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Abstract. In the context of averaging an inhomogeneous cosmological model, we propose a natural measure identical to
the Kullback-Leibler relative information entropy, whichexpresses the distinguishability of the local inhomogeneous density
field from its spatial average on arbitrary compact domains.This measure is expected to be an increasing function in time
and thus to play a significant role in studying gravitationalentropy. To verify this conjecture, we explore the time evolution
of the measure using the linear perturbation theory of a spatially flat FLRW model and a spherically symmetric nonlinear
solution. We discuss the generality and conditions for the time-increasing nature of the measure, and also the connection to
the backreaction effect caused by inhomogeneities.
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1. INTRODUCTION

Modern cosmology is based on the hypothesis called the Cosmological Principle, and the universe is assumed to
be successfully described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) universe
model on large scales. In spite of its simplicity, this hypothesis is highly non-trivial because a realistic universe model
should include local inhomogeneities, and the physical property of such a realistic model averaged over a sufficiently
large scale does not necessarily coincide with that of the FLRW universe. The difference between a spatially averaged
inhomogeneous universe and the FLRW universe has been emphasized by Ellis [1] and studied since the pioneering
works by Futamase [2, 3]. This topic is now widely noticed in the context of dark energy cosmology; the effect of
inhomogeneities may be an alternative to introducing an exotic matter for the cosmic acceleration. (See, e.g. Ref. [4];
Refs. [5, 6] for comprehensive reviews.)

In quantifying how a realistic inhomogeneous universe model departs from the FLRW one, it would be convenient
to utilize some measure of inhomogeneity. In Information Theory, if we have two probability distributions,{pi} and
{qi}, and would like to quantify thedistinguishabilityof the two distributions, the relevant quantity is known to be the
relative information entropy (sometimes called theKullback-Leibler divergence) [7]:

SKL{p ‖ q} := ∑
i

pi ln
pi

qi
, (1)

where{pi} and{qi} are the actual and presumed probability distributions, respectively. This relative entropy is positive
for qi 6= pi , and zero if the two distributions{pi} and{qi} agree. Note that theSKL{p ‖ q} is not symmetric for{pi}
and {qi}. With the help of the concept of the Kullback-Leibler relative information entropy, we proposed in our
previous work [8] a natural measure of inhomogeneity in the universe, in the form

S {ρ ‖ 〈ρ〉D} :=
∫

D

ρ ln
ρ

〈ρ〉D
dµ , (2)

whereρ and〈ρ〉D are respectively the actual matter distribution and its spatial average, dµ is the Riemannian volume
element, and the integration is performed on a compact spatial domainD . Here we have adopted the formulation of
averaging inhomogeneous universes developed by one of the authors [9]. We also conjectured that the measure (2) is

http://arxiv.org/abs/1011.5604v1


an increasing function of time for sufficiently large times.Intuitively this measure is likely to have the time-increasing
nature, but detailed analyses are required to show it. It is actually significant whether this conjecture is correct because
the positive conclusion for the conjecture will lead to the validity of our measure being regarded as entropy in a
gravitational system. The possibility that our measure is concerned withgravitational entropyhas been discussed in
Ref. [10].

In this paper, we explore the time evolution of the measure using specific models of an inhomogeneous universe,
and examine on what condition the time-increasing nature ofthe measure holds. We employ the linear perturbation
theory of a spatially flat FLRW universe and a spherically symmetric nonlinear solution as inhomogeneous universe
models, and illustrate the temporal behavior of the measureexplicitly with the models.

This paper is organized as follows. In the next section, we give a brief review of the formalism of averaging
inhomogeneous universes by following Ref. [9]. In the section 3, we introduce a measure of inhomogeneity analogous
to the Kullback-Leibler divergence, and derive the time derivatives of the measure with a general consideration for the
time-increasing nature of the measure. We present illustrative examples of the time evolution of the measure using the
linear perturbation theory and a spherically symmetric exact solution, in the sections 4 and 5, respectively. Finally in
the section 6, we summarize our results and give an outlook.

2. BASICS OF AVERAGING INHOMOGENEOUS UNIVERSES

Let us start by recalling the basic equations that govern thedynamics of a spatially averaged inhomogeneous universe,
along the formulation developed by one of the authors [9, 11]. We shall restrict our consideration, for simplicity, to
an irrotational pressureless fluid with energy densityρ and four-velocityuµ , and work in a time-orthogonal foliation
with the line element

ds2 =−dt2+gi j dXidX j , (3)

whereXi are coordinates in thet = const. hypersurfaces (with three-metricgi j ) that are comoving with the fluid
so that the four-velocityuµ = (1,0). It is convenient for a description of the dynamics to use theexpansion tensor
Θi j := (1/2)ġi j , where an overdot(˙) denotes time derivative, and its traceθ := gi j Θi j (the local expansion rate),
and the traceless partσi j := Θi j − (1/3)θgi j (the shear tensor). Using these quantities as dynamical variables, the
continuity equation and the Raychaudhuri equation are written as

ρ̇ +ρθ = 0, (4)

θ̇ =−4πGρ − 1
3

θ 2−2σ2 , (5)

whereσ2 := (1/2)σ i
jσ

j
i is the rate of shear squared.

We define averaging of a scalar quantityA(t,Xi) by the Riemannian volume average over a compact spatial domain
D :

〈A(t,Xi)〉D :=
1

VD

∫

D

A(t,Xi)
√

g d3X ; VD(t) :=
∫

D

√
g d3X , (6)

with the Riemannian volume element dµ :=
√

g d3X, g := det(gi j ), of the spatial hypersurfaces of constant time.
We also introduce an effective scale factor via the volume (normalized by the volume of the initial domainVDi ),
aD(t) := (VD (t)/VDi)

1/3. Then the averaged expansion rate is expressed in terms of the effective scale factor as

〈θ 〉D =
V̇D

VD

= 3
ȧD

aD

. (7)

The key concept in the averaging formalism isnon-commutativityof two operations, spatial average and time evolution.
This is expressed by acommutation rulefor the averaging of a scalar fieldA [9, 11, 12, 13]:

∂
∂ t

〈A〉D −
〈

∂A
∂ t

〉

D

= 〈Aθ 〉D −〈A〉D〈θ 〉D = 〈δAδθ 〉D , (8)

whereδA := A−〈A〉D andδθ := θ −〈θ 〉D represent the deviations of local values of the fields from their averages.
Averaging Eqs. (4) and (5) with the help of Eq. (8) yields

∂
∂ t

〈ρ〉D + 〈ρ〉D〈θ 〉D = 0, (9)



3
äD

aD

+4πG〈ρ〉D = QD ; QD :=
2
3

(

〈θ 2〉D −〈θ 〉2
D

)

−2〈σ2〉D , (10)

whereQD is the ‘kinematical backreaction term’, which appears due to inhomogeneities of cosmic matter distribution
and leads the effective cosmic expansion given byaD to deviate from the Friedmannian one. Equation (10) tells us
that the kinematical backreaction term consists of the fluctuation of the expansion rate and the averaged shear rate; the
former plays the role of effective negative pressure, and the latter can be regarded as additional matter density.

3. RELATIVE INFORMATION ENTROPY

In order to introduce a quantity that measures how the universe is inhomogeneous within the formulation explained in
the previous section, we pay particular attention to the commutation rule for the matter density field:

∂
∂ t

〈ρ〉D −
〈

∂ρ
∂ t

〉

D

= 〈ρθ 〉D −〈ρ〉D〈θ 〉D = 〈δρ δθ 〉D . (11)

This means that the time evolution of the averaged density field does not coincide with the average of the density field
evolved locally. We consider that the difference between〈ρ〉·

D
and〈ρ̇〉D leads to the entropy production for the matter

density field. This idea brings us to write

∂
∂ t

〈ρ〉D −
〈

∂ρ
∂ t

〉

D

=− Ṡ

VD

, (12)

whereS is an entropy associated with the density field. Looking for afunctional of the matter density field that
satisfies Eq. (12), we find that, interestingly, the answer is[8]:

S {ρ ‖ 〈ρ〉D} :=
∫

D

ρ ln
ρ

〈ρ〉D
√

g d3X , (13)

which is analogous to the Kullback-Leibler relative information entropy, Eq. (1). Note that, for strictly positive density,
ρ > 0, the entropyS {ρ ‖ 〈ρ〉D} is positive definite ifρ 6= 〈ρ〉D , andS = 0 if and only ifρ = 〈ρ〉D .

Let us explore the temporal behavior of the relative information entropyS {ρ ‖ 〈ρ〉D} to verify whether theS
possesses the time-increasing nature. From Eqs. (11) and (12), the time derivative of the entropy is immediately found
to give

d
dt

S {ρ ‖ 〈ρ〉D}=−
∫

D

δρ δθ
√

g d3X =−VD〈δρ δθ 〉D . (14)

We expect from Eq. (14) that the time derivative ofS will generally be positive in view of cosmological structure
formation, because, on average, an overdense region (δρ > 0) tends to contract (δθ < 0) to form a cluster, and
an underdense region (δρ < 0) tends to expand (δθ > 0) to form a void. To be more precise, however, how
inhomogeneities evolve depends on initial conditions, particularly at an early stage of the evolution. For example,
a fluid element included in an overdense region does not necessarily have an initial expansion rate with the direction of
contracting, because the density field and the local expansion rate are given independently in the initial data setting.At
a sufficiently late stage, the effect of initial conditions will get weaker and inhomogeneities will evolve according tothe
intuitive manner as we mentioned above, leading to the positivity of the time derivative of the entropy. It is therefore
plausible that, even if the time derivative of the entropy isnegative temporarily, it will become positive eventually.
This idea implies the importance of examining whether the second time derivative of the entropy is positive, i.e. the
time-convexityof the entropy. Differentiation of Eq. (14), together with Eqs. (5) and (8), yields

1
VD

d2

dt2S {ρ ‖ 〈ρ〉D}= 4πG(∆ρ)2+ 〈ρ〉D (∆θ )2+
1
3
〈δρ δθ 2〉D +2〈δρ δσ2〉D , (15)

where∆ρ :=
√

〈(δρ)2〉D and∆θ :=
√

〈(δθ )2〉D are the fluctuation amplitudes of density and expansion, respectively.
Using the formula

δ (θ 2) = 2〈θ 〉D δθ +(δθ )2− (∆θ )2 , (16)



the second time derivative of the entropy, Eq. (15), is rewritten as

S̈

VD

= 4πG(∆ρ)2+
1
3
〈ρ(δθ )2〉D +

2
3
〈ρ〉D (∆θ )2+2〈δρ δσ2〉D +

2
3
〈θ 〉D 〈δρ δθ 〉D (17)

= 4πG(∆ρ)2+
1
3
〈ρ(δθ )2〉D +2〈ρσ2〉D + 〈ρ〉DQD − 2

3
〈θ 〉D

Ṡ

VD

. (18)

In order to clarify the conditions under which the positivity of Ṡ holds, the sign of the second time derivativëS is
crucial, in particular at the instantt = tc whenṠ = 0. If S̈ (t = tc) is shown to be positive, we can conclude thatṠ is
always positive thereafter. Note that, from Eq. (18), this applies to the case when the backreaction termQD is positive
at t = tc. One typical behavior ofṠ will be the following: suppose thatṠ is negative at some time for an averaging
domainD large enough for the averaged expansion rate〈θ 〉D > 0 and the averaged shear rate〈σ2〉D ≈ 0. Then from
Eq. (18),S̈ is positive and thusṠ increases with time. IfṠ is not bounded by a negative value,̇S reaches zero at
t = tc and stays positive thereafter.

4. EVOLUTION OF THE ENTROPY IN THE LINEAR REGIME

In what follows, we illustrate the temporal behavior of the entropyS by using specific models. First let us observe
the positivity ofṠ using the linear perturbation theory, which is valid in the early stage of structure formation in
the universe, where the deviation from a homogenous and isotropic background is small. This illustrative calculation
with the linear perturbation theory is, in a sense, most intuitive and easiest to carry out. The average properties of an
inhomogeneous universe constructed with the linear perturbation theory have been investigated in Ref. [14]. We follow
Ref. [14] in the method of the calculation performed in this section.

Suppose that the three-metric is written asgi j = a(t)2(γi j + hi j ) with the Friedmannian scale factora(t), the
background metricγi j , and metric perturbationhi j , and a scalar quantityA(t,Xi) is divided into a homogeneous part
AH(t) and an inhomogeneous perturbationAp(t,Xi), which is associated withhi j . The spatial average〈A〉D is then
represented in terms of perturbation variables as

〈A〉D :=
1

VD

∫

D

A
√

g d3X = AH + 〈Ap〉γ +
1
2

(

〈Aph〉γ −〈Ap〉γ 〈h〉γ
)

+O(h3) , (19)

where〈·〉γ :=
∫

D
(·)√γ d3X/

∫

D

√γ d3X (γ := det(γi j )) denotes the average defined on the background three-space,
andh := γ i j hi j . Introducing another scalar quantityB(t,Xi) = BH(t)+Bp(t,Xi) with a homogeneous partBH(t) and a
perturbationBp(t,Xi), we have the following useful formula:

〈δAδB〉D = 〈ApBp〉γ −〈Ap〉γ 〈Bp〉γ +O(h3) . (20)

The scalar-mode solution for the linear metric perturbation hi j in a spatially flat background without a cosmological
constant is [14, 15]

hi j =
20
9

Ψγi j +2D+(t)Ψ|i j +2D−(t)Φ|i j , (21)

where Ψ = Ψ(Xi) and Φ = Φ(Xi) are arbitrary functions of only spatial coordinatesXi , determined by initial
conditions, | denotes covariant derivative with respect toγi j , andD+(t) = t2/3 andD−(t) = t−1 are time-dependent
factors of the growing and decaying modes, respectively. The energy density and the expansion rate are then given as

ρ = ρH

(

1− t2/3∇2Ψ− t−1∇2Φ
)

, (22)

θ = 3
ȧ
a
+

2
3

t−1/3∇2Ψ− t−2∇2Φ , (23)

whereρH = ρH(t) is the energy density of the homogeneous background, and∇2(·) := γ i j (·)|i j .
Inserting Eqs. (22) and (23) into Eq. (20), the time derivative of the entropy is calculated straightforwardly as, to the

leading order,

4πG
Ṡ

VD

=
4
9

t−5/3[〈(∇2Ψ)2〉γ −〈∇2Ψ〉2
γ
]

− 2
9

t−10/3[〈∇2Ψ ∇2Φ〉γ −〈∇2Ψ〉γ 〈∇2Φ〉γ
]

−2
3

t−5[〈(∇2Φ)2〉γ −〈∇2Φ〉2
γ
]

. (24)



Equation (24) tells us that, if the dynamics of inhomogeneity is dominated by the growing mode,̇S is positive, mean-
ing that the universe becomes more and more inhomogeneous. At early times, the decaying mode may dominate the
growing one, and thenṠ < 0, which implies that the universe can temporarily become less and less inhomogeneous,
but for large enough times, the growing mode is expected to dominate andṠ > 0 eventually. One exception is the
case where there is no growing mode, but it is quite rare and unphysical, and we can ignore it safely. Thus on the
positivity of Ṡ in the linear regime, we can claim thatthe time derivativeṠ becomes positive at least for sufficiently
large times, unless the growing mode is exactly zero.

In order to show the above fact from another point of view, letus consider the second time derivativëS , Eq. (15).
Estimating each term of the right-hand side of Eq. (15) with the linear perturbation theory, we find that the leading
order of the last term isO(h3) while that of the other terms isO(h2). Hence the last term can be neglected in this
consideration. In addition, we can utilize the following approximate formula in the linear regime:

〈δρ δθ 2〉D ≈ 2〈θ 〉D〈δρ δθ 〉D , (25)

and thus we obtain
S̈

VD

≈ 4πG(∆ρ)2+ 〈ρ〉D (∆θ )2+
2
3
〈θ 〉D 〈δρ δθ 〉D . (26)

We find from Eq. (26) that, whenṠ < 0, the second derivativeS̈ is positive because all terms in the right-hand side
of Eq. (26) are positive; ifṠ = 0 at an instantt = tc, the second derivativeS̈ at t = tc is positive. Therefore,Ṡ is
always going to be positive att = tc, and thereafter stays positive, as far as the dynamics is in the linear regime.

These facts are also understood directly by an explicit formof the second time derivative, written in terms of the
linear perturbations. It is actually given as, to the leading order,

4πG
S̈

VD

=
4
27

t−8/3[〈(∇2Ψ)2〉γ −〈∇2Ψ〉2
γ
]

+
8
27

t−13/3[〈∇2Ψ ∇2Φ〉γ −〈∇2Ψ〉γ〈∇2Φ〉γ
]

+2t−6[〈(∇2Φ)2〉γ −〈∇2Φ〉2
γ
]

(27)

=
4
27

t−8/3
[

〈

(∇2Ψ+ t−5/3∇2Φ)2
〉

γ
−
〈

∇2Ψ+ t−5/3∇2Φ
〉2

γ

]

+
50
27

t−6[〈(∇2Φ)2〉γ −〈∇2Φ〉2
γ
]

≥ 0. (28)

Hence we obtain the following proposition in the linear regime:The second time derivativëS is positive definite in
the linear regime. Therefore, even iḟS is negative for a while,Ṡ is always going to be positive. OncėS arrives at
zero,Ṡ is always positive thereafter during the linear regime.

5. NONLINEAR EXAMPLE WITH THE LTB MODEL

We proceed in this section to explore the time evolution of the relative information entropyS {ρ ‖ 〈ρ〉D} in the
nonlinear regime with the spherically symmetric Lemaître–Tolman–Bondi (LTB) solution. This exact solution of
Einstein’s equations is often employed as a model of an inhomogeneous universe [16, 17, 18, 19]. The line element of
the LTB solution reads

ds2 =−dt2+
r ′2

1+ f
dR2+ r2(dϑ 2+ sin2 ϑdφ2) , (29)

where a prime( ′) denotes∂/∂R, f = f (R) is an arbitrary function of the comoving radial coordinateR with f >−1,
andr = r(t,R). Then Einstein’s equations yield

8πGρ =
F ′

r ′r2 , (30)

ṙ2 =
F(R)

r
+ f (R) , (31)

whereF(R) is another arbitrary function, which represents the initial mass distribution. The solutions of Eq. (31) can
be expressed in the following form:



(i) f > 0:

r =
F
2 f

(coshη −1) , t −T(R) =
F

2 f 3/2
(sinhη −η) , (32)

(ii) f < 0:

r =
F

−2 f
(1− cosη) , t −T(R) =

F

2(− f )3/2
(η − sinη) , (33)

(iii) f = 0:

r =

(

9F
4

)1/3

(t −T(R))2/3 , (34)

whereT(R) is a third arbitrary function that comes from integrating Eq. (31). In any of these three cases, the expansion
rate and the shear rate squared are given as

θ =
ṙ ′

r ′
+2

ṙ
r
=

(r2r ′)·

r2r ′
, σ2 =

1
3

(

ṙ ′

r ′
− ṙ

r

)2

. (35)

If we regard the LTB solution as a spatially flat FLRW universeplus spherical linear perturbations, and make a
connection between the functionsf (R), F(R), andT(R) in the LTB solution, and the functionsΨ andΦ that appear
in Eq. (21) in the linear perturbation theory, we obtain [20]:

f =
20
9

Ψ′R, F =
4
9

R3
(

1+
10
3

Ψ
)

, T =−3
2

Φ′R−1 . (36)

These relations tell us that the functionsf (R) andT(R) correspond to the growing and decaying modes in the linear
perturbation theory, respectively.

Let us write averaged dynamical variables in the LTB solution. Taking a spherical compact domainD :

D = {(R, ϑ , φ)| 0≤ R≤ Rd, 0≤ ϑ ≤ π , 0≤ φ ≤ 2π} ,

with the comoving radius of the spherical domainRd, we have

8πG〈ρ〉D =

〈

F ′

r2r ′

〉

D

=
4π
VD

∫ Rd

0

F ′

(1+ f )1/2
dR, (37)

〈θ 〉D =

〈

ṙ ′

r ′
+2

ṙ
r

〉

D

=
4π
VD

∫ Rd

0

(r2r ′)·

(1+ f )1/2
dR, (38)

with the volume of the domainD ,

VD = 4π
∫ Rd

0

r2r ′

(1+ f )1/2
dR. (39)

Using Eqs. (30), (35), (37), and (38), the backreaction termQD and the time derivative of the entropy in the spherical
case become

QD =

〈

2
ṙ
r

(

2
ṙ ′

r ′
+

ṙ
r

)〉

D

−
〈

ṙ ′

r ′
+2

ṙ
r

〉2

D

, (40)

8πGṠ =
4πV̇D

VD

∫ Rd

0

F ′ dR

(1+ f )1/2
−4π

∫ Rd

0

F ′(r2r ′)· dR

r2r ′(1+ f )1/2
. (41)

In order to illustrate the time evolution of the entropy, we choose the three arbitrary functions, as is suggested in
Ref. [21], as

T(R) = 0 for all R≥ 0, f (R) =

{

−
(

R
R0

)2(

1− R
R0

)2
for 0≤ R≤ R0 ,

0 for R> R0 ,
(42)
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FIGURE 1. The effective scale factors for the spherical domains are plotted as functions of time. The solid line is for the large
domain, and the dashed one for the small domain.

F(R) =











4
9R3 for 0≤ R< R1 ,
4
9R3

1 for R1 ≤ R≤ R0 ,

4
9R3

(

R1
R0

)3
for R> R0 ,

(43)

whereR0 andR1 are constants that satisfyR1 > R0/2. The inner region (0≤ R≤ R1) of this model is the collapsing
LTB solution, which is surrounded by a vacuum region (R1 < R≤ R0), and the outermost region (R> R0) is the
Einstein-de Sitter universe, i.e. a spatially flat FLRW universe without a cosmological constant. SettingT(R) = 0 is
appropriate for our purpose, because the functionT(R) corresponds to the decaying mode in the linear perturbation
theory, and its effect disappears for sufficiently large times.

In our illustration, we choose the constantsR0 andR1 so thatR1 = 3R0/4, and consider two cases of the radiusRd
of the averaging domain: (i)Rd = R0, which is called ‘the large domain’, and (ii)Rd = R0/8, ‘the small domain’. Note
that, in the case of the large domain, the averaging domain contains the collapsing LTB region and the vacuum region,
while the small domain consists of only the collapsing LTB region. As the result of the choice of the domain, the
evolution of the effective scale factor for the large (small) domain is similar to that of a spatially flat (closed) FLRW
universe, as we see in Fig 1.

We also present the time evolution of the kinematical backreaction term divided by its initial value for the large and
small domains in Fig. 2. In both cases, the backreaction termhas, in fact, negative values through the evolution, and
thus we find that the results shown in Fig. 2 are consistent with those given in Fig 1.

Next we show the time evolution of the time derivative of the entropy, Ṡ (t), in Figs. 3 (for the large domain)
and 4 (for the small domain). It should be emphasized thatṠ is positive in both cases throughout the evolution in
our investigation. In the case of the large domain, however,the Ṡ decreases with time temporarily, meaning that
the second time derivativeS̈ is negative at early times. We presume that this result is caused by the vacuum region
contained in the large domain, because the vacuum is a completely nonlinear structure where the linear perturbation
theory does not apply, while the behavior of nonlinear clumps is somewhat similar to that of the linear perturbation at
the early stage of the evolution. Detailed investigation isneeded on this point.

6. SUMMARY AND OUTLOOK

In this paper, we study the time evolution of the Kullback-Leibler relative information entropy for cosmic matter
distribution which was proposed as a measure of cosmic inhomogeneity in our previous work [8]. Intuitively this
entropy is likely to possess the time-increasing nature, but it generally depends on initial conditions. We employ the
linear perturbation of a spatially flat FLRW universe and theLTB model to demonstrate that the relative information
entropy is convex and increases in time.
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FIGURE 2. The time evolution of the backreaction term divided by its initial value is plotted. The solid line is for the large
domain, and the dashed one for the small domain.
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FIGURE 3. The time derivative of the entropy for the large domain is plotted as a function of time.

We obtain explicit forms of the time derivative and the second time derivative of the entropy through the linear
perturbation calculation. They tell us that in the linear regime of cosmic structure formation, the entropy is shown to
be an increasing function of time at least for sufficiently late times, even if the entropy decreases temporarily at early
times. We also give an illustrative example of the time evolution of the entropy with a nonlinear LTB solution. This
illustration also supports the time-increasing nature of the entropy although it shows that the entropy is not always
time-convex. It seems from the example whether or not the measure is time-convex depends on the fraction of devoid
regions within the averaging domain, i.e. on whether the universe is void-dominated. This will be further investigated
in detail in a forthcoming publication.

ACKNOWLEDGMENTS

We would like to thank Jean-Michel Alimi for providing us an opportunity to present this work in the conference. We
also thank Filipe C. Mena and Masahiro Morikawa for stimulating discussions and valuable remarks on gravitational



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1  10  100  1000

dS
 / 

dt

t / ti

small domain 

FIGURE 4. The same as Fig. 3, but for the small domain.

entropy. The work of MM was partially supported by Grant-in-Aid for Young Scientists (B) (No. 18740164 and
No. 21740199) from Japanese Ministry of Education, Culture, Sports, Science and Technology. This work is also
supported by “Fédération de Physique André-Marie Ampère, Lyon”.

REFERENCES

1. G. F. R. Ellis, “Relativistic cosmology – Its nature, aimsand problems,” inGeneral Relativity and Gravitation, edited by
B. Bertotti et al., D. Reidel Publishing Co., Dordrecht, 1984, pp. 215–288.

2. T. Futamase,Phys. Rev. Letters61, 2175–2178 (1988).
3. T. Futamase,Phys. Rev. D53, 681–689 (1996).
4. E. W. Kolb, S. Matarrese, and A. Riotto,New J. Phys.8, 322 (2006), arXiv:astro-ph/0506534.
5. S. Räsänen,J. Cosmol. Astropart. Phys.11 (2006) 003, arXiv:astro-ph/0607626.
6. T. Buchert,Gen. Relativ. Gravit.40, 467–527 (2008), arXiv:0707.2153.
7. T. M. Cover and J. A. Thomas,Elements of Information Theory, Wiley-Interscience, New York, 1991.
8. A. Hosoya, T. Buchert, and M. Morita,Phys. Rev. Letters92, 141302-1–4 (2004), arXiv:gr-qc/0402076.
9. T. Buchert,Gen. Relativ. Gravit.32, 105–125 (2000), arXiv:gr-qc/9906015.
10. G. F. R. Ellis and T. Buchert,Phys. Letters A347, 38–46 (2005), arXiv:gr-qc/0506106.
11. T. Buchert,Gen. Relativ. Gravit.33, 1381–1405 (2001), arXiv:gr-qc/0102049.
12. T. Buchert and J. Ehlers,Astron. Astrophys.320, 1–7 (1997), arXiv:astro-ph/9510056.
13. H. Russ, M. H. Soffel, M. Kasai, and G. Börner,Phys. Rev. D56, 2044–2050 (1997), arXiv:astro-ph/9612218.
14. N. Li and D. J. Schwarz,Phys. Rev. D76, 083011-1–15 (2007), arXiv:gr-qc/0702043.
15. P. J. E. Peebles,The Large-Scale Structure of the Universe, Princeton University Press, Princeton, NJ, 1980.
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