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Abstract This paper aims to discuss two issues that can have a significant
impact on the foundations of the theory of gravitation:
1. The existence of relativity of space-time geometry with respect to the
properties of used reference frame, which is a manifestation of the long-known
fact of relativity of geometry of space and time with respect to properties of
measuring instruments (Henri Poincare).
2. Lack of invariance of Einstein’s equations with respect to the geodetic
transformations preserving unchanged the equations of motion of test parti-
cles. Because of this, the physically equivalent states are described, generally
speaking, by means of different solutions of these equations. In other words,
there is no one-to-one correspondence between the solutions of these equa-
tions and the set of admissible physical states

Keywords Foundation of gravitation theory · Equations of gravitation

1 Relativity of Space-Time

Einstein’s theory of gravity is a realization of the idea of the relativity of the
properties of space-time with respect to the distribution of matter. However,
it is well known that before the advent of Einstein’s theory, Henri Poincaré
showed that the properties of space and time are also relative to the properties
of the used measuring instruments [1]. Of course now it can be said also about
the properties of space-time too. However, these convincing arguments have
never been implemented in physical theory.

We can make a step towards the realization of this idea, if we will pay
attention that the properties of measuring instruments are one of the char-
acteristics of the used reference frame. We can, therefore, susapect that we
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deal with the fact of space-time relativity with respect to the used reference
frame.

By a non-inertial frame of reference (NIRF) we mean the frame, the body
of reference of which is formed by point masses moving in an IFR under the
effect of a given force field. At that, we postulated, according to Special Rela-
tivity, that space-time in inertial reference frame (IFR) is pseudo-Euclidean.
On this basis one can find the line element of space-time in the NIFR from
the viewpoint of observers located in the NIFR and proceeded from relativity
of space and time in the Bercley-Leibnitz-Mach-Poincaré (BLMP) meaning.

The reference body (RB) of a reference frame is supposed to be formed
by identical point masses m. If an observer in the reference frame is at rest
, his world line coincides with the world line of some point of the reference
body. It is obvious for such an observer in an IFR that the accelerations of
the point masses forming his reference body are equal to zero. This fact takes
place in relativistic meaning, too. That is, if the line element of space-time
in the IFR is denoted by dσ and uα = dxα/dσ is the field of 4- velocity of
the point masses forming the reference body, then the absolute derivative of
uα is equal to zero: 1

Duα/dσ = 0. (1)

(We mean that an arbitrary coordinate system is used.)
Does it occur for an observer in the NIFR ? That is, if the differential

metric form of space-time in a NIFR is denoted by ds, does the 4-velocity
vector ζα = dxα/ds of the point-masses forming the reference body of the
NIFR satisfy the equation

Dζα/ds = 0 ? (2)

If the space-time is absolute, equation (2) holds for only ds = dσ. However,
if space and time are relative in the BLMP sense, then for both observers,
located in some IFR and NIFR, the motion of the point masses, forming their
reference bodies, which are kinematically equivalent, must be dynamically
equivalent, too (both in non-relativistic and relativistic sense). Any observer
in the NIFR, isolated from the external world and proceeded from relativity
of space-time in BLMP meaning, consider points of the reference body as the
ones of his physical space, and space of events as his space-time. Therefore,
from his viewpoint point masses forming the reference body of his frame are
not under action of any forces (the same as for the observer in IFR), and their
4-velocity must be equal to zero. In other words, since for the observer in the
IFR world lines of the reference body are, according to (1), some geodesic
lines, for the observer in the NIFR the world lines of the of his BR also must
be geodesic lines in his space-time, which can be expressed by (2 ).

The equation (2) uniquely determines the fundamental metric form in
the above NIRF. Indeed, the differential equations of these world lines are at
the same time Lagrange equations describing in Minkowski space-time the
motion of the point masses forming the reference bodies of the NIFR. The
last equations can be obtained from a Lagrange action S by the principle
of the least action. Therefore, the equations of the geodesic lines can be
obtained from a differential metric form ds = k dS, where k is constant,

1 We use notations and definitions, following the Landau and Lifshitz book [7].
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dS = L(x, ẋ)dt, and L(x, ẋ) is a Lagrange function describing in Minkowski
space-time the motion of identical point massesm forming the body reference
of the NIFR. . The constant k is equal to −(mc)−1, as it follows from the
analysis of the case when the frame of reference is inertial.

The above NIFR can be named a proper reference frame (PRF) of the
force field given in a IFR Thus, if we proceed from relativity of space and
time in the BLMP sense, then the line element of space-time in PRFs can be
expected to have the following form:

ds = −(mc)−1 dS(x, dx). (3)

Therefore, properties of space-time in PRFs are entirely determined by
properties of used frames in accordance with the BLMP idea of relativity of
space and time.

2 Examples

The above NIFR can be named a proper reference frame (PRF) of the force
field given in a IFR. Consider examples of PRFs.

1. The reference body is formed by noninteracting electric charges, moving
in a constant homogeneous electric field E . The motion of the charges in an
IFR is described in the Cartesian coordinates system by a Lagrangian [7]

L = −mc2 (1− v2/c2)1/2 + E e x, (4)

where v is the speed of a particle. According to (3) the space-time metric
differential form in this frame is given by

ds = dσ − (wx/c2)dx0, (5)

where
dσ = [ηαβdx

αdxβ ]1/2

is the differential metric form of the Minkowski space-time in the IFR in
the coordinate system being used, and w = e E/m is the acceleration of the
charges.

2. The reference body consists of noninteracting electric charges in a
constant homogeneous magnetic field H directed along the axis z. The La-
grangian describing the motion of the particles can be written as follows
[7]:

L = −mc2(1− v2/c2)1/2 − (mΩ0/2)(ẋy − xẏ), (6)

where ẋ = dx/dt, ẏ = dx/dt, and Ω0 = eH/2mc.
The points of such a system rotate in the plane xy around the axis z with

the angular frequency

ω = Ω0[1 + (Ω0r/c)
2]−1/2, (7)

where r = (x2 + y2)1/2. The linear velocity of the BR points tends to c when
r → ∞.
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For the given NIFR

ds = dσ + (Ω0/2c) (ydx− xdy). (8)

Thus in the above examples space-time is a Finslerian.
3. Another, rather unexpected example, give the recent results on the

motion of small elements of a perfect isentropic fluid [5].
Instead of the traditional continuum assumption, the behavior of the fluid

flow can be considered as the motion of a finite numbler of particles under
the influence of interparticles forces which mimic effects of pressure, viscosity,
etc. [6]. Owing to replacement of integration by summation over a number
of particles, continual derivatives become simply time derivatives along the
particles trajectories. The velocity of the fluid at a given point is the velocity
of the particle at this point. The continuity equation is always fulfilled and
can consequently be omitted. Owing to such discretization the motion of
particles is governed by means of solutions of ordinary differential equations
of classical or relativistic dynamics.

In [5] it was shown that the Lagrangian described the motion of macro-
scopically small elements (“particles”) of a perfect isentropic fluid is given
by

L = −mc

(

Gαβ
dxα

dλ

dxβ

dλ

)1/2

dλ, (9)

In this equation m are the masses of the “particles”, c is speed of light,
Gαβ = κ

2 ηαβ , where ηαβ is the metric tensor of the Minkowski space-time
E,

κ =
w

nmc2
= 1 +

ε

ρc2
+

P

ρc2
, , (10)

where w is the fluid enthalpy per unit of volume, ε is the fluid density energy,
ρ = mn, n is the particles number density, P is the pressure i the fluid, λ is
a parameter along 4-paths of particles.

In an inertial reference frame (i.e. in Minkowski space-time E) we can set
the parameter λ = σ which yields the following Lagrange equations which
does not contain the mass m:

d

dσ
(κuα)−

∂κ

∂xα
= 0 (11)

where uα = ηαβu
β, and uα = dxα/dσ. For adiabatic processes [7]

∂

∂xα

(w

n

)

=
1

n

∂P

∂xα
, (12)

and we arrive at the equations of the motion of the set of the particles in the
form

w
duα
dσ

+ uαu
β ∂P

∂xβ
−
∂P

∂xα
= 0. (13)

where duα/dσ = (∂uα/∂x
ǫ)uǫ. It is the general accepted relativistic equa-

tions of the motion of fluid [7].
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In a comoving reference frame the space-time the line element is of the
form

ds2 = Gαβdx
αdxβ . (14)

In this case the element of the proper time is ds. After the setting λ = s,
the Lagrangian equation of the motion takes the standard form of a congru-
ence of geodesic lines :

duα

ds
+ Γα

βγu
βuγ = 0, (15)

where duα/ds = (∂uα/∂x
ǫ)uǫ, uα = duα/ds, and

Γα
βγ =

1

2
Gαǫ

(

∂Gǫβ

∂xγ
+
∂Gǫγ

∂xβ
−
∂Gβγ

∂xǫ

)

. (16)

In the Cartesian coordinates

Γ γ
αβ =

1

κ

(

∂κ

∂xγ
δαβ +

∂κ

∂xβ
δαγ − ηαǫ

∂κ

∂xǫ
ηβγ

)

, (17)

so that

Γ 1
00 = −

1

ρc2
∂P

∂x1
(18)

In the spherical coordinates the scalar curvature R is given by

R =
6

κ
3r2

(r2κ′)′, (19)

where the prime denotes a derivative with respect to r.
Therefore, the motion of small elements of the fluid in a comoving refer-

ence frame can be viewed as the motion in a Riemannian space-time with a
nonzero curvature.

4. Suppose that in the Minkowski space-time gravitation can be described
as a tensor field ψαβ(x) in E, and the Lagrangian, describing the motion of
a test particle with the mass m in E is of the form

L = −mc[gαβ(ψ) ẋ
α ẋβ ]1/2, (20)

where ẋα = dxα/dt and gαβ is a symmetric tensor whose components are
functions of ψαβ [3]. If particles move under influence of the force field ψαβ(x),
then according to (3) the space-time line element in PFRs of this field takes
the form

ds2 = gαβ(ψ) dx
α dxβ (21)

Consequently, the space-time in such PRFs is Riemannian V with curvature
other than zero. The tensor gαβ(ψ) is a space-time metric tensor in the PRFs.

Viewed by an observer located in the IRF, the motion of the particles,
forming the reference body of the PRF, is affected by the force field ψαβ . Let
xi(t, χ) be a set of the particles paths, depending on the parameter χ. Then,
for the observer located in the IRF the relative motion of a pair of particles
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from the set is described in non-relativistic limit by the differential equations
[4]

∂2ni

∂t2
+

∂2U

∂xi∂xk
nk = 0, (22)

where nk = ∂xk/∂χ and U is the gravitational potential.
However, the observer in a PRF of this field will not feel the existence of

the field.The presence of the field ψαβ will be displayed for him differently —
as a space-time curvature which manifests itself as a deviation of the world
lines of nearby points of the reference body.

For a quantitative description of this fact it is natural for him to use the
Riemannian normal coordinates. 2 In these coordinates spatial components
of the deviation equations of geodesic lines are

∂ni

∂t2
+Ri

0k0n
k = 0, (23)

where Ri
0k0 are the components of the Riemann tensor. In the Newtonian

limit these equations coincide with (22).
Thus, in two above frames of reference we have two different descriptions

of particles motion — as moving under the action of a force field in the
Mankowski space-time, and as moving along the geodesic line in a Riemann
space-time with the curvature other than zero.

Of course, (3) refers to any classical field F . In particular, space-time in
PRFs of an electromagnetic field is Finslerian [13]. However, since ds, in this
case, depends on the mass and charge of the particles forming the reference
body, this fact is not of great significance.

Thus any force field can be considered based on the aggregate “IRF +
Minkowski space”, and based on the aggregate “PRF + non-Euclidean space-
time with metric (3)“. From this point of view of geometrization of gravity
is the second possibility, which was discovered by Einstein’s intuition.

It is important to realize that the relativity of space-time geometry to
the frame of reference is the same important and fundamental property of

physical relativity as relativity to act of measurement, the physical realization
of which is quantum mechanics. Full implementation of these ideas can have
far-reaching implications for fundamental physics.

3 Gravity equations and gauge-invariance

In the theory of gravitation the equations of motion of test particles play
a fundamental role. Notion of ”gravitational field” emerged as something
necessary to correctly describe the motion of bodies. The magnitudes that
appear in the equations of motion, become the main characteristic of the field.
The field equations have emerged as a tool for finding these magnitudes for
a given distribution of masses.

2 This and the above consideration does not depend on the used coordinate sys-
tem, it can be performed by a covariant method.
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All this is very similar to classical electrodynamics. In this case the equa-
tions of motion of test charges are invariant under gauge transformations
of 4-potentials. For this reason, all 4-potentials, obtained from a given by a
gauge transformation, describe the same field. That is why the field equations
of classical electrodynamics are invariant under gauge transformations.

Einstein’s equations of the motions of test particles in gravitational field
are also invariant with respect to some class of transformations of the field
variables in any given coordinate system — with respect to geodesic transfor-
mations of Christoffel symbols (or metric tensor) [8]. Such transformations
for the Christoffel symbols are of the form

Γ
α

βγ(x) = Γα
βγ(x) + δαβ φγ(x) + δαγ φβ(x), (24)

where φα(x) is a continuously differentiable vector field. (The transformations
for the metric tensor are solutions of some complicate partial differential
equations).

Consequently, all Christoffel symbols obtained from a given by geodesic
transformations, describe the same gravitational field. The equations for de-
termining the gravitational field must be invariant under such transforma-
tions, and the physical meaning can only have values which are invariant
under geodesic transformations.

However, Einstein’s gravitational equations are not consistent completely
with the requirement which imposes on them the hypothesis of the motion
of test particles along geodesics, because they are not geodesically invariant
[9].

Therefore, we can assume that in a fully correct theory of gravity, based
on the hypothesis of the motion of test particles along geodesics, geodesic
transformations should play the role of gauge transformations, and coordi-
nate transformations should play the same role as in electrodynamics.

Einstein equations are in good agreement with observations in weak and
moderately strong fields. Therefore, if there are more correct equation of
gravitation, then deriving from them physical results should differ observably
from Einstein’s equations only in strong fields.

Simplest vacuum equation of this kind were first proposed (from a dif-
ferent point of view) in [10], and discussed in greater detail in [13], their
physical implications discussed in [11] - [13], and the equations in the pres-
ence of matter - in [14]. They are some geodesic-invariant modification of
Einstein’s equations.

From a theoretical point of view, the most satisfactory are the vacuum
equations.

They predict some fundamentally new physical consequences which can
be tested experimentally.

Under geodesic transformations the Ricci tensor Rαβ of space-time V in
PRFs of gravitational field transforms as follows:

Rαβ = Rαβ + (n− 1)ψαβ , (25)

where

ψαβ = ψα;β − ψαψβ, (26)
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and a semicolon denotes a covariant differentiation in V . Therefore, the sim-
pest generalization of the Einstein equations is of the form

Rαβ + (n− 1)Γαβ = 0, (27)

where Γαβ is a tensor transformed under geodesic transformations as follows

Γαβ = Γαβ − ψαβ . (28)

Due to the fact that our space-time is a bimetric, there exists a vector
field

Qα = Γα −
◦

Γα (29)

where Γα = Γ β
αβ ,

◦

Γα =
◦

Γ
β

αβ , Γ γ
αβ and

◦

Γ
γ

αβ are the Christoffel symbols in
V and E, respectively.

Under geodesic transformations in V the quantities Γα are transformed
as follows:

Γα = Γα + (n+ 1)ψα (30)

For this reason, a tensor object

Aαβ = Qα;β −QαQβ , (31)

where Qα;β is a covariant derivative of Qα in V , has the same transformation
properties under geodesic transformations as must have the above vector field
Γαβ .

The line element of space-time in PRFs was obtained from the Lagrangian
motion of test particles in the Minkowski space-time E. If we want to find the
equation of gravity in space-time E, you must realize that in this space, the

Christoffel symbols Γ γ
αβ can be regarded as components of a tensor Γ γ

αβ−
◦

Γ
γ

αβ

in the Cartesian coordinate system, i.e. as components of Γ γ
αβ , where the

ordinary derivatives replaced by covariant in the metric of space-time E.
(Just as in bimetric Rosen’s theory [15]).

Given this, we arrive at the conclusion that the equations

Rαβ −Aαβ = 0 (32)

are a simplest geodesic invariant modification of the vacuum Einstein equa-
tions, considered from the point of view of flat space-time.

These equations can be written in another form. The simplest geodesic-
invariant object in V is a Thomas symbols:

Πγ
αβ = Γ γ

αβ −
1

n+ 1

(

δηαΓβ + δηβΓα

)

. (33)

It is not a tensor. However, from point of view of flat space-time E, they can

be considered as components of the tensor Bγ
αβ = Πγ

αβ −
◦

Π
γ

αβ , where
◦

Π
γ

αβ

is the Thomas symbols in E. In another words, Bγ
αβ can be considered as

the Thomas symbols where derivatives replaced by the covariant ones with
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respect to the metric ηαβ . This geodesic-invariant tensor can be named by
strength tensor of gravitational field.

The above gravitation equation can be written by tensor Bγ
αβ as follows:

▽γ B
γ
αβ −Bγ

αδB
δ
βγ = 0. (34)

where ▽ denotes a covariant derivative in E.
The physical consequences following from these equations do not con-

tradict any observational data, however, lead to some unexpected results,
which allow to us to test the theory. The first result is that they predict
the existence of supermassive compact objects without event horizon which
are an alternative to supermassive black holes in the centers of galaxies.[13]
The second result is that they provide a simple and natural explanation for
the fact of an acceleration of the universe as of a consequence of the gravity
properties [2].

4 Remarks on the equations inside matter

We can not claim that the particles inside any material medium move along
geodesics. Consequently, it is unclear whether the field equations inside the
matter to be a generalization of the geodesic equations of Einstein. How-
ever, such equations have been proposed in the work [14]. Comparison of
the results obtained from them with observations of the binary pulsar PSR
1913+16 shows good agreement with observations. Despite this, doubts as to
their correctness are still remain. The problem is that the writing of general-
ization of the equations in the matter requires significantly narrow the class
of admissible geodesic transformations of the metric tensor of space-time V .
It is not clear whether such space-time is Riemannian. It is possible, geodesic
invariance is violated in a material medium. For this reason, we do not con-
sider these equations here in more detail, assuming that this is still a subject
for further research.
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