial value problem is not well-posed for
λ ≥ 2. This is completely consistent with our heuristic discussion in Section 2.3 underlying the
canonical guess for the leading-order term. If e.g. λ = 2, the assumption that the source-term
t2∂2

xv is negligible at t = 0 fails since it is of the same order in t at t = 0 as the second leading-
order term. However, we can see in the proof of Theorem 3.6 that in the special case u∗ = 0
(and arbitrary u∗∗), the integrability condition (3.8) can be relaxed. For this special choice of
data, solutions to the singular initial value problem exist even for λ ≥ 2.

It turns out that, often in applications, the three conditions in Theorem 3.6 cannot be satisfied
simultaneously. While it is often possible to find constants α and ε in accordance with the second
and third condition, it can turn out that the corresponding choice of α is too small to make the
energy dissipation matrix positive semidefinite. In order to circumvent this problem, the trick
is to choose canonical expansions of higher order vj , see Section 2.3, as the leading-order term
u for sufficiently large j. We refer to the singular initial value problem based on this choice of
leading-order term as singular initial value problem of order j. For j = 1, it reduces to the
standard singular initial value problem; hence we will focus on the case j ≥ 2 in the following.
Note that, if w is a solution of the singular initial value problem of order j, it is also a solution
of the standard singular initial value problem. However, if there is only one solution w of the
singular initial value problem of order j for given asymptotic data, it does not necessarily mean
that w is the only solution of the standard initial value problem for the same asymptotic data.

For the statement of the following theorem, we need the following notation. For all w ∈ Xδ,α,k

(or w ∈ X̃δ,α,k respectively), we introduce the functions Eδ,α,k[w] : (0, δ] → R (or Ẽδ,α,k[w] :
(0, δ] → R respectively) which are defined in the same way as the respective norms, but the
supremum in t has not been evaluated yet. In particular, this means that Eδ,α,k[w] (or Ẽδ,α,k[w])
is a bounded continuous function on (0, δ].

Theorem 3.8 (Well-posedness of the singular initial value problem of order j in X̃δ,α,2). Given
any integer j ≥ 2 and any asymptotic data u∗, u∗∗ ∈ Hm1(U) with m1 = 2j + 1, there exists
a unique solution w ∈ X̃δ,α,2 of the singular initial value problem of order j for some α > 0,
provided

1. F maps X̃δ,α̃,m1 into Xδ,α̃+ε,m1−1 for all asymptotic data u∗, u∗∗ ∈ Hm1(U) for some ε > 0
and α̃ given by α := α̃+ (j − 2)κε. for an arbitrary κ < 1.

2. The characteristic speed satisfies

2(β(x) + 1) > κε for all x ∈ U

for the same constant κ chosen earlier.

3. F satisfies the following Lipschitz condition: for each r > 0 there exists a constant C > 0
(independent of δ) so that

Eδ,α̃+ε,1[F [w]− F [w̃]](t) ≤ CẼδ,α̃,2[w − w̃](t)

for all t ∈ (0, δ] and for all w, w̃ ∈ Br(0) ⊂ X̃δ,α̃,2.

4. The energy dissipation matrix (3.3) (evaluated with α) is positive semidefinite at each
(t, x) ∈ (0, δ)× U for a constant η > 0.
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The third condition above is meaningful since both sides of the inequality are continuous and
bounded functions on (0, δ]. Note that this theorem can be formulated without difficulty for the
C∞-case and indeed leads to a simpler statement.

In effect we have obtained a value of α which increases with j and henceforth improves the
positivity of the energy dissipation matrix. The main prize to pay here is that the asymptotic
data must be sufficiently regular and that we must live with a loss of regularity in space.

3.4 The Fuchsian numerical algorithm

We proceed with the numerical implementation of our approximation scheme. For linear source-
terms we have shown that the solution of the singular initial value problem can be approximated
by solutions to the regular initial value problem. We have established an explicit error estimate
for these approximate solutions. For the nonlinear case, an additional fixed point argument was
necessary for the proof, but the Lipschitz continuity condition should allow us to extend the
error estimates to nonlinear source-terms.

The regular initial value problem for second-order hyperbolic equations corresponds to the
standard initial value problem of a system of (nonlinear) wave equations with initial time t0 > 0,
and there exists a huge amount of numerical techniques for computing solutions [30, 33] However,
a second-order Fuchsian equation written out with the standard time-derivative ∂t (instead of
D) clearly involves factors 1/t or 1/t2. Although these are finite for the regular initial value
problem, they still can cause severe numerical problems when the initial time t0 approaches
zero, due to the finite representation of numbers in a computer. In order to solve this problem,
we introduce a new time coordinate τ := log t, and observe that D = ∂τ . For instance, the
Euler-Poisson-Darboux equation becomes

∂2
τv − λ∂τv − e2τ∂2

xv = 0,

where v is the unknown and λ is a constant. We have achieved that there is no singular term in
this equation; the main price to pay, however, is that the singularity t = 0 has been “shifted to”
τ = −∞. Another disadvantage is that the characteristic speed of this equation (defined with
respect to the τ -coordinate) is eτ and hence increases exponentially with time. For any explicit
discretization scheme, we can thus expect that the CFL-condition3 is always violated from some
time on. We must either adapt the time step to the increasing characteristic speeds in τ , or,
when we decide to work with a fixed time resolution, accept the fact that the numerical solution
will eventually become instable. However, this is not expected to be a severe problem since
one can compute the numerical solution with respect to the τ -variable until some finite positive
time when the numerical solution is still stable and then, if necessary, switch to a discretization
scheme based on the original t-variable. For all the numerical solutions presented in this paper,
however, this was not necessary.

We can simplify the following discussion slightly by writing (and implementing numerically)
the equation not for the function v but for the remainder w = v − u. Henceforth we assume
that u is the canonical two-term expansion determined by given asymptotic data. We have to
solve the equation for w on a time interval [τ0, δ] for some τ0 ∈ R successively going to −∞ with
regular data

w(τ0, x) = 0, ∂τw(τ0, x) = 0, x ∈ U.
Inspired by Kreiss et al. in [31] and by the general idea of the “method of lines”, see [30], we

proceed as follows to discretize the equation. First we consider second-order Fuchsian ordinary

3The Courant-Friedrichs-Lewy (CFL) condition for the discretization of hyperbolic equations with explicit
schemes is discussed, for instance, in [30].
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differential equations (written for a scalar equation now for simplicity)

∂2
τw + 2a ∂τw + bw = f(τ),

where f is a given function and the coefficients a and b are constants. We discretize the time
variable τ so that τn := τ0 + n∆τ , wn := w(τn) and fn := f(τn) for some time step ∆τ > 0 and
n ∈ N. Then the equation is discretized in second-order accuracy as

wn+1 − 2wn + wn−1

(∆τ)2
+ 2a

wn+1 − wn−1

2∆τ
+ bwn = fn. (3.10)

Solving this for wn+1 allows to compute the solution w at the time τn+1 from the solution at the
given and previous time τn and τn−1, respectively. At the initial two time steps τ0 and τ1, we
set, consistently with the initial data for w at τ0 above,

w0 = 0, w1 =
1

2
(∆τ)2f(τ0). (3.11)

We will refer to this scheme as the Fuchsian ODE solver.
The idea of the method of lines for Fuchsian partial differential equations is to discretize also

the spatial domain with the spatial grid spacing ∆x and to use our Fuchsian ODE solver to
integrate one step forward in time at each spatial grid point. The source-term function f , which
might now depend on the unknown itself and its first derivatives, is then computed from the data
on the current or the previous time levels. Here we understand that spatial derivatives are part
of the source-term and are discretized by means of the standard second-order centered stencil
using periodic boundary conditions. A problem is that f , besides spatial derivatives, can also
involve time derivatives of the unknown w (in fact this can also be the case for Fuchsian ordinary
differential equations when the source term depends on the time derivative of the unknown). In
order to compute those time derivatives in second-order accuracy without changing the stencil
of the Fuchsian ODE solver, we made the following choice. In the code we store the numerical
solution not only on two time levels, as it is necessary up to now for the scheme given by (3.10)
and (3.11), but on a further third past time level. The time derivatives in the source-term can
then be computed in second-order accuracy from data exclusively at the present and previous
time steps as follows

∂τw(τn) =
3wn − 4wn−1 + wn−2

2∆τ
+O((∆τ)2).

For this, we need to initialize three time levels at τ = τ0 and hence we set w2 = 2(∆τ)2f(τ0), in
addition to (3.11).

3.5 An example: the Euler-Poisson-Darboux equation

We present numerical test results for the Euler-Poisson-Darboux equation now. Recall from
Example 3.7 that the singular initial value problem with two-term asymptotic data for this
equation is well-posed in particular for 0 ≤ λ < 2, and in general becomes ill-posed for λ ≥ 2.
The singular initial value problem for λ > 0 considers solutions of the form

v(t, x) = u∗(x) + u∗∗(x)tλ + w(t, x),

with remainder w. For the purposes of this test, we choose the asymptotic data u∗ = cosx,
u∗∗ = 0. Note that in this case, this leading-order behavior is consistent even with the case
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λ = 0. But according to our previous discussion, it is not consistent with λ = 2, and we expect
that this becomes visible in the numerical solutions. For u∗∗ = 0 and 0 < λ < 2, we can show
that the leading-order behavior of the remainder at t = 0 is

w(t, x) = u∗(x)

(
− 1

2(2− λ)
t2 +

1

8(2− λ)(4− λ)
t4 + . . .

)
. (3.12)
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(d) λ = 1.99.

Figure 1: Numerical solutions Euler-Poisson-Darboux equation (as explained in the text).

First we confirm that the numerical solutions converge in second-order when ∆τ and ∆x
are changed proportionally to each other for a given fixed choice of initial time τ0 > 0. In the
following, we choose the resolution so that discretization errors are negligible relative to other
errors. In Figure 1 now, we show the following results obtained with N = 20, ∆τ = 0.003.
Here, N is the number of spatial grid points, i.e. one has ∆x = 2π/N . The CFL-parameter
is ∆t/∆x ≈ 0.01, and we find that the runs are stable for all τ < 5. For each of the plots of
Figure 1, we fix a value of λ and study the convergence of the approximate solutions to the
(leading-order of the) exact solution (3.12) for various values of the initial time τ0. We plot the
value at one spatial point x = 0 only. The convergence rate for τ0 → −∞ is fast if λ = 1 or
λ = 0.01, but becomes lower, the more λ approaches the value 2, where it becomes zero. This is in
exact agreement with our expectations and consistent with the error estimates in Proposition 3.3.
Hence the numerical results are very promising and confirm the analytic expectations.
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Let us comment on numerical round-off errors. All numerical runs in this paper were done
with double-precision (binary64 of IEEE 754-2008), where the real numbers are accurate for 16
decimal digits. However, for the case τ0 = −20 for instance, the second spatial derivative of
the unknown in the equation is multiplied by exp(−40) ≈ 10−18 at the initial time which is not
resolved numerically and hence could possibly lead to a significant error. This, however, does
not seem to be the case since we obtained virtually the same numerical solution with quadruple
precision (binary128 of IEEE 754-2008), i.e. when the numbers in the computer are represented
with 34 significant decimal digits.

4 Application to Gowdy spacetimes

4.1 Background material

Let us provide some background material on Gowdy spacetimes [23, 15]. Introduce coordinates
(t, x, y, z) such that (x, y, z) describe spatial sections diffeomorphic to T 3 while t is a timelike
variable. We can arrange that the Killing fields associated with the Gowdy symmetry coincide
with the coordinate vector fields ∂y, ∂z in a global manner so that the spacetime metric reads

g =
1√
t
eΛ/2(−dt2 + dx2) + t (eP (dy +Qdz)2 + e−P dz), t > 0.

Hence, the metric depends on three coefficients P = P (t, x), Q = Q(t, x), and Λ = Λ(t, x). We
also assume spatial periodicity with periodicity domain U := [0, 2π).

In the chosen gauge, the Einstein’s vacuum equations imply the following second-order wave
equations for P,Q,

Ptt +
Pt
t
− Pxx = e2P (Q2

t −Q2
x),

Qtt +
Qt
t
−Qxx = −2(PtQt − PxQx),

(4.1)

which are decoupled from the wave equation satisfied by the third coefficient Λ:

Λtt − Λxx = P 2
x − P 2

t + e2P (Q2
x −Q2

t ). (4.2)

Moreover, the Einstein equations also imply constraint equations, which read

Λx = 2t
(
PxPt + e2PQxQt

)
, (4.3a)

Λt = t
(
P 2
x + te2PQ2

x + P 2
t + e2PQ2

t

)
. (4.3b)

It turns out that (4.2) can sometimes be ignored in the following sense. Given a time t0 > 0,
we can prescribe initial data (P,Q)|t0 for the system (4.1) while assuming the condition∫ 2π

0

(PxPt + e2PQxQt) dx = 0 at t = t0.

Then, the first constraint (4.3a) determines the function Λ at the initial time, up to a constant
which we henceforth fix. Next, one easily checks that the solution (P,Q) of (4.1) corresponding
to these initial data does satisfy the compatibility condition associated with (4.3) and, hence,
(4.3) determines Λ uniquely for all times of the evolution. Moreover, one checks that (4.2) is
satisfied identically by the constructed solution (P,Q,Λ). One can also consider the alternative
viewpoint which follows from the natural 3+1-splitting and treats the three equations (4.1)-(4.2)
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as an evolution system for the unknowns (P,Q,Λ), and (4.3) as constraints that propagate if
they hold on an initial hypersurface. In any case, equations (4.1) represent the essential set
of Einstein’s field equations for Gowdy spacetimes. We refer to (4.1) as the Gowdy equations
and focus our attention on them in most of what follows. An alternative, more geometrical
formulation of Einstein’s field equation for Gowdy symmetry has been introduced in [3].

4.2 Heuristics about singular solutions of the Gowdy equations

We provide here a formal discussion which motivates the (rigorous) analysis in subsequent sec-
tions. Based on extensive numerical experiments [6, 5, 3], it was first conjectured (and later
established rigorously [39, 40]) that as one approaches the singularity the spatial derivative of
solutions (P,Q) to (4.1) becomes negligible and (P,Q) should approach a solution of the ordinary
differential equations

Ptt +
Pt
t

= e2PQ2
t , Qtt +

Qt
t

= −2PtQt. (4.4)

These equations are referred to, in the literature4, as the velocity term dominated (VTD) equa-
tions. Interestingly enough, they admit solutions given explicitly by

P (t, x) = log
(
α tk(1 + ζ2t−2k)

)
, Q(t, x) = ξ − ζ t−2k

α (1 + ζ2t−2k)
, (4.5)

where x plays simply the role of a parameter and α > 0, ζ, ξ, k are arbitrary 2π-periodic functions
of x.

Based on (4.5), it is a simple matter to determine the first terms in the expansion of the
function P near t = 0, that is

lim
t→0

P (t, x)

log t
= lim
t→0

t Pt(t, x) = −|k|,

hence

lim
t→0

(
P (t, x) + |k(x)| log t

)
= ϕ(x), ϕ :=


logα, k < 0,

log(α(1 + ζ2)), k = 0,

log(αζ2), k > 0.

Similarly, for the function Q we obtain if ζ 6= 0,

lim
t→0

Q(t, x) = q(x), q :=


ξ, k < 0,

ξ − ζ

α(1 + ζ2)
, k = 0,

ξ − 1

αζ
, k > 0,

lim
t→0

t−2|k| (Q(t, x)− q(x)
)

= ψ(x), ψ :=


− ζ
α
, k < 0,

0, k = 0,
1

αζ3
, k > 0.

If ζ = 0, then Q ≡ ζ.

4To our knowledge, this terminology has been introduced in [20] and, in the context of Gowdy spacetimes, was
first used in [27].
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From (4.5), we thus have the expansion

P = −|k| log t+ ϕ+ o(1), Q = q + t2|k|ψ + o(t2|k|), (4.6)

in which k, ϕ, q, ψ are functions of x. In general, P blows-up to +∞ when one approaches
the singularity, while Q remains bounded. Observe that the sign of k is irrelevant as far the
asymptotic expansion is concerned, and we are allowed to restrict attention to k ≥ 0.

By plugging the explicit solution into the nonlinear terms arising in (4.4) one sees that e2P Q2
t

is of order t2(|k|−1) which is negligible since the left-hand side of the P -equation is of order t−2,
at least when k 6= 0. On the other hand, the nonlinear term PtQt is of order t2(|k|−1), which is
the same order as the left-hand side of the Q-equation. It is not negligible, but we observe that
PtQt has the same behavior as −(|k|/t)Qt.

In fact, observe that the homogeneous system deduced from (4.4):

Ptt +
Pt
t

= 0, Qtt +
1− 2k

t
Qt = 0, (4.7)

is solved precisely by the leading-order terms in (4.6). This tells us that, as t → 0, the term
e2PQ2

t is negligible in the first equation in (4.4), while PtQt+(|k|/t)Qt is negligible at t = 0. This
discussion hence allows us to conclude that as far as the behavior at the coordinate singularity
t = 0 is concerned, the nonlinear VTD equations (4.4) are well approximated by the system
(4.7).

We return now to the nonlinear terms which were not included in the VTD equations, but
yet are present in the full model (4.1). Allowing ourselves to differentiate the expansion (4.6),
we get the following leading-order terms at t = 0:

e2P Q2
x =


t−2|k|e2ϕ q2

x + . . . , qx 6= 0,

2e2ϕ|k|xψ log t+ . . . , qx = 0, |k|x 6= 0,

e2ϕψ2
x + . . . , qx = 0, |k|x = 0, ψx 6= 0,

PxQx =


− log t |k|x qx + . . . , |k|x, qx 6= 0,

ϕx qx + . . . , |k|x = 0, ϕx, qx 6= 0,

−2 log2 t t2|k| (|k|x)2ψ + . . . , |k|x 6= 0, qx = 0

t2|k|ϕx ψx + . . . , |k|x = qx = 0, ϕx, ψx 6= 0.

To check (formally) the validity of the expansion (4.6) we now return to the full system.
Consider the nonlinear term e2P Q2

x in (4.1), and observe the following:

• Case qx 6= 0 everywhere on an open subinterval of [0, 2π]. Then, on the one hand, the
left-hand side of the first equation in (4.1) is of order t−2, at most. On the other hand, the
term e2P Q2

x is negligible with respect to t−2 if and only if |k| < 1 and is of the same order
if |k| = 1.

• Case qx = 0 on an open subinterval of [0, 2π]. Then, e2P Q2
x is negligible with respect to

t−2, and no condition on the velocity k is required on that interval.

• Case qx(x0) = 0 at some isolated point x0. Then, no definite conclusion can be obtained
and a “competition” between |k| (which may approach the interval [0, 1]) and qx (which
approaches zero) is expected.
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Similarly, at least when |k|x qx 6= 0, the nonlinear term PxQx is of order log t and, therefore,
negligible with respect to t2(|k|−1) (given by the left-hand side of the second equation in (4.1)) if
and only if |k| ≤ 1. Points where |k|x or qx vanish lead to a less singular behavior and condition
on the velocity can also be relaxed.

The formal derivation above strongly suggests that we seek solutions to the full nonlinear
equations admitting an asymptotic expansion of the form (4.6), that is

P = −k log t+ ϕ+ o(1), Q = q + t2k (ψ + o(1)),

where k ≥ 0 and ϕ, q, ψ are prescribed. In other words, these solutions asymptotically approach
a solution of the VTD equations and, in consequence, such solutions will be referred to as
asymptotically velocity term dominated (AVTD) solutions [27].

Based on this analysis and extensive numerical experiments, it has been conjectured that
asymptotically as one approaches the coordinate singularity t = 0 the function P (t, x)/ log t
should approach some limit k = k(x), referred to as the asymptotic velocity, and that k(x)
should belong to [0, 1) with the exception of a zero measure set of “exceptional values”. The
reason for this name of k is the following. Based on the work by Geroch [21, 22], it was noted
by Moncrief [32] that the evolution equations (4.1) for P and Q can be considered as wave map
equations with the hyperbolic space as the target space. If a solution of these equations has an
expansion of the form (4.6) at t = 0, then the velocity of the image points of this map, which
must be defined with the correct convention of the sign and must be measured with respect to
the hyperbolic metric, approaches k as t→ 0.

It was demonstrated in [3] that solutions of the Gowdy equations which are compatible with
(4.6) approach certain Kasner solutions at t = 0, with possibly different parameters along each
timeline to the singularity.

4.3 Gowdy equations as a second-order hyperbolic Fuchsian system

The first step in our (rigorous) analysis of the Gowdy equations (4.1) now is to write them as a
system of second-order hyperbolic Fuchsian equations. After multiplication by t2, the equations
(4.1) immediately take the second-order hyperbolic Fuchsian form

D2P = t2∂2
xP + e2P (DQ)2 − t2e2P (∂xQ)2,

D2Q = t2∂2
xQ− 2DPDQ+ 2t2∂xP∂xQ.

The general canonical two-term expansion then reads

P (t, x) = P∗(x) log t+ P∗∗(x) + . . .

for the function P and, similarly, an expansion Q∗(x) log t+Q∗∗(x) + . . . for the function Q with
prescribed data Q∗, Q∗∗. At this stage, we do not make precise statements about the (higher-
order) remainders, yet. In any case, the Fuchsian theory does not apply to this system due to
the presence of the term −2DPDQ (with the exception of the cases P∗ = 0 or Q∗ = 0). Namely,
this term does not behave as a positive power of t at t = 0 when we substitute P and Q by their
canonical two-term expansions, but this is required by the theory. The reason for this problem
is the significance of the nonlinear term in the source-term as found in Section 4.2, cf. (4.7).

We propose to add the term −2kDQ to the equation for Q where k is a prescribed (smooth,
spatially periodic) function depending on x, only. The function k will play the role of the
asymptotic velocity mentioned before. This yields the system of equations

D2P = t2∂2
xP + e2P (DQ)2 − t2e2P (∂xQ)2,

D2Q− 2kDQ = t2∂2
xQ− 2(k +DP )DQ+ 2t2∂xP∂xQ.

(4.8)
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The resulting system is of second-order hyperbolic Fuchsian form with two equations, corre-
sponding to

λ
(1)
1 = λ

(1)
2 = 0, λ

(2)
1 = 0, λ

(2)
2 = −2k.

Here, the superscript determines the respective equation of the system (4.8). If we assume that
k is a strictly positive function, as we will do in all of what follows, the expected leading-order
behavior at t = 0 given by the canonical two-term expansions is

P (t, x) = P∗(x) log t+ P∗∗(x) + . . . ,

Q(t, x) = Q∗(x) +Q∗∗(x)t2k(x) + . . . .
(4.9)

One checks easily that the problem associated with the term −2DPDQ before does not arise if
P∗ = −k. Indeed, the canonical two-term expansion (4.9) is consistent with the heuristics of the
Gowdy equations above and we recover the singular initial value problem studied rigorously in
[28, 36] and numerically in [1]. We only mention here without further notice that the case k ≡ 0
with the logarithmic canonical two-term expansion for Q is covered by the following discussion.
Furthermore, the case of k vanishing at only certain points may be also included via a suitable
renormalization of the asymptotic data, see (2.7).

When P∗ = −k, the function k plays a two-fold role in (4.8). On the one hand, it is an
asymptotic data for the function P and, on the other hand, it is a coefficient of the principal
part of the second equation. In order to keep these two roles of k separated in a first stage, we
consider the system

D2P = t2∂2
xP + e2P (DQ)2 − t2e2P (∂xQ)2,

D2Q− 2kDQ = t2∂2
xQ− 2(−P∗ +DP )DQ+ 2t2∂xP∂xQ,

(4.10)

instead of (4.8). Studying the singular initial value problem with two-term asymptotic data
means that we search for solutions to (4.10) of the form (as t→ 0)

P (t, x) = P∗(x) log t+ P∗∗(x) + w(1)(t, x),

Q(t, x) = Q∗(x) +Q∗∗(x)t2k(x) + w(2)(t, x),
(4.11)

for general asymptotic data P∗, P∗∗, Q∗, Q∗∗, and remainders w(1), w(2). After studying the
well-posedness for this problem, we can always choose P∗ to coincide with −k and, therefore,
recover our original Gowdy problem (4.8)-(4.9). For simplicity in the presentation, we always
assume that k is a C∞ function.

In the following discussion, we write the vector-valued remainder as w := (w(1), w(2)), and we
fix some asymptotic data P∗, P∗∗, Q∗, and Q∗∗ and choose the leading-order term u according
to (4.11). The source-term operator F [w](t, x) =: (F1[w](t, x), F2[w](t, x)) reads

F1[w] =
(
tP∗eP∗∗ew

(1)(
2k t2kQ∗∗ +Dw(2)

))2

−
(
tP∗eP∗∗ew

(1) (
t ∂xQ∗ + 2∂xkt

2kt log tQ∗∗ + t2kt∂xQ∗∗ + t∂xw
(2)
))2

,

and

F2[w]

=− 2Dw(1)
(
2k t2kQ∗∗ +Dw(2)

)
+ 2
(
t∂xP∗ log t+ t∂xP∗∗ + t∂xw

(1)
)((

t∂xQ∗ + 2 ∂xkt
2kt log tQ∗∗ + t2kt∂xQ∗∗ + t∂xw

(2)
)
.
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4.4 Properties of the source-term operator

To establish the well-posedness of the singular initial value problem for the Gowdy equations,
we need first to derive certain decay properties of the source-term operator F consistent with

Section 3. Let us introduce some notation specific to the Gowdy equations. Let X
(1)
δ,α1,k

be the
space defined as above based on the coefficients of the first equation in (4.10) and, similarly,

let X
(2)
δ,α2,k

be the space associated with the second equation. By definition, a vector-valued

map w = (w(1), w(2)) belongs to Xδ,α,k precisely if w(1) ∈ X
(1)
δ,α1,k

and w(2) ∈ X
(2)
δ,α2,k

, with

α := (α1, α2). An analogous notation is used for the spaces X̃
(1)
δ,α1,k

, X̃
(2)
δ,α2,k

and X̃δ,α,k.
Now we are ready to state a first result about the source-term of (4.10).

Lemma 4.1 (Operator F in the finite differentiability class). Fix any δ > 0 and any asymptotic
data P∗, P∗∗, Q∗, Q∗∗ ∈ Hm(U), m ≥ 2. Suppose there exist ε > 0 and a continuous function
α = (α1, α2) : U → (0,∞)2 so that, at each x ∈ U ,

α1(x) + ε < min
(
2(P∗(x) + 2k(x)), 2(P∗(x) + 1)

)
, (4.12a)

α2(x) + ε < 2(1− k(x)), (4.12b)

α1(x)− α2(x) > ε+ min
(
0, 2k(x)− 1

)
, (4.12c)

ε < 1. (4.12d)

Then, the operator F associated with the system (4.10) and the given asymptotic data maps

X̃δ,α,m into Xδ,α+ε,m−1 and satisfies the following Lipschitz continuity condition: For each r > 0
and for some constant C > 0 (independent of δ),

Eδ,α+ε,m−1

[
F [w]− F [ŵ]

]
(t) ≤ C Ẽδ,α,m[w − ŵ](t), t ∈ (0, δ]

for all w, ŵ ∈ Br ⊂ X̃δ,α̃,m, where Br denotes the closed ball centered at the origin.

In this lemma, since P∗ ∈ H1(U), in particular, a standard Sobolev inequality implies that P∗
can be identified with a unique bounded continuous periodic function on U , and the inequality
(4.12a) makes sense pointwise.

Proof. Consider the expression of F given before. Let w ∈ X̃δ,α,m for some (so far unspecified)

positive spatially dependent functions α1, α2, hence w(1) ∈ X̃(1)
δ,α1,m

and w(2) ∈ X̃(2)
δ,α2,m

. By a
standard Sobolev inequality (since m ≥ 2 and the spatial dimension is 1), we get that F [w](t, ·) ∈
Hm−1(U) for all t ∈ (0, δ]. Namely, if m ≥ 2 we can control the nonlinear terms of F [w](t, ·) in
all generality for a given t > 0 if any factor in any term of F [w](t, ·), after applying up to m− 1
spatial derivatives, is an element in L∞(U) – with the exception of the mth spatial derivative of
w which is only required to be in L2(U). This is guaranteed by the Sobolev inequalities. Having

found that F [w](t, ·) ∈ Hm−1(U) for all t ∈ (0, δ], it is easy to check that F1[w] ∈ X(1)
δ,α1+ε,0 if

α1(x) + ε ≤ min
(

2(P∗(x) + 2k(x)), 2(P∗(x) + 1)
)
, x ∈ U. (4.13)

Even more, condition (4.13) implies that DlF1[w] ∈ X(1)
δ,α1+ε,0 for all l ≤ m− 1.

Considering now spatial derivatives, we have to deal with two difficulties. The first one is

that logarithmic terms arise with each spatial derivative. We find ∂kxD
lF1[w] ∈ X(1)

δ,α1+ε,0 for all
l ≤ m− 1 and k ≤ m− 2 and k+ l ≤ m− 1 (excluding first the case k = m− 1, l = 0) provided

α1(x) + ε < min
(

2(P∗(x) + 2k(x)), 2(P∗(x) + 1)
)
, x ∈ U. (4.14)
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A second difficulty arises in the case k = m − 1, l = 0. Namely, since w ∈ X̃δ,α,m (and
not in Xδ,α,m), it follows that in particular t∂mx w

(2) ∼ t2k+α2 (and not t1+2k+α2); note that the
function β which determines the behavior of the characteristic speeds at t = 0 is identically zero
in the case of the Gowdy equations. The potentially problematic term is hence of the form AB
with

A :=tP∗eP∗∗ew
(1)

(t∂xQ∗ + 2∂xkt
2kt log tQ∗∗ + t2kt∂xQ∗∗ + t∂xw

(2)),

B :=tP∗eP∗∗ew
(1)(

∂m−1
x (t∂xQ∗ + 2∂xkt

2kt log tQ∗∗ + t2kt∂xQ∗∗) + t∂mx w
(2)
)
,

originating from taking m− 1 spatial derivatives of F1[w]. To ensure ∂m−1
x F1[w] ∈ X(1)

δ,α1+ε,0, we
need

α1(x) + ε < (P∗(x) + 1) + (P∗(x) + 2k(x) + α2(x)), x ∈ U. (4.15)

If (4.14) is satisfied, we have (for all x)

α1(x) + ε < min
(

2(P∗(x) + 2k(x)), 2(P∗(x) + 1)
)

≤ (P∗(x) + 1) + (P∗(x) + 2k(x))

and, thus, (4.15) follows from (4.14). In conclusion, (4.14) is sufficient to guarantee that F1[w] ∈
X

(1)
δ,α1+ε,m−1.

Let us proceed next with the analysis of the term F2[w]. If

α1(x)− α2(x) ≥ ε, α2(x) + ε < 2(1− k(x)), x ∈ U, (4.16)

then F2[w] ∈ X(2)
δ,α2+ε,0. This inequality also implies that all time derivatives are in X

(2)
δ,α2+ε,0 as

before. We have to deal with the same two difficulties as before when we consider spatial deriva-
tives of F2[w]. On the one hand, equality in (4.16) cannot occur due to additional logarithmic
terms. On the other hand, we must be careful with the (m − 1)-th spatial derivative of F2[w].
Here, the two problematic terms are of the form AB with either

A :=∂m−1
x (t∂xP∗ log t+ t∂xP∗∗) + t∂mx w

(1),

B :=t∂xQ∗ + 2∂xkt
2kt log tQ∗∗ + t2kt∂xQ∗∗ + t∂xw

(2),

or else

A :=t∂xP∗ log t+ t∂xP∗∗ + t∂xw
(1),

B :=∂m−1
x (t∂xQ∗ + 2∂xkt

2kt log tQ∗∗ + t2kt∂xQ∗∗) + t∂mx w
(2).

The first one is under control provided α1(x) + 1 > 2k(x) +α2(x) + ε, for all x ∈ U , while for the
second one it is sufficient to require ε < 1. The claimed Lipschitz continuity condition follows
from the above arguments.

Positive functions α1 and α2 and constants ε > 0 satisfying the hypothesis of Lemma 4.1 can
obviously exist only if k(x) < 1 for all x ∈ U (due to (4.12b)). In Lemma 4.3 below we identify a
special case where this limitation is avoided. Hence, we make the assumption that 0 < k(x) < 1
for all x, which is consistent with our formal analysis in Section 4.2. As a consistency check for
the case of interest P∗ = −k, let us determine under which conditions the inequalities (4.12)
can be hoped to be satisfied at all. For this, consider (4.12a) and (4.12c) in the borderline case
α2 = ε = 0. This leads to the condition 0 < k < 3/4, which shows that Lemma 4.1 does not

24



apply within the full interval 0 < k < 1. It is interesting to note that Rendall was led to the same
restriction in [36], but its origin stayed unclear in his approach. Here, we find that this is caused
by the presence of the condition (4.12c) in particular which reflects the fact that w is an element

of the space X̃δ,α,m rather than of the smaller space Xδ,α,m. Interestingly, we can eliminate this
condition and, hence, retain the full interval 0 < k < 1, when we consider the C∞-case, instead
of finite differentiability. See also [3] for a detailed discussion of the different intervals of k.

Lemma 4.2 (Operator F in the C∞ class. General theory). Fix any δ > 0 and any asymptotic
data P∗, P∗∗, Q∗, Q∗∗ ∈ C∞(U). Suppose there exist a constant ε > 0 and a continuous functions
α = (α1, α2) : U → (0,∞)2 such that, at each x ∈ U ,

α1(x) + ε < min
(
2(P∗(x) + 2k(x)), 2(P∗(x) + 1)

)
, (4.17a)

α2(x) + ε < 2(1− k(x)), (4.17b)

α1(x)− α2(x) > ε. (4.17c)

Then, for each integer m ≥ 1, the operator F maps Xδ,α,m into Xδ,α+ε,m−1 and satisfies the
following Lipschitz continuity property: for each r > 0 and some constant C > 0 (independent
of δ),

Eδ,α+ε,m−1

[
F [w]− F [ŵ]

]
(t) ≤ CẼδ,α,m[w − ŵ](t), t ∈ (0, δ],

for all w, ŵ ∈ Br ∩Xδ,α+ε,m ⊂ X̃δ,α+ε,m.

The proof is completely analogous to that of Lemma 4.1. Since only spaces Xδ,α,k need to
be checked (i.e. without the tilde) in the C∞-case we obtain stronger control than in the finite
differentiability case. In consequence, the C∞-case does not require the condition (4.12c). Thus
k can have values in the whole interval (0, 1) as we show in detail later. In a special case, which
will be of interest for the later discussion, however, we can relax the constraints for k even in the
finite differentiability case.

Lemma 4.3 (Operator F in the finite differentiability class. A special case). Fix any δ > 0 and
any asymptotic data P∗, P∗∗, Q∗∗ ∈ Hm(U), Q∗ = const, m ≥ 2. Suppose there exist ε > 0 and
a continuous function α = (α1, α2) : U → (0,∞)2 such that, at each x ∈ U ,

α1(x) + ε < 2(P∗(x) + 2k(x)),

α2(x) + ε < 2, α1(x)− α2(x) > ε− 1, ε < 1.

Then, the operator F satisfies the conclusions of Lemma 4.1.

In the special case Q∗ = const, we have hence characterized the map F for k being any
positive function in the finite differentiability case. The analogous result for the C∞-case can
also be derived.

4.5 Well-posedness theory

Relying on Theorem 3.6 and the results in the previous sections, we now determine conditions
that ensure that the singular initial value problem for the Gowdy equations is well-posed. Besides
the properties of the source-operator F already discussed, we have to check the positivity of the
energy dissipation matrix. This leads us to the matrix

N (1) :=

 α1 −η/2 0
−η/2 α1 0

0 0 α1 − 1


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for the first component and to the matrix

N (2) :=

2k + α2 −η/2 0
−η/2 α2 −2∂xk(t log t)

0 −2∂xk(t log t) 2k + α2 − 1


for the second component. For the matrix N (1) to be positive, it is necessary that α1(x) > 1 for
all x ∈ U . However, if P∗ = −k, then condition (4.12a) in Lemma 4.1 in the finite differentiability
case (or the corresponding one in Lemma 4.2 in the C∞-case) implies that α1(x) < 1. Hence, in
the same way as in Rendall [36], one does not arrive at a well-posedness result for the singular
initial value problem yet. However, since the positivity of the energy dissipation matrix is the
only part of the hypothesis in Theorem 3.6 which is is violated, we can use instead Theorem 3.8 to
prove well-posedness of the singular initial value problem with asymptotic solutions of sufficiently
high order j.

Let us be specific about what we mean by j being “sufficiently large”, and we now make
some choice for the parameters α1, α2 and ε, consistent with Lemma 4.2, which will allow us to
estimate the required size of j. We make no particular effort to choose these quantities optimally,
but still the goal is to choose j “reasonably” small. Henceforth, we restrict to the C∞-case and
P∗(x) = −k(x) with 0 < k(x) < 1 for all x ∈ U . We introduce positive constants µ1 and µ2

(with further restrictions later) and the function χ(x) := 1 − 2|x − 1/2|. The condition (4.17a)
states that we must choose α1(x) and ε so that α1(x) + ε < χ(k(x)). We set

α1(x) := 1−
√

4(k(x)− 1/2)2 + µ2
1, (4.18)

and find χ(k(x))− α1(x) >
√

1 + µ2
1 − 1 for all x ∈ U , provided 0 < k(x) < 1. Similarly, we set

α2(x) := 1−
√

4(k(x)− 1/2)2 + µ2
2, (4.19)

and it follows that α1(x)− α2(x) >
√

1 + µ2
2 −

√
1 + µ2

1 for µ2 > µ1. For the conditions (4.17a)
and (4.17c) to hold true, we have to choose

0 < µ1 < µ2, and 0 < ε ≤ min

(√
1 + µ2

1 − 1,
√

1 + µ2
2 −

√
1 + µ2

1

)
.

Condition (4.17b) is then satisfied automatically.
Now, assume in what follows that k(x) ∈ (1/2 −∆k, 1/2 + ∆k) for all x ∈ U for a constant

∆k ∈ (0, 1/2). Then it is clear that both functions α1 and α2 are positive for all such k(x) if and
only if

µ1 < µ2 <
√

1− 4(∆k)2.

This assumption will be made in the following. In Theorem 3.8, we could choose j as small as
possible if we pick the maximal allowed value for ε. Hence, we set

ε := min

(√
1 + µ2

1 − 1,
√

1 + µ2
2 −

√
1 + µ2

1

)
.

We find easily that √
1 + µ2

1 − 1 ≤
√

1 + µ2
2 −

√
1 + µ2

1,
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provided

µ2
1 ≤

1

4
(µ2

2 + 2
√

1 + µ2
2 − 2),

and check that this is consistent with the condition 0 < µ1 < µ2 made before. In order to make
a specific choice, we assume this inequality for µ1 and hence obtain that

ε =
√

1 + µ2
1 − 1. (4.20)

Now, in order to make the energy dissipation matrix positive, we must choose j so that for all
x ∈ U ,

α̃1(x) := α1(x) + (j − 2)κε > 1,

α̃2(x) := α2(x) + (j − 2)κε > 1− 2k(x);

cf. Theorem 3.8. These two inequalities are satisfied for all functions k under our assumptions if
in particular

j > 2 +

√
4(∆k)2 + µ2

2

κ(
√

1 + µ2
1 − 1)

. (4.21)

In any case, we choose the maximal value for µ1

µ1 :=
1

2

√
µ2

2 + 2
√

1 + µ2
2 − 2, (4.22)

since this minimizes the value on the right side of (4.21). We find that for this value of µ1, the
right side of (4.21) is monotonically decreasing in µ2 and diverges to +∞ for µ2 → 0 for all
values of ∆k.

Theorem 4.4 (Well-posedness theory for the Gowdy equations). Consider some asymptotic
data P∗ = −k, P∗∗, Q∗, Q∗∗ ∈ C∞(U), where k is a smooth function U → (1/2−∆k, 1/2 + ∆k)
for a constant ∆k ∈ (0, 1/2). Then, for the Gowdy equations with these prescribed data are
well-posed in certain weighted Sobolev spaces.

More precisely, the singular initial value problem with asymptotic solutions of order j has a
unique solution with remainder w ∈ Xδ,α+(j−2)κε,∞ for some sufficiently small δ > 0 and some
κ < 1. Here, the exponents α = (α1, α2) and ε are given in (4.18), (4.19), and (4.20) explicitly
in terms of the data and parameters µ1, µ2 chosen such that µ1 is an explicit expression in µ2

given in (4.22) while µ2 is a sufficiently close to (but smaller than)
√

1− 4(∆k)2, and the order
of differentiation j satisfies

j > 2 +
2√

3− 4(∆k)2 + 2
√

2− 4(∆k)2 − 2
.

The above condition implies that to reach ∆k → 0 we need j > 7, while ∆k → 1/2 requires
j → ∞. Although our estimates may not be quite optimal, the latter implication cannot be
avoided.

4.6 Fuchsian analysis for the function Λ

So far we have considered the equations (4.1) for P and Q. We can henceforth assume that
these equations are solved identically for all t > 0 (and t ≤ δ for some δ > 0) and that hence P
and Q are given functions with leading-order behavior (4.9) and remainders in a given Xδ,α,k.
The equations which remain to be solved in order to obtain a solution of the full Einstein’s
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field equations are (4.2) and (4.3). In particular we are interested in the function Λ in order
to obtain the full geometrical information. We compute Λ from a singular initial value problem
with “data” on the singularity analogously to P and Q. The following discussion resembles the
previous one and we only discuss new aspects now.

Clearly, the three remaining equations (4.2) and (4.3) for Λ are overdetermined, and hence
solutions will exist only under certain conditions. Let us define the following “constraint quan-
tities” from (4.3)

C1(t, x) := −∂tΛ + t(Px)2 + e2P t(Qx)2 + t(∂tP )2 + e2P t(∂tQ)2,

C2(t, x) := −Λx + 2PxDP + 2e2PQxDQ.

Moreover, we define

H(t, x) := −Λtt + Λxx + P 2
x − P 2

t + e2P (Q2
x −Q2

t )

from (4.2). From the evolution equations for P and Q, we find the subsidiary system

∂tC1 = ∂xC2 +H, ∂tC2 = ∂xC1. (4.23)

These equations have the following consequences. Suppose that we use (4.3b) as an evolution
equation for Λ. This implies that C1 ≡ 0 for all t > 0. Moreover, suppose that we prescribe
data at some t0 > 0 (indeed t0 is allowed to be zero later) so that C2(t0, x) = 0 for all x ∈ U .
Then the equations imply that H ≡ 0 and C2 ≡ 0 for all t > 0 and thus we have constructed a
solution of the full set of field equations. Alternatively, let us use (4.2) as the evolution equation
for Λ, i.e. H ≡ 0. Suppose that we prescribe data so that C1(t0, x) = C2(t0, x) = 0 at some t0.
It follows that C1 ≡ C2 ≡ 0 for all t > 0 because the evolution system (4.23) for C1 and C2 is
symmetric hyperbolic. Again, Einstein’s field equations are solved.

Now, we want to consider the case t0 = 0. First note that (4.23) is regular even at t = 0.
Suppose that P and Q are functions with leading-order behavior (4.9) and remainders in a given
Xδ,α,k with k ≥ 1. If there exists a function w3 so that

Λ(t, x) = Λ∗(x) log t+ Λ∗∗(x) + w3(t, x) (4.24)

with w3 converging to zero in a suitable norm at t = 0 and

Λ∗(x) = k2(x), Λ∗∗(x) = Λ0 + 2

∫ x

0

k(x̃)(−∂x̃P∗∗(x̃) + 2e2P∗∗(x̃)Q∗∗(x̃)∂x̃Q∗(x̃)) dx̃, (4.25)

where Λ0 is an arbitrary real constant, then, in particular,

lim
t→0

C2 = 0.

It also follows that limt→0 tC1 = 0. Let us first use (4.3b) as a singular evolution equation for
Λ. Since this is “only” a singular ODE, one can show easily that there exists a unique solution
for Λ for t > 0 which obeys the two-term expansion above, and hence C1 ≡ 0. Our discussion
before implies that H,C2 ≡ 0. Hence we obtain a solution of the full Einstein’s field equation
for all t > 0. Alternative, choose (4.2) as the evolution equation for Λ now. This equation can
be written in second-order hyperbolic Fuchsian form

D2Λ− t2∂2
xΛ = (t∂xP )2 + (DΛ− (DP )2) + e2P ((t∂xQ)2 − (DQ)2).

Indeed this equation is compatible with the leading-order expansion (4.24) at t = 0 and we can
show well-posed of this singular initial value problem in the same way as we did for the functions
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P and Q before (also going to sufficiently high-order in j). In particular, for any asymptotic
data Λ∗ and Λ∗∗, not necessarily those given by (4.25), there exists a unique solution of this
equation Λ with remainder w3 in a certain space Xδ,α,k. By means of uniqueness we find that
the solution Λ of this equation coincides with the solution for Λ obtained using (4.3b) as the
evolution equation. Hence, we must have H,C1, C2 ≡ 0 for all t > 0, and thus also this method
yields a solution of the full Einstein’s field equations.

Note that periodicity and (4.25) implies that the asymptotic data for P and Q must satisfy
the relation ∫ 2π

0

k(x̃)(−∂x̃P∗∗(x̃) + 2e2P∗∗(x̃)Q∗∗(x̃)∂x̃Q∗(x̃)) dx̃ = 0

for smooth solutions.

5 Numerical experiments

5.1 Test 1. Homogeneous pseudo-polarized solutions

We continue our discussion with the singular initial value problem for the Gowdy equations. In
all of what follows we consider the singular initial value problem with two-term asymptotic data
for the Gowdy equations. As we show this works very well and we get good convergence. This
is a strong indication that the standard singular initial value problem is well-posed. In contrast,
recall from Theorem 4.4 that our analytical techniques are only sufficient to show that the initial
value problem with asymptotic solutions of sufficiently high order is well-posed for the Gowdy
equations.

Before we proceed with “interesting” solutions of the Gowdy equations, let us start with a
case for which we can construct an explicit solution and hence test the numerical implementation.
Let P̃ and Q̃ be solutions of the polarized equations in the homogeneous case, i.e. set Q̃ = 0 and
P̃ (t, x) = P̃ (t). In this case, it follows directly that the exact solution of the Gowdy equations is

P̃ (t) = −k log t+ P̃∗∗,

where both k and P̃∗∗ are arbitrary constants. The corresponding full solutions of Einstein’s
equations are Kasner solutions whose parameters5 are determined by k exclusively (P̃∗∗ is just a
gauge quantity). By a reparametrization of the Killing orbits of the form

x̃2 = x2/
√

2 + x3/
√

2, x̃3 = −x2/
√

2 + x3/
√

2,

where x̃2, and x̃3 are the coordinates used to represent the orbits of the polarized solution above,
the same solution gets re-expressed in terms of functions

P = log cosh(−k log t+ P̃∗∗), Q = tanh(−k log t+ P̃∗∗). (5.1)

These functions (P,Q) are again solutions of (4.1). Asymptotically at t = 0, they satisfy

P = −k log t+ (P̃∗∗ − log 2) + . . . , Q = 1− 2e−2P̃∗∗t2k + . . . ,

from which we can read off the corresponding asymptotic data.
Now we compute the solutions corresponding to these asymptotic data numerically and com-

pare them to the exact solution (5.1). We pick P̃∗∗ = 1, so that P∗∗ = 1 − log 2, Q∗ = 1 and

5In the conventions of [42], we have p1 = (k2 − 1)/(k2 + 3), p2 = 2(1 − k)/(k2 + 3), p3 = 2(1 + k)/(k2 + 3),
and the three flat cases are realized by k = 1, k = −1 and |k| → ∞.
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Figure 2: Convergence of numerical solutions of the test case 1 (as explained in the text).

Q∗∗ = −2e−2. Since the solution is spatially homogeneous – in fact this is an ODE problem –
we only need to do the comparison at one spatial point.

The results are presented in Figure 2 where we plot the difference of the numerical and the
exact value of Q versus time for various values of τ0. In the first plot, this is done for k = 0.5 and
in the second plot for k = 0.9. The plots confirm nice convergence of the approximate solutions
to the exact solution. The fact that each approximate solution diverges from the exact solution
almost exponentially in time is a feature of the approximate solutions themselves and not of the
numerical discretization, as is checked by comparing two different values of ∆τ in these plots.
From our experience with the Euler-Poisson-Darboux equation, we could have expected that the
convergence rate is lower in the case k = 0.9 than in the case k = 0.5 (note that k plays the same
role λ/2). In the case of the Euler-Poisson-Darboux equation, the rate of convergence decreases
when λ approaches 2, due to the influence of the second-spatial derivative term in the equation.
In the spatially homogeneous case here, however, this term is zero and hence this phenomenon
is not present. The “spikes” in Figure 2 are just a consequence of the logarithmic scale of the
horizontal axes and the fact that the numerical and exact solutions equal for some instances of
time.

5.2 Test 2. General Gowdy equations

Now we want to study the convergence for a “generic” inhomogeneous Gowdy case (still ignoring
the equation for the quantity Λ). Here we choose the following asymptotic data

k(x) = 1/2 +A cos(x), Q∗ = 1.0 + sin(x),

P∗∗ = 1− log 2 + cos(x), Q∗∗ = −2e−2,

with a constant A ∈ (−1/2, 1/2). We do not know of an explicit solution in this case. In Figure 3,
we show the following numerical results for A = 0.2 and A = 0.4, respectively. For the given value
of A, we compute five approximate solutions with initial times τ0 = −30,−35,−40,−45,−50
numerically, each with the same resolution ∆τ = 0.01 and N = 80. The resolution parameters
have been chosen so that the numerical discretization errors are negligible in the plots of Figure 3.
Then, for each time step for τ ≥ −30, we compute the supremum norm in space of the difference
of the remainders w(1) of the two approximate solutions given by τ0 = −30 and τ0 = −35. In
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Figure 3: Convergence of numerical solutions of the test case 2 as explained in the text.

this way we obtain the first curve in each of the plots of Figure 3. The same is done for the
difference between the cases τ0 = −35 and τ0 = −40 for all τ ≥ −35 to obtain the second
curve etc. Hence these curves yield a measure of the convergence rate of the approximation
scheme (without referring to the exact solution). In agreement with our observation for the
Euler-Poisson-Darboux equation, the convergence rate is high if k is close to 1/2 and becomes
lower, the more k touches the “extreme” values k = 0 and k = 1.

Much in the same way as for the Euler-Poisson-Darboux equation we find that double preci-
sion is sufficient for these computations despite of the fact that exp(2τ) is 10−44 for τ = −50.

5.3 Test 3. Gowdy spacetimes containing a Cauchy horizon

The papers [16, 17, 18, 26, 27] were devoted to the construction and characterization of Gowdy
solutions with Cauchy horizons in order to prove the strong cosmic censorship conjecture in this
class of spacetimes. Spacetimes with Cauchy horizons are expected to have saddle and physically
“undesired” properties, in particular they often allow various inequivalent smooth extensions.
This has the undesired consequence that the Cauchy problem of Einstein’s field equations does
not select one of them uniquely. Some explicit examples are known, but most of the analysis is
on the level of existence proofs and asymptotic expansions.

Hence, it is of interest to construct such solutions numerically and analyze them in much
greater detail than possible with purely analytic methods. Constructing these solutions numer-
ically, however, is delicate since the strong cosmic censorship conjecture suggests that they are
instable under generic perturbations. It can hence often be expected that numerical errors would
most likely “destroy the Cauchy horizon”. This is so, in particular, when the singular time at
t = 0 is approached backwards in time from some regular Cauchy surface at t > 0, i.e. for the
“backward approach”.

In the Gowdy case, where the strong cosmic censorship conjecture has been proven [40],
however, there are clear criteria for the asymptotic data so that the corresponding solution of
the singular initial value problem has a Cauchy horizon (or only pieces thereof; cf. below) at
t = 0, as discussed in [16] for the polarized case and in [18] for the general case. Our novel
method here allows us to construct such solutions with arbitrary accuracy and it can hence be
expected that this allows us to study the saddle properties of such solutions. Our main aim so
far is to compute such a solution and hence to demonstrate the feasibility of our approach. A
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Figure 4: Convergence of numerical solutions corresponding to asymptotic data in Section 5.3.

follow-up work will be devoted to the numerical construction and detailed analysis of relevant
classes of such solutions.

Motivated by the results in [16], we choose the asymptotic data as follows

k(x) =

{
1, x ∈ [π, 2π],

1− e−1/xe−1/(π−x), x ∈ (0, π),
P∗∗(x) = 1/2,

Q∗(x) = 0, Q∗∗(x) =

{
0, x ∈ [π, 2π],

e−1/xe−1/(π−x), x ∈ (0, π),

Λ∗(x) = k2(x), Λ∗∗(x) = 2.

With these asymptotic data, the corresponding solution has a smooth Cauchy horizon at (t, x) ∈
{0} × (π, 2π) (namely where k ≡ 1), and a curvature singularity at (t, x) ∈ {0} × (0, π) (namely
where 0 < k < 1). Note that the function k is smooth everywhere (but not analytic). Our
analysis in Section 4.3 shows that we are allowed to set k = 1 at some points since ∂xQ∗ = 0.
This motivates our choice of Q∗. With this, our choice of Q∗∗ implies that the solution is polarized
on the “domain of dependence”6 of the “initial data” interval (π, 2π). All data were chosen as
simple as possible to be consistent with the constraints.

First we repeated the same error analysis as for the previous Gowdy case, see Figure 4. For
all the runs in the plots, we choose N = 500, ∆τ = 0.005 which guarantees that discretization
errors are negligible in the plot. We find that our numerical method allows us to compute the
Gowdy solution very accurately. Here, we solve the full system for (P,Q,Λ).

In Figure 5, we show the numerical solution obtained from N = 1000, ∆τ = 0.0025 and
τ0 = −18. We plot the Kretschmann scalar at two times τ = −10 and τ = 0. Hence, near the
time t = 0 (corresponding to τ = −∞), the Kretschmann scalar is large on the spatial interval
(0, π) while it stays bounded at (π, 2π). At the later time, the curvature becomes smaller as
expected. We also plot the remainders w(1) and w(2) of P and Q, respectively. It is instructive
to study how the polarized region inside (π, 2π) gets “displaced” by the non-polarized solution.

6The notion of “domain of dependence” for the singular initial value problem follows from the energy estimate.
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Figure 5: Numerical solutions corresponding to asymptotic data in Section 5.3.

6 Concluding remarks

This paper presented a new approach to the singular initial value problem for second-order
Fuchsian-type equations. Our original motivation was to find a reliable and accurate numerical
scheme which, following [1], allowed us to evolve data numerically from the singularity. It turned
out that the classical Fuchsian theory –despite its major successes otherwise– was not directly
applicable to our puspose. This led us, on one hand, to develop a new approximation scheme,
which is particularly natural to handle hyperbolic Fuchsian equations, and, on the other hand,
to revisit the classical theory and deduce a direct existence proof for the singular initial value
problem. Our scheme yields a reliable and accurate numerical method, referred to here as
the Fuchsian numerical algorithm. Importantly, we demonstrated that our method applies to
Gowdy-symmetric solutions to Einstein’s field equations.

Our method should allow us to contribute to the understanding of strong gravitational fields.
In this direction, a particularly interesting and outstanding problem in general relativity is the
strong cosmic censorship conjecture. Our approach allows to numerically construct, in particular,
exceptional spacetimes, for example solutions with Cauchy horizons. This is of interest for two
reasons, at least. First, we can learn more about the “solution space” of Einstein’s field equations
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and, consequently, about the validity of general relativity as a physical theory, due to the unusual
and sometimes physically “undesired” properties of these exceptional solutions. It is currently
work in progress [9] to investigate the geometry of the solutions obtained in Section 5.3 in greater
detail.

Second, our method allows one to study the stability of such exceptional solutions, which
was checked here, as a first step, by perturbing the induced data on a spacelike hypersurface
and computing the corresponding solution via the standard (backward) approach. This allows a
systematic numerical study of the strong cosmic censorship conjecture. Note, however, that the
strong cosmic censorship conjecture is known for Gowdy-symmetric solutions [39, 40]. Hence,
in order to obtain new interesting results about this conjecture we need to apply our theory to
more general classes of solutions; see [9].

Our Fuchsian heuristics enables us to distinguish between “dominant” and “negligible” terms
in the equations as one approaches the “singularity”. Sometimes these terms can be interpreted
as physically interesting quantities like “kinetic” or “potential energy”. Importantly, we discov-
ered in the present paper that the principal part of the partial different system need not, by itself,
determines the singular behavior of the solutions. Instead, nonlinear terms (classically treated as
lower-order source-terms) often also play an important role. This is so for Gowdy-symmetric so-
lutions, but it is even more important for general solutions where mixmaster behavior is expected
according to the BKL conjecture. According to this conjecture and more recent investigations
[34, 35], spatial derivative terms are expected to be insignificant except for exceptional points
where spikes occur.
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