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ABSTRACT 

 
In this paper, we present a hybrid text segmentation 
approach for embedded text in images, aiming to combining 
the advantages of the difference-based methods and the 
similarity-based methods together. First a new stroke edge 
filter is applied to obtain stroke edge map. Then a two-
threshold method based on the improved Niblack 
thresholding technique is utilized to identify stroke edges.   
Those pixels between the edge pairs above the high 
threshold are collected to estimate the representative of 
stroke color, so that stroke pixels are further extracted by 
computing the color similarity. Finally some heuristic rules 
are devised to integrate stroke edge and stroke region 
information to obtain better segmentation results. The 
experimental results show that our approach can effectively 
segment text from background. 
 

Index Terms—Text segmentation, edge filter. 
 

1. INTRODUCTION 
 
Texts in images and videos can play significant role in many 
applications, such as automatic image annotation, content-
based image retrieval, as well as video indexing, 
summarization, and retrieval. Embedded text detection, 
segmentation, and recognition [1] are three major key 
techniques to be addressed to transform pixel-based text 
into encoded characters which natural language analysis and 
understanding techniques can effectively process. 

This paper investigates the issue of text segmentation 
which separates text pixels from background in an image. 
Just as image segmentation is the public challenging task for 
computer vision community, text segmentation is the same 
when text is embedded in complex background. In recent 
years, diverse approaches for text segmentation have been 
investigated. We categorize the approaches into two main 
categories: the difference-based methods and the similarity-
based methods. The former is based on the color difference 
between text and background. Some specific filters are used 
such as canny edge filter and stroke filter [10], and then 
various thresholding techniques are exploited to form binary 
images, e.g., Otsu’s adaptive thresholding method [2], 

global & local thresholding method [3], and Niblack’s 
method [4] et al. Although they are simple and fast, they 
generally fail when the color of text and partial background 
are similar. The latter extract text pixels by clustering pixels 
with homogeneous color into regions. For example, Fu et al. 
[5] used the K-means clustering algorithm in YCbCr color 
space to generate several layers, and heuristic rules were 
employed to select text layer. Wang et al. [6] clustered text 
images into some maps by color and scale of text strokes, 
and constructed a probability model online to identify text 
pixels. In Ye et al.’s approach [7], they obtained text pixel 
samples by a reasonable hypothesis, and then used them to 
train the Gaussian Mixture Models of intensity and hue in 
HSI color space to characterize text pixels. These methods 
perform well when all characters have similar color, but 
sometimes the color inconsistency of characters and noises 
degrade their performance.  

 

Fig.1. The framework of our approach 

The paper presents a hybrid text segmentation approach 
to combine the advantages of difference-based methods and 
similarity-based methods together. The framework of our 
approach is summarized in Fig.1. First, we apply a new 
stroke edge filter to obtain a stroke edge map. Then an 
improved two-threshold method derived from Niblack’s 
thresholding is utilized to generate stroke edges. Those 
pixels between the edge pairs above the high threshold are 
collected to estimate the representative of stroke color, so 
that stroke pixels are further extracted by computing the 



color similarity. Finally the system integrates stroke edge 
and stroke region information to achieve better 
segmentation results.  

The rest of the paper is organized as follows: we 
present the details of the proposed text segmentation 
approach in section 2. The experimental results are reported 
in section 3. Section 4 concludes our work. 

2. DESCRIPTION OF OUR APPROACH 

Our system first uses the text detection algorithm in [8] to 
detect text in images or video frames. Then each located 
text region is rescaled to a proper size using linear 
interpolation. When the height of text is less than 20 pixels, 
the rescaling process can increase the text resolution and at 
the same time it also makes character strokes have similar 
expected thickness. In our implementation, text regions are 
rescaled to a height of 40 pixels and their aspect ratio are 
preserved. Fig.2 gives three examples of text regions 
detected from video frames of TV news. 

  
(a)Chinese  (b)English  (c)Korean 

Fig.2. Examples of detected text regions 

2.1. Stroke edge filter 

 
(a)An enlarged Chinese character  

  
(b)Response 
of our filter 

(c)Response    
of canny filter 

(d)Response 
of sobel filter 

Fig.3. Reponses of different filters for transitional pixels 

As shown in Fig.3 (a), it is common that there exist 
transitional pixels between strokes and background. 
Detecting the transitional pixels can help to detect stroke 
edges. To better identify edges of strokes consisting of 
transitional pixels, we devise a stroke edge filter as follows: 

( )( )
( ) max{ ( )} min{ ( )}

v N pv N p
R p P v P v

∈∈
= −  ,          (1) 

where ( )R p  is the response of the stroke edge filter at  
location p , ( )N p  denotes the neighborhood of the pixel 
p , and ( )P v  denotes the intensity value of pixel v . Fig.3 (b) 

~ (d) show the responses generated by the three edge 
detectors, i.e., our filter, canny filter, and sobel filter. 

Apparently our stroke edge filter generates the greatest 
response and have clearer edges compared with the canny 
filter, and the sobel filter, especially in the intersection of 
two strokes. From Eq(1), it is easy to understand that, If a 
suitable size  of neighborhood is chosen, the response of our 
filter at the locations of transitional pixels is actually the 
difference of text and background. Fig.4 gives the 
comparison of stroke edge maps generated by the above 
three filters for the real image examples in Fig.2. It can also 
be seen that the proposed edge filter generate more desirable 
response for character strokes subjectively, compared with 
the canny or sobel edge detectors.  

 
(a)  The grayscale text regions. 

 
(b) Response of our stroke edge filter. 

 
(c) Response of the canny edge filter. 

 
(d)  Response of the sobel edge filter. 

Fig.4. Comparison of stroke edge maps generated by our 
filter, canny filter, and sobel filter  

2.2. Identify stroke edges 

After applying the stroke edge filter, a grayscale edge map 
is obtained. Then an improved two-threshold method 
derived from Niblack’s thresholding is utilized to classify 
pixels in the grayscale edge map into stroke edges, 
candidate stroke edges, and non-stroke edges. Finally, a 
tracking procedure is applied to find out stroke edge pixels 
from the generated candidate stroke edges, which employs 
the connection property among stroke edge pixels and can 
efficiently remove noises.  

Niblack in [9] describes an adaptive thresholding 
method which computes the threshold for each pixel 
location p  based on the local mean pm and local standard 
deviation pσ  of pixels in the neighborhood of p , i.e.,  

p p pt m α σ= + ∗ ,                             (2) 

where parameter α  adjusts the ratio of edge pixels. The 
Niblack’s thresholding method generally results in many 
false stroke edges as shown in Fig.5 (c), especially in dim 
regions. So we also consider the global information in 
adaptively choosing a threshold by  

max( , )p g p l pT m mα σ α σ= + + ,              (3) 

where m  and σ denote the mean and standard deviation of 
the whole grayscale edge map respectively, and gα , lα  are 



predefined parameters. A suitable neighborhood size is very 
significant to preserve enough local details and at the same 
time suppress noises. In our implementation, a 10 by 10 
square neighborhood is used. As shown in Fig.5 (b), if only 
a global threshold is used, too many false edge pixels are 
also generated in bright regions. Fig.5 (d) shows our method 
can effectively solve these problems. 

 
(a) Grayscale edge map (b)Global threshold 

 
(c)Local threshold (d)Improved  threshold 

Fig.5. The performance comparison between global, local 
Niblack’s thresholding methods and our method. 

To more robustly detect stroke edges, we devise a two-
threshold strategy to identify stroke edges. For each pixel, 
the high threshold h

pT  and the low threshold l
pT  are 

obtained by setting 0.4g lα α= =  and 0.2g lα α= =  
respectively in our implementation. Those pixels with 
intensity values higher than h

pT  are explicitly labeled as 

stroke edge pixels, those with values lower than l
pT  are 

explicitly labeled as non-stroke edges, and the remaining 
pixels are labeled as candidate stroke edge. A line tracking 
procedure is followed to further find some stroke edge 
pixels out from the candidates.  Concretely, only the pixels 
labeled as stroke edge pixels are chosen as seeds. For each 
seed pixel s , an edge line across the pixel will be marked as 
a stroke edge from the lines in the horizontal( h ), 
vertical( v ), diagonal( d ), and sub-diagonal( sd ) directions, 
if exist. We define the evaluation function ( )il s  to measure 
the reliability of line i  as a stroke edge. ( )il s  is computed 
by accumulating votes from stroke edge pixels and 
candidate stroke edge pixels during the line tracking 
procedure. For example, starting with the seed pixel s , to 
compute ( )hl s , ( )hl s  is updated by collected votes from 
joined pixels in the extension of a horizontal line, i.e., stroke 
edge pixels (2 votes), candidate stroke edge pixels (1 vote). 
The extension of the horizontal line at any end is terminated 
when a non-stroke pixel is met. Then the line with 
maximum votes is labeled as stroke edges, and 
correspondingly all the candidate stroke edge pixels on it 
become stroke edge pixels. The experimental results for the 
images in Fig.2 are shown in Fig.6. 

  
(a)Chinese  (b)English  (c)Korean 

Fig.6. The detection of stroke edges. 

 

2.3. Identify strokes 
 
In Fig.6, we observe that each stroke corresponds to a pair 
of edges, so we can estimate the stroke color by inner pixels 
between such edge pairs, if the edge pairs can be reliably 
located. In our implementation, only stroke edges composed 
of pixels with values above the high threshold are used. For 
each such edge, the most close one among its parallel edges, 
if exist, is chosen as its dual edge. The pixels lying on the 
mid-line of the edge pair are selected as representative 
samples. Based on the samples, the representative stroke 
color c  can be estimated by color histogram. Those pixels 
with very similar color with c  are classified as stroke pixels. 
The corresponding results are shown in Fig.7. 
 

 
(a)Chinese  (b)English  (c)Korean 

Fig.7. The detection of strokes. 

2.4. Integrating stroke edge and region information 
 
For the generated binary stroke edges (Section 2.2) and 
strokes (Section 2.3), four heuristic rules are devised to 
integrate them so as to obtain better segmentation results. A 
text region is first partitioned into small square blocks, e.g, 
8 by 8 pixels. Then according to the existence of stroke 
edges or strokes, four possible block types are (a) none, (b) 
both, (c) only stroke edges, and (d) only strokes. For case 
(a), all pixels in the block are marked as 0 (non-text). For 
case (b), all stroke pixels plus the stroke edge pixels which 
are adjacent to stroke pixels are marked as 1 (text pixels), 
and the remaining pixels in the block are marked as 0.  For 
case (c), if stroke edge pixels are adjacent to stroke pixels in 
other blocks and the fill ratio of them for current block is 
lower than a predefined threshold, the stroke edge pixels are 
marked as 1, otherwise 0. For case (d), only if stroke pixels 
are connected with stroke pixels in other blocks, they are 
marked as text pixels.  

Finally connected component analysis is further applied 
to eliminate non-text blocks based on geometry properties 
of characters. For instance, connected components whose 
sizes are smaller than 10 pixels are eliminated. If the pixels 
lying on the boundaries of the image do not evenly 
distributed among columns, they are eliminated. Fig.8 gives 
the final segmented text for the example images in Fig.2. 

 
(a)Chinese  (b)English  (c)Korean 

Fig.8. Results after integration and post process. 

 
 



3. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of our approach, 464 text 
regions located in 300 color images are selected as test data. 
The test images come from the Web, recorded broadcast 
videos, or digital videos, and the embedded text has 
different sizes, colors, and diverse background. The 
characters in the dataset involve Chinese, English, and 
Korean. The distribution of the number of characters and 
text regions for different languages are tabulated in Table 1. 

Table 1. Composition of test dataset 

Language Text regions Characters 
Chinese 225 2161 
English 206 2802 
Korean 33 249 

 
The performance of the proposed approach is evaluated 

according to the character extraction rate (CER) and the 
character recognition rate (CRR). They are defined as: 

/eCER N N= ,    /rCRR N N= ,                (4) 

where eN  is the number of characters completely extracted 
without obviously lost strokes or connected background 
residues, rN  is the number of characters which are correctly 
recognized by an OCR engine, and N  is the number of all 
the characters. 

We compare the performance of our method with a 
difference-based method and a similarity-based method. For 
the difference-based method, we choose Liu et al.’s 
approach [10], which first applied stroke filter, and then 
used thresholding method as well as some constraints to 
segment bright strokes and dark strokes. For the similarity 
method, we choose Ye et al.’s approach [7]. Text 
recognition is carried out by the commercial OCR software 
ShangShu 7.0. The related experimental results are 
summarized in Table 2.  

Table 2. Performance comparison of three algorithms 

 CER CRR Speed(chars/s)
Our approach 88.4% 82.1% 252 

Liu et al. [10] 81.3% 75.4% 225 

Ye et al.  [7] 82.3% 76.5% 245 

The results show that our approach has better 
performance than the other two approaches according to 
both CER and CRR. Since our approach utilizes both stroke 
edges and strokes instead of only one of them as the 
difference-based methods or the similarity-based methods 
do, it is less sensitive to the complexity of background and 
the inconsistency of text color. The proposed stroke edge 
filter and the improved thresholding method make the 
extraction of stroke edges and the estimation of stroke color 

more reliable, which also contribute a lot to the performance 
of our approach. 

4. CONCLUSION 

Today most approaches to text segmentation mainly exploit 
the strong difference between text and background or the 
color similarity of text pixels. Our preliminary work shows 
the joint usage of the two kinds of information is an 
effective way to obtain better segmentation results, since 
our experiments show results in a gain of about 6% in CRR. 
The proposed two-threshold method using stroke edge filter 
can effectively identify stroke edges in subjective evaluation. 
Reliably detecting stroke edges and strokes is the basis for 
the hybrid approach to obtain better segmentation 
performance. 
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