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Abstract

In this paper we propose a method for a quantitative estimation
of the decision maker’s knowledge in the context of the Analytic Hi-
erarchy Process (AHP) in cases, where the judgment matrix is in-
consistent. We show that the matrix of deviation from the transitiv-
ity condition corresponds to the rate matrix for transaction costs in
the financial market. For the quantitative estimation of the decision
maker’s professionalism, we apply the Ising model and thermodynam-
ics tools.
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Introduction

Do we know what people take into consideration when they make decisions?
Do they make the same decision in the same circumstances each time? How
does the decision maker’s knowledge influence the decision that (s)he makes?
These are very interesting questions in the theory of decision making. Some
people make rational decisions, which are determined by their knowledge
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about the exterior conditions. Their decisions are easy to predict. On the
other hand, others, who are guided by emotions or very subjective opinions,
make completely different choices in the same situations. Their behaviour is
irrational and unclear for other people. Prof. R. Aumann, a mathematician
and the Nobel Memorial Prize winner for game theory in economics, explains
that human life is composed of infinitely repeated games in which we take
part [1]. The result of every previous game influences the next one. What is
rational and scientifically certain in one game, in another may harm. Taking
this into consideration, people often do not make the decision that is the
best for them at a given moment in other people’s opinion, but the one that
will bring better results in the future. People very often react quite dispro-
portionally to what has happened, because their reaction is proportional to
what might happen if some event was to be repeated. Similarly, we very often
resign from something in one game, in order to avoid problems in another.
Everything depends on the decision maker’s goals and the knowledge (s)he
possesses. These goals and his/her knowledge are very often inaccessible to
other people.

We consider the problem of the estimation of the decision maker’s knowl-
edge in the context of the Analytic Hierarchy Process (AHP) proposed by
Saaty [2] as a method of multi-criterion decision making. AHP involves de-
composing a complex decision into a hierarchy of goals, criteria, sub-criteria
and alternatives comparing the properties of each possible pair of elements
at each level as a matrix and synthesising the priorities. The major prob-
lem with this method is to find weights which order the objects and reflect
the recorded judgments in situations where the judgments are not transitive,
that is, the judgment matrix is inconsistent. As we argue in the paper [3],
human thinking is intransitive, because e.g. new knowledge requires that
we change our minds. Moreover, modern decision makers must take into
consideration more and more alternatives. In such situations, conservation
consistency of the judgment matrix is impossible [4, 5]. In the paper [3] we
identify the matrix of deviation from the transitivity condition as the rate
matrix for “transaction costs”, which expresses decision maker’s aversions
and preferences. We propose the method of estimation his/her professional-
ism, which takes into account these “costs”. The concept of transaction costs
does not appear accidentally here, because, as we show, they correspond to
the margin, with whom we deal e.g. in exchange offices.

An estimation of the decision maker’s professionalism is fundamental with
reference to the credibility and the quality of their decisions. The AHP
method is widely applied in such domains as: prioritisation, resource allo-
cation, public policy, strategic planning and many more [6, 7, 8], and the
qualitative but not quantitative nature of the decision agents makes a sim-
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ple estimation of a concrete choice impossible. For the quantity estima-
tion of the decision maker’s effectiveness we apply the Ising model [9]. The
Ising Hamiltonian determines “profit” from a decision strategy. Applying
the thermodynamics approach [10], we describe classes of decision makers
that achieve the same profits in different ways. Moreover, we determine the
effective algorithm of decision making, which leads to the maximum profit.
This allows us to answer the question, what is the most effective way of a
decision maker’s behaviour with fixed market parameters and no zero transac-
tion costs. The determined strategy corresponds to the clairvoyant strategy.
Then, we show that with the help of the thermodynamics parameter—the
temperature, which is the measure of achievable profit, we can compare the
achievements of people who solve completely different decision problems with
different transaction costs and at different times. This parameter allows us
to compare an abstract decision maker’s profit with the gain of the investor
as well. Finally, we propose a market interpretation of the discrete version of
the Fisher information [11] in the case where the probability density function
takes the value 0 or 1.

1 Transaction costs

To define and describe transaction costs, we observe the mechanism of its
formation. Let us consider the prices of currencies in exchange offices. We
will not be able to buy and sell currency at the same price. The exchange
offices make money by selling the currency to customers for more than they
paid to buy it and by buying the currency from customers for less than
they will receive when they sell it. The difference between these prices is
called a spread. We try to find a formula which determines the value of the
spread. Let us consider the quotations of two currencies EUR and USD in
an exchange office. Let ln b be the logarithm of the bid price of EUR/USD
and ln a be the logarithm of the ask price. Then, ln 1

a
is the logarithmic

exchange rate for converting US dollars to euros. From the principle of
insufficient reason, see [12], if there is no reason to prefer one exchange rate
over another, then it is sensible to assume a priori that both transactions of
the exchange – euros for dollars and dollars for euros can occur with equal
probability 1

2
. According to this principle we define the commission ǫ as the

expectation value of the logarithmic exchange rates

ǫ :=
ln b + ln 1

a

2
=

ln b − ln a

2
. (1)

We consider the logarithmic exchange rates because only in logarithms can
the product of rates resulting from a series of transactions in an exchange

3



office have the property of additivity.

2 Geometry of the market

Now we will describe the market in which the decision processes take place.
Let us consider a market of goods and/or obligations, criteria of judgments,
information and so forth, which we denote by G. If we assume the infinite
divisibility of goods, then G has the structure of an N -dimensional linear
space over the reals [13]. Elements of this space are called baskets. For any
basket p ∈ G we have a unique decomposition into the goods which make
it up

p =

N
∑

µ=1

pµgµ ,

in some fixed basis of normalised unit goods (g1, . . . , gN). The element gµ ∈ G
is the µth market goods and the coefficient pµ∈R is called the µth coordinate
of the basket and expresses its quantity. The market quotation U is a linear
map U(gν , · ) : G → R which assigns to every basket p its current value in
units of gν :

(Up)ν = U(gν ,p) =
N
∑

µ=1

U(gν , gµ)pµ ,

where U(gν , gµ) is the relative price of the unit of µth asset given in units
of νth asset. The elements uνµ := U(gν , gµ), for ν, µ = 1, . . . , N , make the
N×N matrix of market rates U.

In the AHP method U = (uνµ) is a pairwise comparison matrix of judg-
ments. AHP is based on several steps [2]. Firstly, a complex decision is
decomposed into a hierarchy of goals, criteria, sub-criteria and alternatives,
which influence the solution to the problem. Then, a decision maker ex-
presses his/her own local preferences by comparisons of the properties of
each possible pair of elements at each level. The pairwise comparisons are
organised into a square matrix of the relative judgments. The next step is
to compute a vector of priorities from this matrix that indicates the relative
importance of each alternative. Alternatives can be quantitative (goods) or
qualitative (personal preferences). The decision makers express their own
opinions in the pairwise comparison of alternatives in kilos, metres, euros
for the quantity-based judgments, or as equal, strong, very strong and so
on for the quality-based judgments. In the second case, these must be con-
verted into numbers, see [14]. The problem is to find weights which order

4



the objects and reflect the recorded judgments in a case where the pairwise
comparison matrices are inconsistent, that is, the judgments are intransitive
uνρuρµ 6= uνµ, see [3]. In the paper [3] we consider the intransitive case of
the AHP model for which the matrix of market rates was not antisymmet-
rical, that is uµν 6= 1

uνµ
. Such a deviation of opinion from the condition of

transitivity expresses decision maker’s aversions and preferences and corre-
sponds to the transaction costs in the financial market. Let us note that
we can identify the logarithm of the entry of the judgment matrix with the
logarithmic exchange rate for converting one good to another. In the case of
the EUR/USD, the logarithmic exchange rate for converting euros to dollars
equals ln u$¿ = ln b and dollars to euros—ln u¿$ = ln 1

a
. From Eq. (1) it

follows that if we take the transaction costs into consideration, we obtain the
following formulas

ln u$¿ = ln
1

u¿$ + 2ǫ and ln u¿$ = ln
1

u$¿ + 2ǫ .

As we can see, thanks to the commission defined like (1) any of the exchange
rates for converting euros to dollars and dollars to euros is not more preferred.
Both of these rates are equally profitable for a broker and (s)he has no reason
to prefer one to the other. Hence, we can express all logarithmic exchange
rates for converting the µth good to the νth good in the AHP method as

ln uνµ = ln
1

uµν

+ 2ǫνµ ,

for ν, µ = 1, . . . , N , where ǫνµ is a suitable commission. Let us note that the
elements ǫνµ have the property of antisymmetry.

3 Measurement of the decision maker’s knowl-

edge taking into account the transaction

costs—the Ising model

We want to measure the decision maker’s preferences in the AHP model in
the context of the profit that (s)he achieves. In order to speak of profit in the
case of decision problems, it is necessary that the decision maker selects some
asset g0 that will be the “currency” and expresses the judgments in the form
of their relative prices u0µ = U(g0, gµ) in relation to this asset, see [3, 13]. Of
course, the decision maker’s preferences may change in time, but (s)he can
always express them in respect to the fixed “currency”. Let u01t, . . . , u0Nt

be the relative prices of all criterions at the moment t in relation to g0t.
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Let us consider a strategy that consists of choosing only one criterion at
the successive moments t = 1, 2, . . . , k. If the decision maker takes the µth
criterion at the moment t, then

hµt := ln
u0µt

u0µ(t−1)

denotes the logarithmic rate of return from this criterion in the time inter-
val [t−1, t]. But, if we assume that at the moment t−1 the person who
makes decision had the νth criterion, we have to take into consideration the
transaction cost ǫµν from converting the νth criterion into the µth criterion.
Let the transaction costs be fixed. Let nµt denotes the sentence the decision
maker chooses the µth criterion at the moment t. Then, [nµt] is the Iverson
bracket and it takes the value 1 if the decision maker chooses the µth cri-
terion at the moment t or 0 otherwise. For every scenario of the decision
maker’s behaviours we can give the sequence ([nµt]) whose elements fulfil the
formula

N
∑

µ=1

[nµt] = 1 , (2)

for t = 1, 2, . . . , k. Let us note that the cost ǫµν appears if and only if (s)he
chooses the νth criterion at the moment t−1 and converts it to the µth
criterion at the moment t. We describe this cost in the interval [0, k] with
the help of propositional calculus. Then, we can express the profit of the
person who makes a decision in the interval [0, k] by the formula

H([n11], . . . , [nNk]) :=
∑

µ, t

hµt[nµt]−
∑

ν, µ, t

ǫµν [¬(nµt⇒nµ(t−1))∧¬(nν(t−1)⇒nνt)].

The sequence ([nµt]), for µ = 1, . . . , N ; t = 1, 2, . . . , k, defines the decision
maker’s strategy and ([n11], . . . , [nNk]) :=([n11], . . . ,[nN1], . . . ,[n1k], . . . ,[nNk])
describes the pure strategy.

Using the Boolean lattice on the logical values of the received sentence
forms, we obtain [¬x] := 1− [x], [x∧y] := [x][y] and we note that [x][x] = [x],
for [x] ∈ {0, 1}. Then, from Eq. (2) and the rules of propositional calculus,
we obtain the following formula for the decision maker’s profit

H([n11], . . . , [nNk]) =
∑

µ, t

hµ t[nµt] −
∑

ν, µ, t

ǫµν [nν(t−1)][nµt] . (3)

If we assume periodic boundary conditions, that is, [nµ 0] = [nµ k], Eq. (3)
represents a Hamiltonian of an Ising chain [9]. If we rewrite this equation in
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the terms of spins Sµt := [nµt] −
1
2
, we obtain

H(S11, . . . , SNk) =
∑

µ, t

hµ t Sµt −
∑

ν, µ, t

ǫµνSµt −
∑

ν, µ, t

ǫµνSν(t−1)Sµt−

−
∑

ν, µ, t

1

4
ǫµν +

∑

µ, t

1

2
hµ t ,

that is, the energy of the Ising model for particles with the spin 1
2

in the
alternating magnetic field hµt − ǫνµ modified about some constants.

We see that, because of the ability of the Ising model to represent the
main features of the critical behaviour of many different systems, it is very
popular not only in physics, but also in econophysics and economics [15]. In
1974 H. Föllmer introduced interactions to microeconomics and, for the first
time, created a model of economy that was based on rules similar to those
of the Ising model for magnets [16].

4 The thermodynamics of the canonical en-

semble

We know that some people make rational decisions that are easy to predict.
On the other hand, others make irrational and unclear choices in other peo-
ple’s opinions. We cannot predict such behaviour, but we can measure their
indefiniteness and its influence on the quality of decision making measured by
profit, as formulated in Eq. (3). To measure the indefiniteness or confusion
of the person who makes decisions, we have to compare his/her profit with
the outcomes of other decision makers. Therefore, we classify the decision
makers according to the profit which they achieve, see [17]. Let us consider
all mixed strategies that for a given price sequence (hµt) bring the same
profit as equivalent. These strategies can be parametrised by 2Nk weights
p[n11],...,[nNk] corresponding to the pure strategies. This set of strategies is
called the canonical statistical ensemble [18, 10]. In the canonical statistical
ensemble there is the decision maker who makes only rational decisions and
achieves the profit that describes the ensemble. Let us choose the strategy
that maximises the entropy to represent the class of decision makers. We will
call such a strategy the canonical strategy. We do not know anything about
the person who applies it except the expectation value of the profit E(H),
which (s)he achieves. In order to find the weights of the canonical strat-
egy, we have to calculate a conditional extreme of the Boltzmann-Shannon
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entropy [19]
S(p[n11],...,[nNk ]) := −E(ln p[n11],...,[nNk]) (4)

subject to the constraints:

1
∑

[n11],...,[nNk]=0

p[n11],...,[nNk] = 1 (7a)

and
E(H([n11], . . . , [nNk])) = const . (7b)

We can interpret the condition (7b) as the weakened balance condition. It
follows from the Newton’s third law of motion, which in the financial markets
implies the non-existence of the free lunch phenomenon. This problem was
discussed in the paper [20]. In order to find the weights of the canonical
strategy, we use the standard method of the Lagrange multipliers, that is,
we solve the following differential equation

dS(p[n11],...,[nNk]) − β dE(H([n11], . . . , [nNk])) − ζ d

1
∑

[n11],...,[nNk]=0

p[n11],...,[nNk] =

−

1
∑

[n11],...,[nNk]=0

(

ln p[n11],...,[nNk] +1+β H([n11], . . . , [nNk])+ζ
)

dp[n11],...,[nNk] = 0 ,

where β and ζ are the Lagrange multipliers. The above equation must be
fulfilled for all values dp[n11],...,[nNk], therefore

ln p[n11],...,[nNk] + 1 + β H([n11], . . . , [nNk]) + ζ = 0 .

From this equation we find that the weights of the canonical strategy are
equal

p[n11],...,[nNk] = e−β H([n11],...,[nNk])−ζ−1 . (5)

Now, we can eliminate the Lagrange multiplier ζ . The weights are nor-
malised, see Eq. (7a), therefore

1
∑

[n11],...,[nNk]=0

p[n11],...,[nNk] =
1
∑

[n11],...,[nNk]=0

e−β H([n11],...,[nNk])−ζ−1 = 1

and

e−ζ−1 =
1

1
∑

[n11],...,[nNk]=0

e−β H([n11],...,[nNk])

.
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After substituting this formula to (5), we obtain the Gibbs distribution func-
tion [18]

p[n11],...,[nNk] :=
e−β H([n11],...,[nNk])

1
∑

[n11],...,[nNk]=0

e−β H([n11],...,[nNk])

,

which expresses the dependence of the weights of the canonical strategy on
the profit H([n11], . . . , [nNk]), which is the result from the pure strategies.
The function

Z :=

1
∑

[n11],...,[nNk]=0

e−β H([n11],...,[nNk]) =

=

1
∑

[n11],...,[nNk]=0

e
−β

 

1
2

P

µ, t

hµt[nµt]+
1
2

P

ν, t

hν(t−1)[nν(t−1)]−
P

ν, µ, t

ǫµν [nν(t−1)][nµt]

!

is called the partition function in thermodynamics and the inverse of the
Lagrange multiplier β – the temperature of the canonical ensemble1, T = 1

β
.

In the canonical statistical ensemble the temperature is fixed, T = const.
We can express the partition function Z, for the profit given by (3), with the
help of the transition matrices that depend on the successive moments t− 1
and t:

M(t)[nν(t−1)][nµt] := e−β ( 1
2
hµt[nµt]+

1
2
hν(t−1)[nν(t−1)]−ǫµν [nν(t−1)][nµt]) .

Thus, the matrix M(t) is a 2×2 matrix given by

M(t) =

(

1 e−
1
2
β hµt

e−
1
2
β hν(t−1) e−β ( 1

2
hµt+

1
2
hν(t−1)−ǫµν)

)

.

Then, for convenient periodic boundary conditions, the function Z can be
written as the trace of the transition matrices product

Z =
1
∑

[n11],...,[nNk]=0

M(1)[nµk ][nν1]M(2)[nν1][nη2] · · ·M(k)[nθ(k−1)][nµk]

= Tr
k
∏

t=1

M(t) . (6)

1What in physics denotes expressing temperature in the natural unit—the Boltzmann
constant [18].
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Let us try to find the best strategy of the decision making that leads to
the maximum expectation profit. Because the entries of the matrices M(t)
depend on time via hµt, we cannot consider the proper value problem of the
partition function because it does not lead to its dense form. That is why
we use the (max, +) algebra [21, 10].

5 The (max, +) algebra of extreme strategies

From the definition of the entropy (4) and since p[n11],...,[nNk] = 1
Z

e−βH , we
obtain

S = −E(ln p[n11],...,[nNk]) = −

1
∑

[n11],...,[nNk]=0

p[n11],...,[nNk] ln p[n11],...,[nNk]

= ln Z + βE(H) .

After substituting β = 1
T

to the above formula, we obtain the following
relation among the entropy, the average profit and the partition function

T ln Z + E(H) = TS . (7)

From the above equation the strategy giving the maximum profit can be
found by calculating the limit for T → 0−. Because, the entropy is a posi-
tive function and it attains its maximum value ln 2Nk when all probabilities
equal 1

2Nk , it is bounded from above S ≤ Nk ln 2. Therefore, the maximum
expected profit H+ is equal to

H+ := lim
T→0−

E(H) = − lim
T→0−

T ln Z = lim
β→−∞

loge−β Z .

If we take into consideration Eq. (6), we obtain

H+ = lim
β→−∞

loge−β

(

Tr

k
∏

t=1

M(t)

)

.

Let us define the (max, +) algebra that follows from the elementary proper-
ties of the logarithmic function:

logε(ε
a εb) = a + b , lim

ε→+∞

logε(ε
a + εb) = max(a, b) ,

so, instead of adding the matrix elements we use the operation max of taking
the maximal element of them, and instead of their multiplication—their sum.
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Let

M̃(t)[nν(t−1)][nµt] : = loge−β M(t)[nν(t−1)][nµt]

=
1

2
hµt[nµt] +

1

2
hν(t−1)[nν(t−1)] − ǫµν [nν(t−1)][nµt]

be the logarithm of the transition matrix, then the logarithm of the transition
matrices product is defined as follows

(

M̃(t)× M̃(t+1)
)

[nν(t−1)][nθ(t+1)]
:= max

[nµt]

(

M̃(t)[nν(t−1)][nµt]+ M̃(t+1)[nµt][nθ(t+1)]

)

.

Hence, the decision maker can reconstruct the sequence ([n11], . . . , [nNk]),
which corresponds to the optimal strategy of a clairvoyant leading to the
maximal profit, by investigating the matrix elements contributing to the
function

(

M̃(1) × M̃(2) × · · · × M̃(k)
)

[nµk][nµk]
:=

= max
[n11],...,[nNk]

(

M̃(1)[nµk][nν1]+ M̃(2)[nν1][nη2] + · · · + M̃(k)[nθ(k−1)][nµk]

)

.

The maximal element determines the maximum possible profit.

6 Assessment of the decision maker’s profes-

sionalism

As we know, the entropy allows us to measure the qualities of a decision
(or financial) expert. However, the temperature T can be used to measure
the financial gain and compare achievements on different markets, during
different time frames, and with different transaction costs. Therefore, with
the help of this parameter we can compare seemingly different phenomena,
e.g. the decision maker’s profit and the gain of the investor.

In the previous section we considered the canonical statistical ensembles
that were characterised by the same profit from the decision strategy. As
the representative of the canonical ensemble we chose the strategy that max-
imised the entropy. It is described by the Gibbs distribution function. Let
us consider how the motion of the prices hµt influences the expectation value
of the profit from such a strategy with the fixed parameters nµt. Let S be
the independent variable. Keeping in mind the formulas that describe the
profit H and the partition function Z, we can calculate the differential of the
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entropy of the Gibbs distribution function from Eq. (7)

TdS = T

−β
1
∑

[n11],...,[nNk]=0

e
−β

 

P

µ, t

hµt[nµt]−
P

ν, µ, t

ǫµν [nν(t−1)][nµt]

!

∑

µ, t

[nµt]dhµt

Z
+ dE(H)

= −
∑

µ, t

E ([nµt]) dhµt + dE(H) = −
∑

µ, t

[nµt]dhµt + dE(H) ,

where [nµt] is the average value of the µth good at the moment t. From the
above formula it follows that the temperature of the canonical strategy is
equal

T =
∂E(H)

∂S
.

Then, the temperature measures the intensity of the change of the expec-
tation value of the profit E(H) from the canonical strategy caused by its
entropy change, see [10]. The value −T is the price of a unit of the entropy
S, therefore, the bigger the absolute value of the temperature of the decision
maker’s canonical strategy is, the greater is his/her confusion. Infinite tem-
perature has the canonical strategy representing monkey strategies. On the
other hand, the higher the class of the specialist is, the smaller entropy and
the absolute value of the temperature his/her canonical statistical ensemble
has. The best results are achieved by the decision makers with a temperature
close to zero.

7 Market interpretation of Fisher informa-

tion

In the previous sections we considered the Boltzmann-Shannon entropy as
a measure of the decision maker’s professionalism. It expresses his/her con-
fusion. But there are other measures that we can employ to estimate the
knowledge of the person who makes decisions, e.g. Fisher information [11].
The Fisher information has very important applications in physics because
it allows many physical laws and constants to be calculated, e.g. it explains
the prescription for constructing Lagrangians, see [22]. The source of this
information is the measure of the expected error that arises in the estima-
tion process of physical quantities. Let us assume that we want to estimate a
parameter of the value θ on the basis of the imperfect observation y = θ + x
of θ, where x is random noise. Let us consider the class of unbiased estimates
obeying E(θ̂) = θ . Then, the mean-square error e2 in the estimate θ̂ obeys
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the Cramer-Rao inequality [23]

e2I ≥ 1 , (8)

where I is the Fisher information given by the formula

I =

∫

p′(x)

p(x)
dx , p′ :=

dp

dx
. (9)

The quantity p(x) denotes the probability density function for the noise x.
From Eq. (8), it follows that the Fisher information is a quality metric of the
estimation procedure, since, the quality increases (e decreases) as I increases.
Moreover, the Fisher information is a measure of system disorder like the
Shannon entropy. The stronger the disorder is, the smaller the value of the
Fisher information I is [22].

The Fisher information is a related quantity to the Shannon entropy, but
it has different analytic properties. Whereas, the Shannon entropy is the
global measure of the information about the system, the Fisher information
is the local measure. Let us consider the discrete form of these quantities.
We can express an increment of the Shannon entropy as

S = −△x
∑

µ

p(xµ) ln p(xµ) , △x → 0 .

In the above formula the summation can be in any order and it does not
depend on the organisation of the system. The value of S remains constant,
therefore entropy is said to be a global measure of the behaviour of p(xµ).
However, the discrete form of the Fisher information (9) is given by the
formula [22]

I = △x−1
∑

µ

[p(xµ+1) − p(xµ)]2

p(xµ)
. (10)

This formula is not symmetrical. After replacement of the variables xµ+1 ↔
xµ, we obtain the other value of I. Moreover, if the system undergoes a
rearrangement, the local slope values [p(xµ+1)− p(xµ)]/△x will change dras-
tically, so the sum (10) will also change markedly. However, for p(xµ) = 0
discontinuities of the Fisher information and I goes toward infinity, since I is
thereby sensitive to local rearrangement of the system. Now, we try to gen-
eralise the formula (10) so it expresses information about the µth criterion
for the pure strategy defined in subsection 3.

Let us consider such case of the Fisher information in which the prob-
ability distribution function p(xµ) takes only two values 0 and 1. We can
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identify it with the Iverson bracket defined in subsection 3 for the µth crite-
rion. Taking the property (2) into consideration, we can express the Fisher
information about the µth criterion for the pure strategy as

Iµ :=
∑

t

(

if [nµt] = [nµ(t+1)] then 0 else
1

2

([nµ(t+1)] − [nµt])
2

[nµ(t+1)]+[nµt]

2

)

(11a)

=
∑

t

(

if [nµt] = [nµ(t+1)] then 0 else
([nµ(t+1)] − [nµt])

2

[nµ(t+1)] + [nµt]

)

. (11b)

Let us note that the above formula is symmetrical; it does not have disconti-
nuities points and it takes into consideration the local changes of the function
[nµt]. If no changes concerning the µth criterion happen at two successive
moments, that is [nµt] = [nµ(t+1)], then its contribution to the sum (11b)
in the interval [t, t + 1] is zero. Moreover, the formula (11b) has a natural
market interpretation. With accuracy to a multiplicative constant the value
Iµ corresponds to the sum of transaction costs that are connected with the
exchange of the µth criterion for an arbitrary one from among the remaining
N−1 criterions and an arbitrary criterion for the µth criterion. The factor
1/2, which appears in Eq. (11a), corresponds to half of the total transaction
costs related to the exchange of the µth criterion. The latter half of these
costs will be assigned to the criterion which follows the exchange or which is
exchanged for the µth criterion.

The Fisher information from mutually isolated systems like Boltzmann-
Shannon entropy has an additivity property [22]. Hence, the information
about the total costs from the strategy, which consists of choosing only one
criterion from among N criterions at successive moments, is the sum of the
Fisher information concerning particular criterions

I =

N
∑

µ=1

Iµ .

We can interpret the Fisher information defined via transaction costs as
the measure of the decision maker’s professionalism. If we assume that the
expected value of the profit from the strategy is fixed, then the decision
makers whose accomplishments are greater will bear higher costs2. These
higher costs are placed on them in order to restrict their above-average profits
and earnings at the same time. In the case of the confused experts the
costs can be reduced because there are big chances to take advantage of the

2e.g. in the form of taxes.
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unfortunate moves. Hence, among decision makers belonging to the same
canonical statistical ensemble, there are professionals who bear the high costs
and laymen who pay low margins. Everybody achieves the same profits from
their strategies. The question is, who we would choose as our adviser?

8 Conclusions

We have proposed a method that allows us to measure the decision maker’s
knowledge quantitatively. The search for such methods is necessary in times,
when a single decision may bring huge losses or huge gains. Thanks to the
use of the models and tools of physics, we can obtain not only new qualitative
information about the nature of decision problems, but also a wider look at
the physics phenomena. The pricing of the decision alternatives and applica-
tion of the statistical physics tools allows us study the phenomena about the
qualitative nature numerically and notice connections between decisions and
investment problems [17]. The clairvoyant strategy answers the question:
what is the best way of a decision maker’s behaviour taking into account in-
transitivity of his/her opinion with fixed market parameters? However, with
the help of the temperature, we can compare the professionalism of people
who solve decision problems in different fields, at different time, and with
different transaction costs.
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[20] A. Szczypińska, E. W. Piotrowski, Deterministic definition of the capital
risk , arXiv:0805.3129v1.

[21] J. P. Quandrat, M. Plus, Min-plus linearity and statistical mechanics,
Markov Processes and Realted Fields, 3 (1997) 565–587.

[22] B. R. Frieden, Science from Fisher Information, Cambridge University
Press 2004.

[23] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
I , Wiley, New York 1968.

17

http://arXiv.org/abs/0805.3129

	Transaction costs
	Geometry of the market
	Measurement of the decision maker's knowledge taking into account the transaction costs---the Ising model
	The thermodynamics of the canonical ensemble
	The (max,+) algebra of extreme strategies
	Assessment of the decision maker's professionalism
	Market interpretation of Fisher information
	Conclusions

