
A HYBRID TEXT SEGMENTATION APPROACH

Xiaojun Li1, Weiqiang Wang1,2, Qingming Huang1, 2, Wen Gao2,3 , Laiyun Qing1

1Graduate University of Chinese Academy of Sciences, Beijing, China
2 Key Lab of Intell. Info. Process., Inst. of Comput. Tech., Chinese Academy of Sciences, Beijing China

 3Institute of Digital Media, Peking University, Beijing, China
{xjli, wqwang, qmhuang, wgao, lyqing}@jdl.ac.cn

ABSTRACT

In this paper, we present a hybrid text segmentation
approach for embedded text in images, aiming to combining
the advantages of the difference-based methods and the
similarity-based methods together. First a new stroke edge
filter is applied to obtain stroke edge map. Then a two-
threshold method based on the improved Niblack
thresholding technique is utilized to identify stroke edges.
Those pixels between the edge pairs above the high
threshold are collected to estimate the representative of
stroke color, so that stroke pixels are further extracted by
computing the color similarity. Finally some heuristic rules
are devised to integrate stroke edge and stroke region
information to obtain better segmentation results. The
experimental results show that our approach can effectively
segment text from background.

Index Terms—Text segmentation, edge filter.

1. INTRODUCTION

Texts in images and videos can play significant role in many
applications, such as automatic image annotation, content-
based image retrieval, as well as video indexing,
summarization, and retrieval. Embedded text detection,
segmentation, and recognition [1] are three major key
techniques to be addressed to transform pixel-based text
into encoded characters which natural language analysis and
understanding techniques can effectively process.

This paper investigates the issue of text segmentation
which separates text pixels from background in an image.
Just as image segmentation is the public challenging task for
computer vision community, text segmentation is the same
when text is embedded in complex background. In recent
years, diverse approaches for text segmentation have been
investigated. We categorize the approaches into two main
categories: the difference-based methods and the similarity-
based methods. The former is based on the color difference
between text and background. Some specific filters are used
such as canny edge filter and stroke filter [10], and then
various thresholding techniques are exploited to form binary
images, e.g., Otsu’s adaptive thresholding method [2],

global & local thresholding method [3], and Niblack’s
method [4] et al. Although they are simple and fast, they
generally fail when the color of text and partial background
are similar. The latter extract text pixels by clustering pixels
with homogeneous color into regions. For example, Fu et al.
[5] used the K-means clustering algorithm in YCbCr color
space to generate several layers, and heuristic rules were
employed to select text layer. Wang et al. [6] clustered text
images into some maps by color and scale of text strokes,
and constructed a probability model online to identify text
pixels. In Ye et al.’s approach [7], they obtained text pixel
samples by a reasonable hypothesis, and then used them to
train the Gaussian Mixture Models of intensity and hue in
HSI color space to characterize text pixels. These methods
perform well when all characters have similar color, but
sometimes the color inconsistency of characters and noises
degrade their performance.

Fig.1. The framework of our approach

The paper presents a hybrid text segmentation approach
to combine the advantages of difference-based methods and
similarity-based methods together. The framework of our
approach is summarized in Fig.1. First, we apply a new
stroke edge filter to obtain a stroke edge map. Then an
improved two-threshold method derived from Niblack’s
thresholding is utilized to generate stroke edges. Those
pixels between the edge pairs above the high threshold are
collected to estimate the representative of stroke color, so
that stroke pixels are further extracted by computing the

color similarity. Finally the system integrates stroke edge
and stroke region information to achieve better
segmentation results.

The rest of the paper is organized as follows: we
present the details of the proposed text segmentation
approach in section 2. The experimental results are reported
in section 3. Section 4 concludes our work.

2. DESCRIPTION OF OUR APPROACH

Our system first uses the text detection algorithm in [8] to
detect text in images or video frames. Then each located
text region is rescaled to a proper size using linear
interpolation. When the height of text is less than 20 pixels,
the rescaling process can increase the text resolution and at
the same time it also makes character strokes have similar
expected thickness. In our implementation, text regions are
rescaled to a height of 40 pixels and their aspect ratio are
preserved. Fig.2 gives three examples of text regions
detected from video frames of TV news.

(a)Chinese (b)English (c)Korean

Fig.2. Examples of detected text regions

2.1. Stroke edge filter

(a)An enlarged Chinese character

(b)Response
of our filter

(c)Response
of canny filter

(d)Response
of sobel filter

Fig.3. Reponses of different filters for transitional pixels

As shown in Fig.3 (a), it is common that there exist
transitional pixels between strokes and background.
Detecting the transitional pixels can help to detect stroke
edges. To better identify edges of strokes consisting of
transitional pixels, we devise a stroke edge filter as follows:

()()
() max{ ()} min{ ()}

v N pv N p
R p P v P v

∈∈
= − , (1)

where ()R p is the response of the stroke edge filter at
location p , ()N p denotes the neighborhood of the pixel
p , and ()P v denotes the intensity value of pixel v . Fig.3 (b)

~ (d) show the responses generated by the three edge
detectors, i.e., our filter, canny filter, and sobel filter.

Apparently our stroke edge filter generates the greatest
response and have clearer edges compared with the canny
filter, and the sobel filter, especially in the intersection of
two strokes. From Eq(1), it is easy to understand that, If a
suitable size of neighborhood is chosen, the response of our
filter at the locations of transitional pixels is actually the
difference of text and background. Fig.4 gives the
comparison of stroke edge maps generated by the above
three filters for the real image examples in Fig.2. It can also
be seen that the proposed edge filter generate more desirable
response for character strokes subjectively, compared with
the canny or sobel edge detectors.

(a) The grayscale text regions.

(b) Response of our stroke edge filter.

(c) Response of the canny edge filter.

(d) Response of the sobel edge filter.

Fig.4. Comparison of stroke edge maps generated by our
filter, canny filter, and sobel filter

2.2. Identify stroke edges

After applying the stroke edge filter, a grayscale edge map
is obtained. Then an improved two-threshold method
derived from Niblack’s thresholding is utilized to classify
pixels in the grayscale edge map into stroke edges,
candidate stroke edges, and non-stroke edges. Finally, a
tracking procedure is applied to find out stroke edge pixels
from the generated candidate stroke edges, which employs
the connection property among stroke edge pixels and can
efficiently remove noises.

Niblack in [9] describes an adaptive thresholding
method which computes the threshold for each pixel
location p based on the local mean pm and local standard
deviation pσ of pixels in the neighborhood of p , i.e.,

p p pt m α σ= + ∗ , (2)

where parameter α adjusts the ratio of edge pixels. The
Niblack’s thresholding method generally results in many
false stroke edges as shown in Fig.5 (c), especially in dim
regions. So we also consider the global information in
adaptively choosing a threshold by

max(,)p g p l pT m mα σ α σ= + + , (3)

where m and σ denote the mean and standard deviation of
the whole grayscale edge map respectively, and gα , lα are

predefined parameters. A suitable neighborhood size is very
significant to preserve enough local details and at the same
time suppress noises. In our implementation, a 10 by 10
square neighborhood is used. As shown in Fig.5 (b), if only
a global threshold is used, too many false edge pixels are
also generated in bright regions. Fig.5 (d) shows our method
can effectively solve these problems.

(a) Grayscale edge map (b)Global threshold

(c)Local threshold (d)Improved threshold

Fig.5. The performance comparison between global, local
Niblack’s thresholding methods and our method.

To more robustly detect stroke edges, we devise a two-
threshold strategy to identify stroke edges. For each pixel,
the high threshold h

pT and the low threshold l
pT are

obtained by setting 0.4g lα α= = and 0.2g lα α= =
respectively in our implementation. Those pixels with
intensity values higher than h

pT are explicitly labeled as

stroke edge pixels, those with values lower than l
pT are

explicitly labeled as non-stroke edges, and the remaining
pixels are labeled as candidate stroke edge. A line tracking
procedure is followed to further find some stroke edge
pixels out from the candidates. Concretely, only the pixels
labeled as stroke edge pixels are chosen as seeds. For each
seed pixel s , an edge line across the pixel will be marked as
a stroke edge from the lines in the horizontal(h),
vertical(v), diagonal(d), and sub-diagonal(sd) directions,
if exist. We define the evaluation function ()il s to measure
the reliability of line i as a stroke edge. ()il s is computed
by accumulating votes from stroke edge pixels and
candidate stroke edge pixels during the line tracking
procedure. For example, starting with the seed pixel s , to
compute ()hl s , ()hl s is updated by collected votes from
joined pixels in the extension of a horizontal line, i.e., stroke
edge pixels (2 votes), candidate stroke edge pixels (1 vote).
The extension of the horizontal line at any end is terminated
when a non-stroke pixel is met. Then the line with
maximum votes is labeled as stroke edges, and
correspondingly all the candidate stroke edge pixels on it
become stroke edge pixels. The experimental results for the
images in Fig.2 are shown in Fig.6.

(a)Chinese (b)English (c)Korean

Fig.6. The detection of stroke edges.

2.3. Identify strokes

In Fig.6, we observe that each stroke corresponds to a pair
of edges, so we can estimate the stroke color by inner pixels
between such edge pairs, if the edge pairs can be reliably
located. In our implementation, only stroke edges composed
of pixels with values above the high threshold are used. For
each such edge, the most close one among its parallel edges,
if exist, is chosen as its dual edge. The pixels lying on the
mid-line of the edge pair are selected as representative
samples. Based on the samples, the representative stroke
color c can be estimated by color histogram. Those pixels
with very similar color with c are classified as stroke pixels.
The corresponding results are shown in Fig.7.

(a)Chinese (b)English (c)Korean

Fig.7. The detection of strokes.

2.4. Integrating stroke edge and region information

For the generated binary stroke edges (Section 2.2) and
strokes (Section 2.3), four heuristic rules are devised to
integrate them so as to obtain better segmentation results. A
text region is first partitioned into small square blocks, e.g,
8 by 8 pixels. Then according to the existence of stroke
edges or strokes, four possible block types are (a) none, (b)
both, (c) only stroke edges, and (d) only strokes. For case
(a), all pixels in the block are marked as 0 (non-text). For
case (b), all stroke pixels plus the stroke edge pixels which
are adjacent to stroke pixels are marked as 1 (text pixels),
and the remaining pixels in the block are marked as 0. For
case (c), if stroke edge pixels are adjacent to stroke pixels in
other blocks and the fill ratio of them for current block is
lower than a predefined threshold, the stroke edge pixels are
marked as 1, otherwise 0. For case (d), only if stroke pixels
are connected with stroke pixels in other blocks, they are
marked as text pixels.

Finally connected component analysis is further applied
to eliminate non-text blocks based on geometry properties
of characters. For instance, connected components whose
sizes are smaller than 10 pixels are eliminated. If the pixels
lying on the boundaries of the image do not evenly
distributed among columns, they are eliminated. Fig.8 gives
the final segmented text for the example images in Fig.2.

(a)Chinese (b)English (c)Korean

Fig.8. Results after integration and post process.

3. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our approach, 464 text
regions located in 300 color images are selected as test data.
The test images come from the Web, recorded broadcast
videos, or digital videos, and the embedded text has
different sizes, colors, and diverse background. The
characters in the dataset involve Chinese, English, and
Korean. The distribution of the number of characters and
text regions for different languages are tabulated in Table 1.

Table 1. Composition of test dataset

Language Text regions Characters
Chinese 225 2161
English 206 2802
Korean 33 249

The performance of the proposed approach is evaluated

according to the character extraction rate (CER) and the
character recognition rate (CRR). They are defined as:

/eCER N N= , /rCRR N N= , (4)

where eN is the number of characters completely extracted
without obviously lost strokes or connected background
residues, rN is the number of characters which are correctly
recognized by an OCR engine, and N is the number of all
the characters.

We compare the performance of our method with a
difference-based method and a similarity-based method. For
the difference-based method, we choose Liu et al.’s
approach [10], which first applied stroke filter, and then
used thresholding method as well as some constraints to
segment bright strokes and dark strokes. For the similarity
method, we choose Ye et al.’s approach [7]. Text
recognition is carried out by the commercial OCR software
ShangShu 7.0. The related experimental results are
summarized in Table 2.

Table 2. Performance comparison of three algorithms

 CER CRR Speed(chars/s)
Our approach 88.4% 82.1% 252

Liu et al. [10] 81.3% 75.4% 225

Ye et al. [7] 82.3% 76.5% 245

The results show that our approach has better
performance than the other two approaches according to
both CER and CRR. Since our approach utilizes both stroke
edges and strokes instead of only one of them as the
difference-based methods or the similarity-based methods
do, it is less sensitive to the complexity of background and
the inconsistency of text color. The proposed stroke edge
filter and the improved thresholding method make the
extraction of stroke edges and the estimation of stroke color

more reliable, which also contribute a lot to the performance
of our approach.

4. CONCLUSION

Today most approaches to text segmentation mainly exploit
the strong difference between text and background or the
color similarity of text pixels. Our preliminary work shows
the joint usage of the two kinds of information is an
effective way to obtain better segmentation results, since
our experiments show results in a gain of about 6% in CRR.
The proposed two-threshold method using stroke edge filter
can effectively identify stroke edges in subjective evaluation.
Reliably detecting stroke edges and strokes is the basis for
the hybrid approach to obtain better segmentation
performance.

ACKNOWLEDGEMENTS
This work was supported in part by National Natural
Science Foundation of China under Grant 60873087,
National Key Technologies R&D Program under Grant
2006BAH02A24-2, National Hi-Tech Development
Program (863 Program) of China: 2006AA01Z117, and
Beijing Natural Science Foundation: 4092042.

5. REFERENCES

[1] R. Lienhart and A. Wernicke, “Localizing and segmenting text
in images and videos,” IEEE Trans. Circuits Syst. Video Technol.,
Vol.12, No.4, pp.256-268, 2002.
[2] N. Otsu, “A threshold selection method from gray-scale
histogram,” IEEE Trans. Syst. Man Cybern. Vol. 9, pp.62–66,
1979.
[3] F. Chang, G.C. Chen, C.C. Lin, W.H. Lin, “Caption analysis
and recognition for building video indexing system,” Multimedia
Syst. Vol. 10 (4) , pp.344–355, 2005.
[4] C. Wolf, J. Jolion, “Extraction and recognition of artificial text
in multimedia documents,” Pattern Anal. Appl. Vol. 6 pp.309–326,
2003.
[5] Libo Fu, Weiqiang Wang, and Yaowen Zhan, “A Robust Text
Segmentation Approach in Complex Background Based on
Multiple Constraints,” Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg, Vol. 3767. pp.594–605, 2005.
[6] Weiqiang Wang, Libo Fu, and Wen Gao, “Text Segmentation
in Complex Background Based on Color and Scale Information of
Character Strokes,” Lecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg, Vol. 4810. pp. 397-400, Dec. 2007.
[7] Qixiang Ye, Wen Gao, Qingming Huang, “Automatic text
segmentation from complex background,” IEEE International
Conference on Image Processing, Singapore, Vol.5, pp.2905-2908,
Oct. 2004.
[8] Xiaojun Li, Weiqiang Wang, Shuqiang Jiang, Qingming Huang,
Wen Gao, “Fast and Effective Text Detection,” IEEE International
Conference on Image Processing, San Diego, California, U.S.A.,
pp.969-972, Oct. 2008.
[9] W.Niblack., An Introduction to Digital Image Processing,
Englewood Cliffs, N.J.: Prentice Hall, pp.115-116, 1986.
[10]Qifeng Liu, Cheolkon Jung, Youngsu Moon, “Text
Segmentation based on stroke filter”, Proceeding of the 14th
annual ACM International Conference on Multimedia, Santa
Barbara, California, USA, pp. 129-132, Oct. 2006.

