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1.  Introduction 

It is a Theorem, that all solutions of 4D general relativity in vacuum but with a 

cosmological constant can be locally embedded in 5D (pure) canonical space.  This ap-

plies to the Schwarzschild solution, more complicated solutions like those for a spinning 

black hole and gravitational waves, and 4D deSitter space.  The last is particularly sim-

ple, and will be used below to illustrate the applications of 5D embeddings to physics.  In 

fact, 5D embeddings inform about the geometrical ‘environment’ of 4D solutions, help-

ing to understand what happens in spacetime and pointing towards new results in the 

extra dimension.  The subject of embeddings is presently very active, so it may be oppor-

tune to give a brief history and to review recent discoveries. 

This is done in Sections 2 and 3 following. The present account is in the nature of 

a discussion paper or status report.  The adage says that those ignorant of history are 

sometimes doomed to repeat it.  However, those conversant with embeddings may wish 

to proceed to the new physical applications of Section 3.  The last section is a conclusion. 

 

2.  A Brief History of the 4D / 5D Canonical Embedding 

Most people know that Einstein’s general theory of relativity was effectively ex-

tended from four to five dimensions by Kaluza in 1920, as a means of unifying 

gravitation and electromagnetism [1].  He did this essentially by identifying the off-

diagonal elements of a 5x5 metric tensor with the Maxwell potentials of electromagnet-

ism.  This approach was modified by Klein in 1926, as a means of explaining the 

quantization of electric charge [2].  Both men suppressed the diagonal fifth component of 
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the metric tensor, which represents a scalar field now believed by some workers to be re-

lated to the Higgs field of quantum field theory and connected to particle mass [3].  

Leaving this aside, it was noted already by Kasner in 1921 that most curved 4D solutions 

of general relativity could not be embedded in a flat 5D space [4].  But it was not until 

1963 that Tangherlini made it clear that the 4D Schwarzschild solution could only be em-

bedded in a flat space if the latter had a dimensionality N = 6 or higher [5].  In the 

meantime, Dirac in 1935 had employed an embedding of 4D deSitter space in 5D to give 

a neat classification of the energies, momenta and masses of particles [6].  Something 

similar was done by Robertson in 1968 for the standard cosmological solutions of Ein-

stein’s equations, including the deSitter universe, which would later be taken as the basis 

for inflationary cosmology [7].  In 1988, Ponce de Leon found a broad class of 5D met-

rics which reduced to the standard Friedmann-Robertson-Walker (FRW) cosmologies on 

hypersurfaces where the fifth coordinate was held fixed [8].  To his surprise, Wesson dis-

covered in 1994 that the Ponce de Leon metrics were flat in 5D, first by computer work 

and then by deriving the algebraic coordinate transformations to 5D Minkowski space 

5M  [9].  The cosmological side of the embedding saga was finally laid to rest by La-

chieze-Rey in 2000 [10],who showed algebraically that all of the standard 4D FRW 

universe models are isometric to 5M . 

The situation for solutions of Einstein’s equations with less symmetry than the 

cosmological FRW ones remained unclear, however, for many years.  Workers were 

aware that familiar 4D solutions like the Schwarzschild-deSitter one could not be embed-

ded in a flat 5D manifold; but there was continued interest in finding some kind of 
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embedding that was algebraically tractable and physically rewarding.  It was with this 

background that Mashhoon in 1994 proposed 5D canonical space [11].  The appellation 

was suggested by the simple algebraic form of the metric, and by the fact that it led to 

drastic simplification in the 5D field equations and their corresponding equations of mo-

tion (see below).  In crude terms, the simplification afforded by the 5D canonical metric 

is akin to how a 3D metric in Cartesian coordinates xyz becomes more transparent for 

certain situations when expressed in polar coordinates rθφ  (this is why problems in geo-

physics and astrophysics are usually treated in terms of the latter coordinates rather than 

the former).  The general form of 5D canonical space consists of the square of the extra 

coordinate (divided by a length to preserve physical dimensions) multiplied onto the 

usual 4D interval, plus an extra flat piece.  This 5D form is algebraically general, pro-

vided the 4D interval (metric tensor) is allowed to depend on the extra coordinate.  It is 

arrived at by using the 5 coordinate degrees of freedom to eliminate the off-diagonal 

(electromagnetic) potentials, and to set the magnitude of the extra diagonal potential to 

unity.  This last condition is rather restrictive, and similar to the one used by Kaluza and 

Klein in the early years of 5D physics.  However, it is acceptable, provided it is realized 

that thereby all of the extra physics associated with the fifth dimension is concentrated 

into the extra coordinate and its presence as a quadratic factor multiplied onto spacetime.  

It is therefore necessary to keep an open mind about the meaning of the extra coordinate 

when working out problems in 5D using the canonical metric (see Section 3).  However, 

the introduction of this form led to the rapid solution of a number of long-standing issues 

in higher-dimensional physics [12].  This is especially true for the case where the 4D part 
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of the space (metric tensor) does not depend on the extra coordinate.  The 5D metric in 

this case is sometimes called “pure canonical”.  For this case, the theorem quoted at the 

beginning of this paper holds: any solution of Einstein’s 4D equations without ordinary 

matter can be expressed as a 5D metric with the pure-canonical form.  This enables a bet-

ter understanding of the 4D solutions of general relativity, by exploring their 

‘surroundings’ in the extra dimension, which if it is accepted as ‘real’ also leads to extra 

physics. 

Following the proposition of canonical space in 1994, there was renewed interest 

in 5D embeddings.  Alternatives were investigated, but much of this work is of little in-

terest, because nowadays it is possible to prove the uniqueness of the pure-canonical form 

*
5C  in short order (a succinct proof will be given in the first segment of Section 3 below).  

However, there was an interesting byproduct of these investigations.  In 1995, the first of 

a series of papers was published by Tavakol and coworkers [13], which recalled an old 

theorem from 1926 by Campbell [14].  In that year, Campbell sketched the conditions 

under which an ND Riemannian manifold could be embedded in a similar (N + 1)D mani-

fold.  The full proof of what became known as Campbell’s theorem was left to Magaard 

in his Ph.D. thesis of 1963 [15].  A more direct proof, using modern methods, was given 

in 2003 by Seahra and Wesson [16].  The importance of the Campbell-Magaard theorem 

should not be underestimated.  Traditionally, general relativity has been viewed as a 

stand-alone theory of 4D physics, which while mainly concerned with gravitation might 

one day be amalgamated with quantum theory to provide a unified theory.  A unified the-

ory, that is, in four dimensions.  The resurrection of the Campbell-Magaard theorem 
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reminded workers of something which should have been obvious throughout academic 

history: a theory in ND is necessarily linked to a wider theory in (N + 1)D, unless there is 

some fiat making N (= 4) somehow special.  In the absence of such a fiat, and recogniz-

ing that Einstein’s equations can actually be formulated in any number of dimensions, 

attention turned to the question of the 5D field equations. 

The field equations in any ND version of general relativity are necessarily based 

on the Ricci tensor.  Contracting this gives the Ricci scalar, which at any point in the ND 

manifold is a scalar measure of curvature, or in physical terms a measure of energy den-

sity.  From the Ricci tensor and its scalar, it is possible (if desired) to form the Einstein 

tensor, which by algebraic construction has zero divergence, suggesting its relation to 

conservation laws.  These things are elementary, but should be considered in the passage 

from (say) 4D to 5D.  The 4D field equations are commonly written in the form 

 ( ) ( )/ 2 , 0,123R R g g Tαβ αβ αβ αβκ α β− + Λ = =     . (1) 

Here the energy-momentum tensor Tαβ  is coupled to the geometry via a constant ( )κ , 

which by a choice of units may be rendered unity.  However, since the components of the 

metric tensor gαβ  are potentials, the term gαβΛ  involving the cosmological constant es-

sentially sets a zero point for energy.  This is unlike other areas of physics, where only 

the difference of energies is considered observable.  Sometimes, this problem is circum-

vented by including the gαβΛ  term in Tαβ , as a scalar fluid with the equation of state 

(pressure plus density) = 0.  However, this is specious, because there is an exact cancella-

tion of the numerator in the coupling term with the denominator of the pressure and 
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density of the ‘vacuum’ defined by (1). That is, the gravitational constant cancels out. 

These and other problems with the 4D cosmological constant can be avoided by extend-

ing the theory from 4D to 5D.  In general, the 5D metric will contain not only the 4D 

metric tensor, but also a scale (describingΛ ) and a scalar field (describing a spin-0 field). 

In the absence of ordinary matter, Einstein’s equations (1) give the 4D Ricci scalar in 

terms of the cosmological constant as 4 4R = Λ .  This can be used to evaluate the effec-

tive (4D) value of Λ  if 4R  can be obtained from the 5D embedding (see Section 3).  The 

4D equations (1) then read R gαβ αβ= Λ , or if Λ  is negligible 0Rαβ = .  These are the 

equations which are verified from the classical tests of general relativity.  Their 5D coun-

terparts are 

 ( )0 , 0,123, 4ABR A B= =      . (2) 

In these, each component has extra terms compared to 4D, due to the dependency on the 

extra coordinate 4x .  These extra terms, involving the extra metric coefficient and the 

derivatives of the 4D metric coefficients with respect to 4x , are important both physically 

and algebraically.  Physically, they allow of the construction of Tαβ  in (1), meaning that 

the energy and momentum content of 4D spacetime is the result of 5D geometry.  This is 

the way in which 5D relativity was arrived at in 1992, in the form of induced-matter or 

space-time-matter theory [17].  Algebraically, however, it transpires that the embedding 

of (1) in (2) is guaranteed by the Campbell-Magaard theorem.  Einstein’s 4D field equa-

tions (1) with matter are embedded in the (apparently empty) Ricci-flat equations (2).  

Therefore, 5D relativity is fairly secure in assuming that the field equations are Ricci-flat. 
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The application of the canonical metric to the field equations (2) makes the latter 

quite transparent as regards physics.  This subject has been well studied in the literature; 

so here it is sufficient to note that (2) reduce to (1) plus five extra equations.  These com-

prise a set of four conservation relations and a wave equation for the scalar field.  In the 

canonical frame, these extra equations are easily satisfied.  The net result, in loose lan-

guage, is that 5D relativity is similar to standard 4D relativity, except for a quadratic 

factor in the extra coordinate which is attached to spacetime.  It is this factor which de-

termines the embedding. 

The history of embeddings, as outlined above, may be summarized as follows.  

Most solutions of general relativity cannot be embedded in 5D Minkowski space 5M .  

The FRW cosmological models are exceptions, and are 5D flat.  By contrast, all solu-

tions of general relativity can be embedded in the general canonical metric 5C .  This is 

by construction; but this embedding also establishes a straight line of reasoning using 

Campbell’s theorem between the 4D Einstein equations (1) and the 5D Ricci equations 

(2).  When the 4D part of the 5C  metric does not depend on the extra coordinate (except 

via the quadratic prefactor), the space is the so-called pure-canonical one *
5C .  It is alge-

braically special, is in general not 5D flat, and locally embeds all solutions of general 

relativity where there is no ordinary matter (i.e. vacuum) but where this is a cosmological 

constant.  This embedding is particularly relevant to the Schwarzschild-deSitter solution 

[11, 18].  It is a good example of the appropriate use of embeddings in physics.  While it 

may be obvious in retrospect, it should be noted that an arbitrary embedding will not in 

general ‘work’, in that it will either conflict with the 5D field equations and/or lead to 
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unphysical components of the 4D energy-momentum tensor.  This implies even more re-

spect for those embeddings which do work, including the pure-canonical form *
5C  which 

as will be seen throws new light on the old deSitter solution. 

 

3. Physical Applications of the Canonical Embedding 

In this section, by paragraph, the following subjects will be briefly discussed: the 

uniqueness of the 5D canonical metric; the meaning of the cosmological constant; the 5D 

null-path and the 4D Klein-Gordon equation; the behaviour of the extra coordinate, and 

how it leads to variability of the cosmological ‘constant’; dynamics when this last pa-

rameter dominates; and particle dynamics from a 5D, scale-free perspective. 

The notation is standard.  The coordinates are 0 123,x t x rθφ= =  with 2dΩ ≡  

( )2 2 2sind dθ θ φ+ , and 4x l=  to avoid confusion.  The fundamental constants (c, G, h) 

are usually absorbed for ease, except where they are needed for clarity or to obtain a nu-

merical value. 

The uniqueness of the canonical metric can be proven most quickly using the field 

equations 0ABR = .  The component 44R  concerns the scalar field, and its precise form 

may be found in the literature, where it is written out for certain problems in physics.  

(For example, where the metric coefficients depend on 0 1,x t x r= =  and 4x l= , where 

the 3D subspace has spherical symmetry for application to astrophysics.)  For the present 

purpose, the metric may be taken in the generic form  

 ( ) ( )2 2 2dS f l ds g l dl= ±      , (3) 
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where ( )2ds g x dx dxγ α β
αβ=  defines spacetime.  The question is then: What constraint 

arises from 44 0R =  between the embedding function ( )f l  and the scalar field ( )g l ?  

The answer, after some algebra, is 

 
2 2f Lg

l f
∂ =  ∂ 

     . (4) 

Here L is the arbitrary constant of integration which enters from the first integral of the 

second-order field equation, and is here taken to have the physical dimensions of a 

length.  The constraint (4) makes it straightforward to absorb the scalar field in (3) by a 

coordinate transformation, thereby fixing the form of the embedding function.  The new 

x4 coordinate is defined up to a second arbitrary constant of integration ( )0l , such that 

( )2
0~f l l−  now.  Setting the second constant to zero and redefining the first one gives, 

finally: 

 ( ) ( )22 2/dS l L g x dx dx dlγ α β
αβ= ±      . (5) 

This is the (pure) canonical metric as often used in the literature, and is seen to be unique 

up to coordinate transformations in 4x l= .  The length L in (5) may be physically identi-

fied in terms of the cosmological constant Λ , by reducing the 5D field equations to the 

4D ones in the absence of ordinary matter.  Then 23 / LΛ = ± , where Λ  > 0 for a space-

like extra coordinate and Λ  < 0 for a timelike extra coordinate. 

The meaning of the cosmological constant Λ  can be appreciated by noting that 

deSitter space of general relativity can be regarded as a 4D pseudosphere of constant cur-

vature, 21/ L−  for Λ  > 0 and 21/ L+  for Λ  < 0.  Alternatively, the 4D metric 
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 ( ) ( ) 12 2 2 2 2 2 21 / 3 1 / 3ds r dt r dr r d
−

= −Λ − −Λ − Ω  (6) 

can be mapped to the 5D metric 

 ( )2 2 2 2 2 2dS dT dX dY dZ dL= − + + ±      . (7) 

Here the signature is ( )+ − − − −  for Λ  > 0 and ( )+ − − − +  for Λ  < 0.  Thus, 4D deSitter 

space is isometric to 5D Minkowski space.  The physical cosmological constant Λ  meas-

ures the radius of curvature L which necessarily appears in the algebraic passage from flat 

5D to curved 4D.  For Λ  < 0, the mapping of deSitter space to a pseudosphere means that 

a line around the centre can repeatedly traverse the circumference 2 Lπ .  This is some-

times seen as a violation of 4D causality since events repeat with a period 2 /L cπ .  If 

desired, this behaviour can be avoided by supposing that events occur on different sur-

faces of a tightly-packed ‘scroll’.  However, from the 5D perspective, this behaviour is 

natural, as will be seen below. 

The null-path in 5D with 2 0dS =  in the canonical metric (5) corresponds to the 

timelike path in 4D with 2 0ds >  of a massive particle [19].  That is, in 5D all particles 

are in causal contact in the same way as photons in 4D.  The nature of the path in 4D de-

pends on the sign of Λ .  For Λ  > 0, the path wanders away from an l-hypersurface 

according to ( )* exp /l l s L= ± , which is slow if 23 / LΛ =  has its (small) cosmological 

value.  For Λ  < 0, the path oscillates around the 4D hypersurface of spacetime, according 

to  

 ( )1/2/
* , 3 /is Ll l e L±= = Λ      . (8) 
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Here *l  is the amplitude of the wave, whose wavelength is L.  The sign choice merely 

reflects the reversibility of the motion.  A more detailed investigation of the geodesics 

associated with the canonical metric (5) can be made, based on the variation 0dSδ   = ∫  

around S = 0.  The 4D motion is identical to that of general relativity for a particle in vac-

uum, that is if ( ) onlyg g xγ
αβ αβ= .  Otherwise, it may be shown that the form (3) with 

( ),g g x lγ
αβ αβ=  generates matter fields which modify the motion.  The motion in the ex-

tra dimension for the (pure) canonical metric is a second-order ordinary differential 

equation for the path ( )l l s= .  This equation is satisfied by the wavelike solution (8), de-

rived above directly from the metric.  However, the full form of the equation for the extra 

geodesic in 5D may be shown by some algebra to be the same as a familiar equation in 

4D [20].  Namely, the Klein-Gordon equation of wave mechanics: 

 2 2 0mψ ψ+ =      . (9) 

Here 2
, ;gαβ
α βψ ψ≡  where a comma denotes the partial derivative and the semicolon 

denotes the conventional covariant derivative.  The symbol m denotes the rest mass of the 

test particle whose wave function is ( ) ( )x sγψ ψ ψ= = .  The algebraic equivalence be-

tween the 5D path (8) and the 4D wave equation (9) has a physical interpretation: the 

extra parameter l in the canonical metric (5) for a null 5D path plays the dual role of extra 

coordinate and wave function. 

The behaviour of the extra coordinate is easier to understand by referring back to 

the previous discussion of the 4D deSitter metric and its 5D embedding.  The deSitter so-
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lution of general relativity with Λ  < 0 is topologically equivalent to a pseudosphere with 

radius ( )1/2
3 /L = Λ , which is closed and whose surface s effectively defines spacetime.  

Wave-particle duality is implicit to this model, because a particle orbits around the 

sphere, oscillating about the spacetime surface according to (8).  The precise correspon-

dence between algebra and physics involves the speed of light c and Planck’s constant h 

with its modified form / 2h π≡ .  The algebraic circumference of the deSitter sphere is 

2 Lπ .  The physical dimension associated with the particle is the Compton wavelength 

/h mc .  Setting these equal gives 2 /L h mcπ =  or /L mc= .  This is for the fundamen-

tal mode of the wave; but clearly overtones are allowed with wavelengths less by a factor 

1/ n where n is an integer.  In this way, it becomes apparent that the 4D deSitter solution 

can be interpreted in 5D as a trapped wave running around a sphere with radius / mc  

where m is the mass of the particle.  A consequence of this model is that the cosmological 

‘constant’ is actually a local parameter, and in fact proportional to the square of the parti-

cle mass. 

With Λ  variable from system to system, the cosmological-‘constant’ problem is 

resolved, at least in principle.  This problem consists basically in the mismatch of the 

small value of Λ  as determined by cosmology and the large magnitude as determined by 

particle physics [21, 22].  The discrepancy may be as big as 10120.  However, if Λ  is a 

local parameter, then Einstein’s equations should be applied system by system each with 

the appropriate value of this parameter.  The cosmological ‘constant’ should not be as-

sumed to have a unique, universal value.  That Λ  may have a locally-determined value 

can be appreciated by considering again the embedding of a 4D system in the 5D canoni-
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cal metric (5).  The 4D Ricci scalar for that metric can be calculated in terms of the em-

bedding function, and is 4 212 /R l= ±  depending on the signature.  In the absence of 

ordinary matter, it is usual to write 4 4R = Λ , so 23 / lΛ = ± .  This is the value determined 

extrinsically, from the embedding.  On the hypersurface l = L of spacetime, 23 / LΛ = ± , 

agreeing with the result noted before.  This is the value determined intrinsically, from 

Einstein’s equations applied in spacetime.  The extrinsic and intrinsic values of Λ  are 

complementary. 

It is instructive, given the preceding comments, to ask about the 4D dynamics of a 

system with a very large value of Λ .  An approximate calculation is sufficient to bring 

out the main features, though for concreteness attention is focused on the 3D spherically-

symmetric system (6) embedded in the 5D metric (5).  Then the acceleration of a test par-

ticle in the radial direction is  

 
2

2 23
d r r r
ds L

Λ
= = ±     . (10) 

Here the upper sign is for 0Λ >  and leads back to Hubble’s law for galaxies.  The lower 

sign is for 0Λ <  and may be relevant to subnuclear dynamics.  The latter case is particu-

larly instructive.  A purely radial orbit governed by (10) simply oscillates through the 

(3D) centre of the system with ( )* sin /r r s L=  where *r  is a constant.  (There is no ac-

celeration at the centre or asymptotic freedom.)  But a circular orbit can be stable if there 

is a balance between the centrifugal acceleration due to the azimuthal velocity vφ  and the 

attraction due to Λ  < 0, thus: 



15 

 
2 2 2

23
v c r c r
r L
φ Λ
= =      . (11) 

Presumably the angular momentum of the test particle is quantized in units of the reduced 

Planck constant, so if the mass is m then mrv nφ =  or /v n mrφ =  where n is an integer.  

Combining this with (11) gives the radius of the nth. orbit as  

 
1/2

n
n Lr
mc

 =  
 

     . (12) 

The magnitude of the energy associated with this orbit is 

 
2 2 2

20 3 2 2
nr n

n

c r mc r ncE m dr
L L

 Λ
= = = 

 
∫      , (13) 

where nr  has been eliminated using (12).  The difference in energy between adjacent or-

bits, and its numerical size for a typical potential well of order 1210L −≈  cm, are: 

 1 1GeV
2n n
cE E E
L+∆ ≡ − = ≈      . (14) 

This is of the same order as the rest-mass energy of many particles, including the proton.  

It should also be noted that the energy in (13) or (14) is independent of the rest mass of 

the test particle, and so obeys the Equivalence Principle.  It is apparent that the motion of 

a test particle under the influence of a large Λ  as per equations (10)-(14) is physically 

reasonable. 

Particles in general are conventionally assumed to obey the Klein-Gordon equa-

tion (9) if their motions are relativistic.  That equation is commonly derived by applying 

time and space operators for the energy E and 3-momentum p to the metric, or equiva-
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lently to the energy/momentum relation 2 2 2E p m− = .  But, as noted before, the 4D 

Klein-Gordon equation is algebraically equivalent to the extra component of the geodesic 

in 5D dynamics.  It is convenient that the 5D geodesic equation splits into a 4D relation 

which is identical to the spacetime geodesic equation of general relativity, plus an extra 

relation which is equivalent to the Klein-Gordon equation of standard wave mechanics.  

However, this split is due to the human propensity to separate spacetime and the extra 

dimension in 5D dynamics.  If desired, it is possible to replace the 4D Klein-Gordon 

equation in the 4D wave function 4ψ  by a 5D wave equation in a ‘super’ wave-function 

5ψ .  By analogy with (9), this reads 

 2
5 5 0ψ =      . (15) 

In the weak-field, no acceleration limit of this, with ( )5 exp i Et px mlψ = − −   , the con-

ventional equation (9) and the standard relation 2 2 2 0E p m− − =  are recovered.  (The 

form of the 5D wave function will depend in general on the form of the 5D metric.)  This 

procedure is admittedly of mainly academic – as opposed to practical – interest.  But it 

illustrates the possibility of replacing a 4D relation (9) with an explicit mass m and the 

scale attached to it, by a 5D relation (15) in which the mass is implicit and which has no 

scale.  This is relevant to the formulation of particle physics, and notably supersymmetry.  

The latter is spoilt in 4D by the finite masses of the particles, which are therefore fre-

quently assumed to be boosted from their zero (supersymmetric) values by the Higgs 

mechanism [23].  By contrast, in a general 5D theory, the masses are related to the scalar 

field, and the relations describing this and the other fields (gravitation and electromagnet-
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ism) are scale-free.  Indeed the 5D field equations 0ABR = , with which the present ac-

count began, are scale-free. 

 

4. Conclusion 

Five-dimensional Kaluza-Klein theory was invented in the 1920s but effectively 

went into hibernation until the 1990s.  Then, new versions of 5D relativity were proposed 

on physical grounds.  In 1992, induced-matter or space-time-matter theory was proposed 

as a means of explaining mass and energy as geometrical effects, an approach that was 

furthered physically by the introduction of the canonical metric in 1994, and given an al-

gebraic basis by the rediscovery of Campbell’s theorem in 1995.  Also, in 1998 

membrane theory was proposed by two different groups, motivated by the wish to under-

stand particle masses and using an exponential in the extra coordinate (rather than a 

quadratic), which came to be known as the warp metric.  This alternative theory has not 

been dealt with here, partly because it has its own literature and partly because good re-

views are already available [24].  Both approaches to 5D relativity are based on the 

appropriate use of embeddings, and because they pass smoothly to general relativity in 

the 4D limit they both agree with observations.  This correspondence is preserved by the 

assumption, introduced in 2001, that all particles move on null paths in 5D.  History, as 

reviewed in Section 2, therefore leaves the theory as a coherent whole, in which 4D gen-

eral relativity is locally and smoothly embedded in a larger, causally-connected 5D 

world. 
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Newer results, as reviewed in Section 3, have focused on deSitter space.  That old 

4D solution is now seen as an example of 5D conformal space.  With a negative cosmo-

logical constant, deSitter space describes a spherical, closed surface with a radius 

( )1/2
3 /L = Λ .  Identifying this surface with spacetime, a test particle of mass m oscillates 

about the surface in accordance with the 4D Klein-Gordon equation.  However, in the 5D 

picture, the cosmological ‘constant’ is not universal, but a local parameter whose magni-

tude is proportional to the square of the particle mass.  This prescription is a major 

consequence of the application of the canonical embedding as it is presently understood. 

The 5D perspective offers, of course, the promise of many more insights to 4D 

physics. 
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