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Abstract. In the context of averaging an inhomogeneous cosmologicalel we propose a natural measure identical to
the Kullback-Leibler relative information entropy, whieltpresses the distinguishability of the local inhomogesetensity
field from its spatial average on arbitrary compact domaités measure is expected to be an increasing function in time
and thus to play a significant role in studying gravitatiosadropy. To verify this conjecture, we explore the time etioh

of the measure using the linear perturbation theory of a@paflat FLRW model and a spherically symmetric nonlinear
solution. We discuss the generality and conditions for ime-fincreasing nature of the measure, and also the coonecti

the backreaction effect caused by inhomogeneities.

Keywords: inhomogeneous cosmology, gravitational instabilitygéascale structure of the universe, information entropy
PACS: 98.80.Jk, 95.30.5Sf, 89.70.Cf, 98.65.Dx

1. INTRODUCTION

Modern cosmology is based on the hypothesis called the Qogmal Principle, and the universe is assumed to
be successfully described by a homogeneous and isotrapdrirann-Lemaitre-Robertson-Walker (FLRW) universe
model on large scales. In spite of its simplicity, this hypesis is highly non-trivial because a realistic universeleio
should include local inhomogeneities, and the physicgberty of such a realistic model averaged over a sufficiently
large scale does not necessarily coincide with that of tHeWluniverse. The difference between a spatially averaged
inhomogeneous universe and the FLRW universe has been sinpthdy Ellis [1] and studied since the pioneering
works by Futamase [2, 3]. This topic is now widely noticedlie tontext of dark energy cosmology; the effect of
inhomogeneities may be an alternative to introducing atiexaatter for the cosmic acceleration. (See, e.g. Ref. [4];
Refs. [5, 6] for comprehensive reviews.)

In quantifying how a realistic inhomogeneous universe rhddparts from the FLRW one, it would be convenient
to utilize some measure of inhomogeneity. In Informatiordty, if we have two probability distributiongp;} and
{qi}, and would like to quantify thdistinguishabilityof the two distributions, the relevant quantity is known &the
relative information entropy (sometimes called gdlback-Leibler divergengd7]:
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where{pi} and{q;} are the actual and presumed probability distributiongeetvely. This relative entropy is positive
for i # pi, and zero if the two distributiongp;} and{q;} agree. Note that the. {p || g} is not symmetric fof p;}
and {qg;}. With the help of the concept of the Kullback-Leibler refatinformation entropy, we proposed in our
previous work [8] a natural measure of inhomogeneity in thigerse, in the form
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wherep and({p) 4 are respectively the actual matter distribution and it$iapaverage, d is the Riemannian volume
element, and the integration is performed on a compactaphimainZ. Here we have adopted the formulation of
averaging inhomogeneous universes developed by one ofithera [9]. We also conjectured that the measure (2) is
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an increasing function of time for sufficiently large timéguitively this measure is likely to have the time-incrieas
nature, but detailed analyses are required to show it. titisadly significant whether this conjecture is correct hesea
the positive conclusion for the conjecture will lead to thedidity of our measure being regarded as entropy in a
gravitational system. The possibility that our measureoiscerned withgravitational entropyhas been discussed in
Ref. [10].

In this paper, we explore the time evolution of the measumguspecific models of an inhomogeneous universe,
and examine on what condition the time-increasing natutb@imeasure holds. We employ the linear perturbation
theory of a spatially flat FLRW universe and a spherically gyetric nonlinear solution as inhomogeneous universe
models, and illustrate the temporal behavior of the measypécitly with the models.

This paper is organized as follows. In the next section, we @i brief review of the formalism of averaging
inhomogeneous universes by following Ref. [9]. In the s#t8, we introduce a measure of inhomogeneity analogous
to the Kullback-Leibler divergence, and derive the timewddives of the measure with a general consideration for the
time-increasing nature of the measure. We present illistraxamples of the time evolution of the measure using the
linear perturbation theory and a spherically symmetricceégalution, in the sections 4 and 5, respectively. Finally i
the section 6, we summarize our results and give an outlook.

2. BASICSOF AVERAGING INHOMOGENEOUSUNIVERSES

Let us start by recalling the basic equations that goverdyinamics of a spatially averaged inhomogeneous universe,
along the formulation developed by one of the authors [9, W shall restrict our consideration, for simplicity, to
an irrotational pressureless fluid with energy dengignd four-velocityu#, and work in a time-orthogonal foliation
with the line element o

ds? = —dt? + gi;dX'dx! (3)
where X' are coordinates in the= const hypersurfaces (with three-metrig;) that are comoving with the fluid
so that the four-velocity# = (1,0). It is convenient for a description of the dynamics to useetkgansion tensor
Qij := (1/2)gij, where an overdof) denotes time derivative, and its traBe= g" ©;; (the local expansion rate),
and the traceless pamt; := ©;; — (1/3)0g;; (the shear tensor). Using these quantities as dynamicilbles, the
continuity equation and the Raychaudhuri equation ard¢ewis

p+p6=0, (4)

0= —4nGp—%92—202, (5)
whereg? := (1/2)0ij 0% is the rate of shear squared.
We define averaging of a scalar quanfi, X') by the Riemannian volume average over a compact spatialidoma
2.
X))o = [ AR Valt)i= [ Vadx, (6)
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with the Riemannian volume elementid= /g d®X, g:= def(gij), of the spatial hypersurfaces of constant time.
We also introduce an effective scale factor via the volum@r(ralized by the volume of the initial domairy,),

ay(t) == (V4 (t)/Vg)Y3. Then the averaged expansion rate is expressed in terme efféittive scale factor as
Vy ay
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The key conceptin the averaging formalisman-commutativitgf two operations, spatial average and time evolution.
This is expressed by@mmutation ruldor the averaging of a scalar fiel[9, 11, 12, 13]:

0 oA

(Ao —( ) =(A8)g—(A)z(0)y =(0Ad6)4, (8)
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wheredA := A— (A)y anddB := 6 — (8) 4 represent the deviations of local values of the fields froeirthverages.
Averaging Egs. (4) and (5) with the help of Eq. (8) yields

205+ (D)5 (8)5 =0, ©
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whereQg is the ‘kinematical backreaction term’, which appears du@thomogeneities of cosmic matter distribution
and leads the effective cosmic expansion giverabyto deviate from the Friedmannian one. Equation (10) tells us
that the kinematical backreaction term consists of thedhtibn of the expansion rate and the averaged shear rate; the
former plays the role of effective negative pressure, apddtier can be regarded as additional matter density.

3. RELATIVE INFORMATION ENTROPY

In order to introduce a quantity that measures how the usévisrinhomogeneous within the formulation explained in
the previous section, we pay particular attention to theroatation rule for the matter density field:
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This means that the time evolution of the averaged densitydiges not coincide with the average of the density field
evolved locally. We consider that the difference betwg®n, and(p) » leads to the entropy production for the matter
density field. This idea brings us to write
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where.” is an entropy associated with the density field. Looking fdurctional of the matter density field that
satisfies Eq. (12), we find that, interestingly, the answ§8]is
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which is analogous to the Kullback-Leibler relative infation entropy, Eq. (1). Note that, for strictly positive démp,
p > 0, the entropy?{p || (p)2} is positive definite ifo # (p)4, and.” =0 if and only if p = (p) ».

Let us explore the temporal behavior of the relative infaforaentropy.”{p || {p)»} to verify whether the”
possesses the time-increasing nature. From Eqgs. (11) ahdt{& time derivative of the entropy is immediately found
to give

d
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We expect from Eqg. (14) that the time derivative.&f will generally be positive in view of cosmological struatur
formation, because, on average, an overdense redipn>(0) tends to contractd@ < 0) to form a cluster, and
an underdense regiodg < 0) tends to expandd@ > 0) to form a void. To be more precise, however, how
inhomogeneities evolve depends on initial conditionstipalarly at an early stage of the evolution. For example,
a fluid element included in an overdense region does not sashave an initial expansion rate with the direction of
contracting, because the density field and the local expamate are given independently in the initial data settiig.

a sufficiently late stage, the effect of initial conditionif et weaker and inhomogeneities will evolve accordinthte
intuitive manner as we mentioned above, leading to theipitgiof the time derivative of the entropy. It is therefore
plausible that, even if the time derivative of the entropyégative temporarily, it will become positive eventually.
This idea implies the importance of examining whether theoad time derivative of the entropy is positive, i.e. the
time-convexityf the entropy. Differentiation of Eq. (14), together witly€ (5) and (8), yields
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whereAp := /{(dp)2) » andAB := /{(d8)2) 4 are the fluctuation amplitudes of density and expansiopeively.
Using the formula

4D (p) ) = 4G (Bp)? + (p) s (86)+ 5(60.56%) 5 +2(5p 507} 5. (15)

5(0%) =2(8)466 +(66)* — (18)?, (16)



the second time derivative of the entropy, Eq. (15), is reemias
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In order to clarify the conditions under which the positvitf # holds, the sign of the second time denvau;fels
crucial, in particular at the instaht= t; when.¥ = 0. If 7 (t =t¢) is shown to be positive, we can conclude tivais
always positive thereafter. Note that, from Eq. (18), timiplees to the case when the backreaction t€nis positive
att = tc. One typical behavior af” will be the following: suppose tha¥’ is negative at some time for an averaging
domainZ large enough for the averaged expansion (&g, > 0 and the averaged shear réte) 5 ~ 0. Then from
Eqg. (18),.7 is positive and thus” increases with time. If” is not bounded by a negative valu, reaches zero at
t =t; and stays positive thereafter.

4. EVOLUTION OF THE ENTROPY IN THE LINEAR REGIME

In what follows, we illustrate the temporal behavior of th#repy . by using specific models. First let us observe
the positivity of . using the linear perturbation theory, which is valid in tlelg stage of structure formation in
the universe, where the deviation from a homogenous anefsotbackground is small. This illustrative calculation
with the linear perturbation theory is, in a sense, mosttirrRiand easiest to carry out. The average properties of an
inhomogeneous universe constructed with the linear geation theory have been investigated in Ref. [14]. We follow
Ref. [14] in the method of the calculation performed in théstgon.

Suppose that the three-metric is written gais= a(t)?(yj + hi;) with the Friedmannian scale factaft), the
background metrigsj, and metric perturbatioh;j, and a scalar quantit(t, X!) is divided into a homogeneous part
Ay (t) and an inhomogeneous perturbatilt, X'), which is associated with;;. The spatial averagéd) » is then
represented in terms of perturbation variables as

Boi= o [ AVBEX =Rt (ol + 5 (1A~ (Bgly(y) + O (). (19)

where(-)y := [5(-)\/Y X/ [, /¥ X (v := defy;)) denotes the average defined on the background three-space,
andh := y/hjj. Introducing another scalar quantiyt, X') = By(t) + Bp(t, X') with a homogeneous paB(t) and a
perturbatiorBy(t, X'), we have the following useful formula:

(6A3B) 5 = (AoBp)y — (Ap)y(Bp)y+ O(h®). (20)

The scalar-mode solution for the linear metric perturbeltip in a spatially flat background without a cosmological
constantis [14, 15]
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whereW = W(X') and ® = &(X') are arbitrary functions of only spatial coordinaés determined by initial
conditions, | denotes covariant derivative with respecttg andD., (t) = t%3 andD_(t) =t~ are time-dependent
factors of the growing and decaying modes, respectivelg.arfergy density and the expansion rate are then given as
o = py (1_t2/3mzw—t*1D2cb) , (22)
a 2 ~1/32 —2r2
8 = 3 3 0w -t “0%0, (23)

wherepy = pu(t) is the energy density of the homogeneous background,Jafgl:= y/] ()i -
Inserting Egs. (22) and (23) into Eg. (20), the time derixatf the entropy is calculated straightforwardly as, to the
leading order,
S 4 53 22 20021 _ 2:-10/3 [ 2w (2 2 2
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Equation (24) tells us that, if the dynamics of inhomogegnisidominated by the growing mod¢” is positive, mean-
ing that the universe becomes more and more inhomogenebesarlx times, the decaying mode may dominate the
growing one, and ther’ < 0, which implies that the universe can temporarily becoras &nd less inhomogeneous,
but for large enough times, the growing mode is expected toinlate and¥ > 0 eventually. One exception is the
case where there is no growing mode, but it is quite rare ampthysical, and we can ignore it safely. Thus on the
positivity of . in the linear regime, we can claim thisie time derivative? becomes positive at least for sufficiently
large times, unless the growing mode is exactly zero. )

In order to show the above fact from another point of viewuketonsider the second time derivati¥g Eq. (15).
Estimating each term of the right-hand side of Eq. (15) with linear perturbation theory, we find that the leading
order of the last term ig/(h®) while that of the other terms i€ (h?). Hence the last term can be neglected in this
consideration. In addition, we can utilize the followingpapximate formula in the linear regime:

(6p86%) 5 ~2(8)7(3p 36) 5, (25)

and thus we obtain

+210)2(5056) . (26)
We find from Eq. (26) that, whet” < 0, the second derivative’ is positive because all terms in the right-hand side
of Eq. (26) are positive; if” = 0 at an instant = t¢, the second derivative” att = t; is positive. Therefore? is
always going to be positive &t t;, and thereafter stays positive, as far as the dynamics iitirtear regime.

These facts are also understood directly by an explicit fofrthe second time derivative, written in terms of the
linear perturbations. It is actually given as, to the legdinder,

p
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Hence we obtain the following proposition in the linear ragi The second time derivative is positive definite in
the linear regime. Therefore, evendf is negative for a while,” is always going to be positive. Onc¥€ arrives at
zero,.# is always positive thereafter during the linear regime.

5. NONLINEAR EXAMPLE WITH THE LTB MODEL

We proceed in this section to explore the time evolution ef tblative information entropy”’{p || (p)} in the
nonlinear regime with the spherically symmetric Lemaiti@man—Bondi (LTB) solution. This exact solution of
Einstein’s equations is often employed as a model of an imdg@meous universe [16, 17, 18, 19]. The line element of
the LTB solution reads

2
4 — —dt?+ ﬁdRer r2(d92 + sirt 9.d¢?), (29)
where a primé /) denote®? /dR, f = f(R) is an arbitrary function of the comoving radial coordinBteith f > —1,
andr =r(t,R). Then Einstein’s equations yield
/

81Gp = F—2 (30)

+f(R), (31)

whereF (R) is another arbitrary function, which represents the ihitiass distribution. The solutions of Eq. (31) can
be expressed in the following form:
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() f > 0:

rzzF—f(cosm-l), t—T(R)=%(sinhn—n), (32)
(i) f <O: . .
r:_—zf(l—cosn), t—T(R)zm(n—Sin’?)a (33)
(iii) f =0:
1/3
r= (9{) (t—T(R)Z3, (34)

whereT (R) is a third arbitrary function that comes from integrating B21). In any of these three cases, the expansion
rate and the shear rate squared are given as

P (r2r'y , 1/ 1\?
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If we regard the LTB solution as a spatially flat FLRW univefdas spherical linear perturbations, and make a
connection between the functioftR), F(R), andT(R) in the LTB solution, and the functiorl8 and® that appear
in Eq. (21) in the linear perturbation theory, we obtain [20]

20, 4 10 3.,
f_gllJR, F_9R3(1+3w), T=-S¢R™ (36)

These relations tell us that the functiohd&) andT(R) correspond to the growing and decaying modes in the linear
perturbation theory, respectively.
Let us write averaged dynamical variables in the LTB sohutitaking a spherical compact doméin

2={(R9,9)|0<R<Ry, 0<9 <m 0< @< 2m},

with the comoving radius of the spherical domB&i) we have
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with the volume of the domaig,
Vo —an [T R 39
g = 41T —_— .
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Using Egs. (30), (35), (37), and (38), the backreaction t@rand the time derivative of the entropy in the spherical

case become )
r/ i i’ f
Q= (2 (25+7)), ~(7+%),, o)
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In order to illustrate the time evolution of the entropy, weose the three arbitrary functions, as is suggested in
Ref. [21], as

8NG.7 =

(41)

2 2
T(R)=0 forall R>0, f(R)_{ —(%) (1—%) for 0<R<Ro, (42)
0 for R> Ry,
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FIGURE 1. The effective scale factors for the spherical domains astigd as functions of time. The solid line is for the large
domain, and the dashed one for the small domain.

§R3 for 0<R<Ry,
FR={ 3R for RisR<R, (43)
gRi*(%) for R> Ro,

whereRy andR; are constants that satisRt > Ry/2. The inner region (& R < R;) of this model is the collapsing
LTB solution, which is surrounded by a vacuum regiéti & R < Rp), and the outermost regioR(> Rp) is the
Einstein-de Sitter universe, i.e. a spatially flat FLRW emge without a cosmological constant. Setfin@r) = 0 is
appropriate for our purpose, because the funcliR) corresponds to the decaying mode in the linear perturbation
theory, and its effect disappears for sufficiently largestim

In our illustration, we choose the constaRsandR; so thatR; = 3Ry/4, and consider two cases of the radiys
of the averaging domain: (By = Ro, which is called ‘the large domain’, and (Ry = Ry/8, ‘the small domain’. Note
that, in the case of the large domain, the averaging domaitaits the collapsing LTB region and the vacuum region,
while the small domain consists of only the collapsing LTBiom. As the result of the choice of the domain, the
evolution of the effective scale factor for the large (spndtimain is similar to that of a spatially flat (closed) FLRW
universe, as we see in Fig 1.

We also present the time evolution of the kinematical baadtien term divided by its initial value for the large and
small domains in Fig. 2. In both cases, the backreaction texs) in fact, negative values through the evolution, and
thus we find that the results shown in Fig. 2 are consisteft thitse given in Fig 1.

Next we show the time evolution of the time derivative of therepy, . (t), in Figs. 3 (for the large domain)
and 4 (for the small domain). It should be emphasized tHas positive in both cases throughout the evolution in
our investigation. In the case of the large domain, howeter,” decreases with time temporarily, meaning that
the second time derivative’ is negative at early times. We presume that this result isezaby the vacuum region
contained in the large domain, because the vacuum is a ctehypitmnlinear structure where the linear perturbation
theory does not apply, while the behavior of nonlinear claisgomewhat similar to that of the linear perturbation at
the early stage of the evolution. Detailed investigatiomésded on this point.

6. SUMMARY AND OUTLOOK

In this paper, we study the time evolution of the KullbackHler relative information entropy for cosmic matter
distribution which was proposed as a measure of cosmic inigemeity in our previous work [8]. Intuitively this
entropy is likely to possess the time-increasing natureittmenerally depends on initial conditions. We employ the
linear perturbation of a spatially flat FLRW universe and th® model to demonstrate that the relative information
entropy is convex and increases in time.
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FIGURE 2. The time evolution of the backreaction term divided by itgiah value is plotted. The solid line is for the large
domain, and the dashed one for the small domain.
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FIGURE 3. The time derivative of the entropy for the large domain igteld as a function of time.

We obtain explicit forms of the time derivative and the sattime derivative of the entropy through the linear
perturbation calculation. They tell us that in the lineaginee of cosmic structure formation, the entropy is shown to
be an increasing function of time at least for sufficientkglmes, even if the entropy decreases temporarily at early
times. We also give an illustrative example of the time etioluof the entropy with a nonlinear LTB solution. This
illustration also supports the time-increasing naturehef éntropy although it shows that the entropy is not always
time-convex. It seems from the example whether or not thesareds time-convex depends on the fraction of devoid

regions within the averaging domain, i.e. on whether theense is void-dominated. This will be further investigated
in detail in a forthcoming publication.
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