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Can accretion disk properties observationally distinguish black holes from naked
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Naked singularities are hypothetical astrophysical objects, characterized by a gravitational sin-
gularity without an event horizon. Penrose has proposed a conjecture, according to which there
exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between
astrophysical black holes and naked singularities is a major challenge for present day observational
astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differ-
entiating naked singularities from black holes is through the comparative study of thin accretion
disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the
present paper, we consider accretion disks around axially-symmetric rotating naked singularities,
obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first ma-
jor difference between rotating naked singularities and Kerr black holes is in the frame dragging
effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin
parameter. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic
properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum)
are different for these two classes of compact objects, consequently giving clear observational sig-
natures that could discriminate between black holes and naked singularities. For specific values of
the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked
singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole.
In addition to this, it is also shown that the conversion efficiency of the accreting mass into radia-
tion by rotating naked singularities is always higher than the conversion efficiency for black holes,
i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation
than black holes. Thus, these observational signatures may provide the necessary tools from clearly
distinguishing rotating naked singularities from Kerr-type black holes.

PACS numbers: 04.20. Cv, 04.20. Dw, 04.70. Bw, 04.80.Cc

I. INTRODUCTION

Investigating the final fate of the gravitational collapse
of an initially regular distribution of matter, in the frame-
work of the Einstein theory of gravitation, is one of the
most active fields of research in contemporary general rel-
ativity. One would like to know whether, and under what
initial conditions, gravitational collapse results in black
hole formation. One would also like to know if there are
physical collapse solutions that lead to naked singulari-
ties. If found, such solutions would be counterexamples
of the cosmic censorship hypothesis, which states that
curvature singularities in asymptotically flat space-times
are always shrouded by event horizons.

Roger Penrose [1] was the first to propose the idea,
known as cosmic conjecture: does there exist a cosmic
censor who forbids the occurrence of naked singularities,
clothing each one in an absolute event horizon? This
conjecture can be formulated in a strong sense (in a rea-
sonable space-time we cannot have a naked singularity)
or in a weak sense (even if such singularities occur they
are safely hidden behind an event horizon, and there-
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fore cannot communicate with far-away observers). Since
Penrose’ s proposal, there have been various attempts to
prove the conjecture (see [2] and references therein). Un-
fortunately, no such attempts have been successful so far.

Since, due to the complexity of the full Einstein equa-
tions, the general problem appears intractable, metrics
with special symmetries are used to construct gravi-
tational collapse models. One such case is the two-
dimensional reduction of general relativity obtained by
imposing spherical symmetry. Even with this reduction,
however, very few inhomogeneous exact nonstatic solu-
tions have been found [3]-[10].

Within the framework of various physical models, the
spherical gravitational collapse has been analyzed in
many papers [11]-[19]. The idea of probing naked space-
times singularities with waves rather than with particles
has been proposed in [20]. For some space-times the clas-
sical singularity becomes regular if probed with waves,
while stronger classical singularities remain singular.

In order to obtain the energy-momentum tensor for the
collapse of a null fluid an inverted approach was proposed
in [21]. In the framework of the same approach a large
class of solutions, including Type II fluids, and which in-
cludes most of the known solutions of the Einstein field
equations, has been derived [22], [23]. The Vaidya radiat-
ing metric has been extended to include both a radiation
field and a string fluid in [24–26]. The collapse of the
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quark fluid, described by the bag model equation of state
p = (ρ− 4B) /3, with B =constant, has been studied in
[27], and the conditions for the formation of a naked sin-
gularity have been obtained. The obtained solution has
been generalized to arbitrary space-time dimensions and
to a more general linear equation of state in [28, 29]. The
gravitational collapse of a high-density null charged mat-
ter fluid, satisfying the Hagedorn equation of state, was
considered in the framework of the Vaidya geometry in
[30].

Since theoretical studies alone cannot give an answers
about the existence or non-existence of naked singulari-
ties in nature, the differences in the observational prop-
erties of the black holes and naked singularities could
be used to discriminate between these two classes of ob-
jects. Such a distinctive observational feature is repre-
sented by the lensing properties, and a research project
that uses gravitational lensing as a tool to differentiate
between naked singularities and black holes was initi-
ated in [31]. This pioneering work was extended in [32],
where the distinctive lensing features of black holes and
naked singularities were studied in detail. The gravi-
tational lensing due to a strongly naked singularity is
qualitatively different from that due to a Schwarzschild
black hole; a strongly naked singularity gives rise to ei-
ther two or nil Einstein ring(s), and one radial criti-
cal curve. The gravitational lensing (particularly time
delay, magnification centroid, and total magnification)
for a Schwarzschild black hole and for a Janis-Newman-
Winicour naked singularities [33] were studied in [34].
The lensing features are qualitatively similar (though
quantitatively different) for Schwarzschild black holes,
weakly naked, and marginally strongly naked singular-
ities. However, the lensing characteristics of strongly
naked singularities are qualitatively very different from
those due to Schwarzschild black holes. Gravitational
lensing by rotating naked singularities was considered in
[35], and it was shown that the shift of the critical curves
as a function of the lens angular momentum decreases
slightly for the weakly naked, and vastly for the strongly
naked singularities, with the increase of the scalar charge.

It is the purpose of the present paper to consider
another observational possibility that may distinguish
naked singularities from black holes, namely, the study
of the properties of the thin accretion disks around ro-
tating naked singularities and black holes, respectively.
Thus, in the following we consider a comparative study
of the physical properties of thin accretion disks around a
particular type of rotating naked singularity, and rotating
black holes, described by the Kerr metric, respectively. In
particular, we consider the basic physical parameters de-
scribing the disks, like the emitted energy flux, the tem-
perature distribution on the surface of the disk, as well as
the spectrum of the emitted equilibrium radiation. Due
to the differences in the exterior geometry, the thermody-
namic and electromagnetic properties of the disks (energy
flux, temperature distribution and equilibrium radiation
spectrum) are different for these two classes of compact

objects, thus giving clear observational signatures, which
may allow to discriminate, at least in principle, naked
singularities from black holes. We would like to point
out that the proposed method for the detection of the
naked singularities by studying accretion disks is an in-

direct method, which must be complemented by direct

methods of observation of the ”surface” of the consid-
ered black hole/naked singularity candidates, and/or by
the study of the lensing properties of the central compact
object.

The mass accretion around rotating black holes was
studied in general relativity for the first time in [36]. By
using an equatorial approximation to the stationary and
axisymmetric spacetime of rotating black holes, steady-
state thin disk models were constructed, extending the
theory of non-relativistic accretion [37]. In these mod-
els hydrodynamical equilibrium is maintained by efficient
cooling mechanisms via radiation transport, and the ac-
creting matter has a Keplerian rotation. The radiation
emitted by the disk surface was also studied under the
assumption that black body radiation would emerge from
the disk in thermodynamical equilibrium. The radiation
properties of thin accretion disks were further analyzed in
[38, 39], where the effects of photon capture by the hole
on the spin evolution were presented as well. In these
works the efficiency with which black holes convert rest
mass into outgoing radiation in the accretion process was
also computed. More recently, the emissivity properties
of the accretion disks were investigated for exotic cen-
tral objects, such as wormholes, non-rotating or rotating
quark, boson or fermion stars, brane-world black holes,
f(R) type gravity models, and Horava-Lifshitz gravity
[40]. In all these cases it was shown that particular
signatures can appear in the electromagnetic spectrum,
thus leading to the possibility of directly testing differ-
ent physical models by using astrophysical observations
of the emission spectra from accretion disks.

The present paper is organized as follows. The ge-
ometry of the considered naked singularity is presented
in Section II. In Section III we obtain the main physi-
cal parameters (specific energy, the specific angular mo-
mentum, and angular velocity) for massive test particles
in stable circular orbits in stationary and axisymmetric
spacetimes. The motion of test particles around rotat-
ing naked singularities is considered in Section IV. The
frame dragging effect is analyzed in Section V. The prop-
erties of standard thin accretion disks are reviewed in
Section VI. The energy flux, temperature distribution,
and radiation spectrum from thin disks around naked sin-
gularities and Kerr black holes are discussed in Section
VII. Some observational implications of our results are
considered in Section VIII. We discuss and conclude our
results in Section IX.
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II. SPACETIME GEOMETRY OF THE NAKED

SINGULARITY

As an example of a rotating naked singularity geometry
we will consider in the following the Kerr-like solution of
the Einstein gravitational field equations with a massless
scalar field, Rµν = −8πϕ,µϕ,ν , where ϕ is the scalar field,
obtained in [41]. In the coordinate system (t, r, θ, φ), the
line element, adapted to the axial symmetry, is given by

ds2 = −fγ(dt− wdφ)2 − 2w(dt− wdφ)dφ

+f1−γΣ(∆−1dr2 + dθ2 + sin2 θdφ2) , (1)

where

f(r, θ) = 1− 2
Mr

γΣ
,

w(θ) = a sin2 θ ,

Σ(r, θ) = r2 + a2 cos2 θ ,

∆(r) = r2 + a2 − 2
Mr

γ
,

and γ is a constant.
The energy-momentum tensor of the massless scalar

field generating the naked singularity is given by

Tϕ
µν = ϕ,µϕ,ν − 1

2
gµνg

αβϕ,αϕ,β. (2)

The scalar field satisfies the equation gµν∇µ∇νϕ =
0, which follows from the conservation of the energy-
momentum tensor, ∇µTϕ

µν = 0, and is given by

ϕ =

√
1− γ2

4
ln

[
1− 2Mr

γ (r2 + a2 cos2 θ)

]
. (3)

For 0 < γ < 1 this metric describes the spacetime
geometry of a naked singularity, with a total mass M ,
and an angular momentum J = aM = a∗M

2. Here
a∗ = J/M is the dimensionless spin parameter. It can be
shown that the scalar curvature of this geometry diverges
at a radius where the condition gtt = −fγ = 0 holds,
which indicates the existence of a curvature singularity
at the radius

rs = γ−1M(1 +
√
1− γ2a2∗ cos

2 θ) . (4)

Considering the angular dependence of this expression,
we see that the minimal radial coordinate of the singu-
larity is at the pole, rs(θ = 0) = γ−1M(1 +

√
1− γ2a2∗),

whereas it has a maximal radius in the equatorial plane,
rs(θ = π/2) = 2M/γ. The bigger root of the equation
∆(r) = 0 is

r+ = γ−1M(1 +
√
1− γ2a2∗) . (5)

Since for any value of θ, r+ is always less than or equal
to rs, the singularity is not hidden behind the event hori-
zon. It can also be shown that there is at least one null

geodesic in the equatorial plane connecting the singular-
ity with the future null infinity, i.e., the singularity is
naked [42].
For γ = 1 the line element describes the spacetime

geometry of the Kerr black hole, where the vanishing
horizon function, ∆(r) = 0, has the roots r± = M(1 ±√
1− a2∗). Then r+ gives the horizon radius for |a∗| < 1.

In the case of rotating black holes, the condition gtt = 0
does not provide any singular surface, but the ergosphere
located at re = M(1 +

√
1− a2∗ cos

2 θ).
We note that since for the metric (1) gtφ = −w(1−fγ)

and gφφ = f1−γΣ sin2 θ + w2(2 − fγ), respectively, the
frame dragging frequency of this rotating solution can be
written as

ω =
w(1 − fγ)

f1−γΣ sin2 θ + w2(2− fγ)
. (6)

For the Kerr black holes (γ = 1) we obtain the familiar
expression ω = 2MarA−1, with A(r, θ) = (r2 + a2) −
∆a2 sin2 θ.
In the equatorial approximation (|θ − π/2| ≪ 1), the

components of the metric (1) reduce in the equatorial
coordinate system (t, r, z = r cos θ, φ) to the form

gtt = −fγ , (7)

gtφ = −a(1− fγ) , (8)

gφφ = f1−γr2 + a2(2− fγ) , (9)

grr = f1−γ r
2

∆
, (10)

gzz = f1−γ , (11)

where

f(r) = 1− 2M

γr
.

The scalar field is given, in this approximation, by ϕ =√
1− γ2 ln f/4. In the equatorial plane the frame drag-

ging frequency, given by Eq. (6), has the expression

ω = 2M−1a∗x
−6

A
−1 , (12)

where x =
√
r/M , and

A = 2
f1−γ + a2∗x

−4(2− fγ)

x2(1− fγ)
,

respectively, with f(x) = 1 − 2γ−1x−2. For the Kerr
solution (γ = 1), A reduces to the form [36, 38]

A = 1 + a2∗x
−4 + 2a2∗x

−6.

III. CIRCULAR GEODESIC MOTION IN

STATIONARY AND AXISYMMETRIC

SPACETIMES

Let us consider, in the coordinate system (t, r, θ, φ),
an arbitrary stationary and axially symmetric geometry,
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with line element given by

ds2 = gttdt
2+2gtφdtdφ+grrdr

2+gθθdθ
2+gφφdφ

2 . (13)

The metric (13) is adapted to the symmetries of the
spacetime, endowed with the time- and space-like Killing
vectors (∂/∂t)µ and (∂/∂φ)µ for time translations and
spatial rotations, respectively. In the equatorial approxi-
mation (|θ−π/2| ≪ 1), and the metric functions gtt, gtφ,
grr, gθθ and gφφ in Eq. (13) depend only on the radial co-
ordinate r. Then the geodesic equations in the equatorial
plane take the form

dt

dτ
=

Ẽgφφ + L̃gtφ
g2tφ − gttgφφ

,
dφ

dτ
= − Ẽgtφ + L̃gtt

g2tφ − gttgφφ
, (14)

and

grr

(
dr

dτ

)2

= V (r), (15)

respectively, where τ is the affine parameter, Ẽ and L̃
are the specific energy and specific angular momentum
of the particles moving along the time-like geodesics, and
the potential term V (r) is defined by

V (r) ≡ −1 +
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

g2tφ − gttgφφ
. (16)

For circular orbits in the equatorial plane, the condi-
tions V (r) = 0 and V,r(r) = 0, respectively, must hold.

These conditions determine the specific energy Ẽ, the

specific angular momentum L̃ and the angular velocity
Ω of particles moving on circular orbits as

Ẽ = − gtt + gtφΩ√
−gtt − 2gtφΩ− gφφΩ2

, (17)

L̃ =
gtφ + gφφΩ√

−gtt − 2gtφΩ− gφφΩ2
, (18)

Ω =
dφ

dt
=

−gtφ,r +
√
(gtφ,r)2 − gtt,rgφφ,r

gφφ,r
. (19)

Any stationary observer, moving along a world line r =
constant and θ = constant with a uniform angular ve-
locity Ω, has a four-velocity vector uµ ∝ (∂/∂t)µ +
Ω(∂/∂φ)µ, which lies inside the surface of the future light
cone. Therefore, the condition

[(∂/∂t)µ +Ω(∂/∂φ)µ]2 = gtt +2Ωgtφ +Ω2gφφ ≤ 0, (20)

appearing in Eqs. (17) and (18), provides the constraint
Ωmin < Ω < Ωmax for the angular velocity of the sta-
tionary observers, with

Ωmin = ω −
√
ω2 − gtt

gφφ
, (21)

Ωmax = ω +

√
ω2 − gtt

gφφ
, (22)

where the frame dragging frequency of the spacetime is
defined by ω = −gtφ/gφφ.

Only circular orbits for which the condition (20) holds
do exist. The limiting case of this condition, gtt+2Ωgtφ+
Ω2gφφ = 0, gives rph, the innermost boundary of the cir-
cular orbits for particles, called photon orbit. The circu-

lar orbits (r > rph), for which the condition Ẽ < 1 holds,

are bound, and the condition Ẽ = 1 gives the radius rmb

of the marginally bound circular orbit, i.e., the innermost
orbits. The marginally stable circular orbits rms around
the central object are determined by the condition

V,rr|r=rms
=

Ẽ2gφφ,rr + 2ẼL̃gtφ,rr + L̃2gtt,rr − (g2tφ − gttgφφ),rr

g2tφ − gttgtφ

∣∣∣∣∣
r=rms

= 0 , (23)

where the condition V,rr < 0 holds for all stable cir-
cular orbits. The marginally stable orbit is the inner-
most boundary of the stable circular orbits of the Keple-
rian rotation. By inserting Eqs. (17)-(18) into Eq. (23),
and solving the resulting equation for r, we obtain the
marginally stable orbit, once the metric coefficients gtt,
gtφ and gφφ are explicitly given.

IV. EQUATORIAL GEODESIC MOTION

AROUND ROTATING NAKED SINGULARITIES

Inserting the metric components (7)-(9) into Eqs. (17)-
(19), we obtain the specific energy, the specific angular
momentum, and the angular velocity of the particles or-
biting along circular geodesics in the equatorial plane of
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FIG. 1: Radii of circular equatorial orbits around a black hole (γ = 1.00), and a naked singularity (γ = 0.99, 0.7 and 0.5),
with a total mass M , as functions of the spin parameter a∗. The dashed curves show the direct orbits, and the dotted curves
represent the retrograde ones. The event horizon/singularity is denoted by a solid curve, while the horizontal dotted-dashed
line at 2M represents the ergosphere in the equatorial plane.

the rotating naked singularity. Hence Ω, Ẽ and L̃ can be
written as

Ω = M−1x−3
B

−1, (24)

Ẽ = C
−1/2

G , (25)

L̃ = MxC
−1/2

F , (26)

where

B = f1−γh+ a∗x
−3 ,

C = f1−γ [(fh+ 2a∗x
−3)h− x−2],

G = fh+ a∗x
−3,

F = f1−γ [1− a∗ (1− fγ)x−1h] + a2∗x
−4,

with h(x) = [1 − (1 − γ)(2 − γx2)−1]1/2. For γ = 1 we
have f(x) = 1− 2x−2 and h = 1, and the latter formulae

reduce to the familiar expressions

B = 1 + a∗x
−3,

C = 1− 3x−2 + 2a∗x
−3,

G = 1− 2x−2 + a∗x
−3,

F = 1− 2a∗x
−3 + a2∗x

−4,

obtained for the equatorial approximation of the Kerr
solution [36, 38].

If we compare the locations of the marginally stable, of
the marginally bound, and of the photon orbits, plotted
in Fig. 1 as functions of the spin parameter a∗, we see
that they have a strong dependence on the parameter γ.

For static black holes (a∗ = 0 and γ = 1 on the top left hand plot), the orbits with radii rms, rmb and rph, are
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FIG. 2: The function d2V/d(r/M)2 versus r/M for a rotating black hole, with (γ = 1), and a naked singularity (γ = 0.99, 0.7,
and 0.5), with a total mass M . The spin parameter a∗ is set to 0.99, 0.9, 0.7 and 0, respectively.

located at 6M , 4M and 3M , respectively. As the spin in-
creases from zero they pass through the ergosphere, and
approach the even horizon r+ at the maximal spin value
a∗ = 1. For γ < 1 (see the other three plots in Fig. 1),
there is a critical value a∗c of the spin, where for each type
of direct orbit the curves have a cut-off. The behavior
of the retrograde orbits exhibits only a slight dependence
on γ. The value of a∗c is minimal for the radius rph, and
maximal for rms, e.g., it is a∗c ∼ 0.6 and a∗c ∼ 0.85 for

γ = 0.99 (see the top right hand plot). After reaching
this critical value of the rotation, the marginally stable,
marginally bound and photon orbits ”jump” to the singu-
larity, located at rs = 2M/γ. If the rotation exceeds the
value a∗c, corresponding to the marginally stable orbit,
then all the radii rms, rmb, rph and rs become degener-
ated. With increasing values of γ, these critical values
are decreasing and even in the case of slow rotation we
obtain at the singularity fully degenerated orbits.

As an illustration of the dependence of rms on the spin
a∗ and on the scalar charge parameter γ, we present in
Fig. 2 the second order derivative of the effective po-
tential with respect to the radial coordinate, given by
Eq. (23), as a function of the radius r. Here the values
of γ are the same as in Fig. (1), and the spin parameter
a∗ takes different values. The top left hand panel shows
the case of the black hole (γ = 1). For a static black
hole V,rr vanishes at 6M , and its zero shifts to lower
radii with increasing spin parameter. For a∗ ∼ 0.9, rms

is already approaching the static limit at r = 2M , and
for a∗ → 1, the marginally stable orbit enters the ergo-
sphere, and it approaches the event horizon. The other
panels in Fig. 2, presenting V,rr for the naked singular-
ity (γ < 1), show that Eq. (23) has no longer solutions
for higher values of the spin parameter, and V,rr remains
negative everywhere. As a result, the particles rotat-
ing around the singularity have stable circular orbits in
the whole spacetime, up to its boundary, i.e., to the sin-
gularity itself. With decreasing γ, the critical value of
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a∗, above which V,rr has no zeros any more, is also de-
creasing. For γ . 0.5, only very slowly rotating naked
singularities have a marginally stable orbit, which does
not coincide with the singularity.

V. THE FRAME DRAGGING EFFECT

An interesting question related to the geodesic motion
in the gravitational potential of the rotating naked sin-
gularity is the frame dragging effect, i.e., the relation
between the rotational velocity ω of the spacetime itself,
and the azimuthal component of the four-velocity of the
freely falling (or rotating) massive test particles. The
frame dragging frequency ω at the singularity can be cal-
culated from Eq. (12) as

ω(rs) = lim
x→

√
2/γ

a∗

2M
√
2/γ3f1−γ + 2Ma2∗

, (27)

where x =
√
rs/M =

√
2/γ. From a physical point

of view ω(rs) can be interpreted as the angular velocity
of the singularity, ΩS = ω(rs). We note that the limit
lim

x→
√

2/γ
f1−γ vanishes for γ < 1, but it becomes unity

for γ = 1. The latter result is not trivial, but if it holds,
we reobtain ω(re) for the Kerr solution, since rs → re for
γ = 1. For the rotating naked singularity metric given
by Eq. (1), the expression (27) reduces to

ΩS = ω(rs) =
1

2Ma∗
,

which is clearly valid only for a rotating singularity, since
ΩS would diverge in the static case. Even if a∗ 6= 0
holds, the explicit expression for ΩS might be puzzling,
since it does not depend on γ, and shows that the an-
gular velocity of a rotating naked singularity is inversely
proportional to its spin parameter. We would expect
that the angular frequency of any rotating object to be
proportional to the angular momentum of the body -
and this is indeed true almost over the whole space-
time, except in a very small domain, close to the naked
singularity. In a very close vicinity of the naked sin-
gularity, at rs, ω becomes bigger for lower values of
a∗, as compared to the values corresponding to higher
spins. We can determine the radius ri at which the
proportionality relation ω(x, a∗1) > ω(x, a∗2) for a∗1 >
a∗2 is inverted by inserting Eq. (12) into the equation

ω(xi, a∗1) = ω(xi, a∗2), with xi =
√
ri/M . The result

is a∗1A (xi, a∗2) = a∗2A (xi, a∗1), which can be further
simplified to the equation

x4
i f

1−γ = a∗1a∗2(2− fγ) . (28)

For γ = 1 this equation reduces to the cubic equation
x4
i − a∗1a∗2x

2
i − a∗1a∗2 = 0 , which has the triple real

root xi = 0, showing that, as expected, there is no in-
version in the ω − a∗ relation for Kerr black holes. For
γ < 1, the biggest real root of Eq. (28) provides the
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FIG. 3: The radial profile of ω near the rotating naked sin-
gularity with γ = 0.9, for different spin parameters.

outer boundary of the region between rs and ri, where
the frame dragging effect of the spacetime with the spin
parameter a1∗ is weaker than the frame dragging effect
measured for a lower spin value a2∗. Outside this re-
gion, i.e., for all radii x greater than xi, the relation
ω(x, a∗1) > ω(x, a∗2) holds. Fig. 3, where we plotted
ω as a function of the radial distance for naked singular-
ities with same mass and same scalar charge (γ = 0.9),
but different spin parameters, shows this behavior. In
Fig. 3, the solid black line, representing the frame drag-
ging frequency obtained for the naked singularity with
the spin value of 0.99, has the highest values at radii
r/M greater than ∼ rs/M + 10−4/γ. For lower radii, a
radius ri, where the ω curves for lower spin values inter-
sect the black solid curve, always exists. The lower the
spin value is, the closer ri shifts to rs. For radii less than
ri, the frame dragging frequency for a∗ < 0.99 becomes
higher than the value obtained for a∗ = 0.99. This result
holds for any pair of spin values, i.e., there exist radii ri,
where for any value of a∗1, the curve ω, and the curve
for a∗1 > a∗2, intersect each other. In all cases we obtain
the relation ω(x, a1∗) < ω(x, a2∗) for x <

√
ri/M .

A similar pathological behavior can be found for the
angular velocity Ω of massive test particles. For the first
term of B appearing in Eq. (24), as we approach the
singularity we obtain the limit

lim
x→

√
2/γ

f (1−γ)h = lim
x→

√
2/γ

f1−γ

(
1− 1− γ

γx2f

)1/2

=
1

2

√
γ(1− γ) lim

x→
√

2/γ

f1/2−γ . (29)

For the angular velocity we obtain

lim
x→

√
2/γ

Ω = M−1






0 , 1/2 < γ < 1 ,

(2 + a∗)
−1 , γ = 1/2 ,

a−1
∗ , 0 < γ < 1/2

. (30)
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By supposing that the naked singularity rotates fast
enough, so that rph = rs, then, if 1/2 < γ < 1, for
the orbits located close to the singularity Ω decreases
to zero. For γ = 1/2, the angular velocity of the ro-
tating particles has a non-vanishing value at the sin-
gularity, and it remains finite even in the static case,
(lim

x→
√

2/γ
f1/2−γ = 1 is supposed again). For γ < 1/2,

Ω is proportional to a−1
∗ , and for a∗ → 0 it diverges

to infinity, as ω also does. Since at the singularity
Ωmax(rs) = 2ω(rs) coincides with Ω, the difference Ω−ω
also diverges at rs for a vanishing spin parameter. How-
ever, this divergence does not involve any violation of
causality, since the velocity of the orbiting particles, mea-
sured in the locally non rotating frame, does not exceed
the speed of light, i.e., |v| ≤ 1 still holds, where

|v| = gφφ√
g2tφ − gttgφφ

|Ω− ω|,

for circular equatorial orbits. At rs we have gtt = 0, and
|v| = |Ω/ω − 1| = 1, a relation that provides the upper
limit of the velocity for time-like particles that satisfy the
condition (20) when moving along circular geodesics in

the equatorial plane.

In Fig. 4 we have plotted Ω, Ωmin, Ωmax and ω for
the same values of a∗ and γ as we have used in Fig. 2.
The top left hand panels show the frame dragging effect
in the Kerr spacetime. When ω = 0 (the static case),
for r > rph = 3M the orbiting particles can have a Ke-
plerian rotation, with the frequency Ω. At lower radii
there are no circular orbits, and the particles fall freely
onto the event horizon, with a velocity with azimuthal
component restricted to values between Ωmin and Ωmax.
For the static black hole at the even horizon these values
tend to ω = 0, i.e., there is no frame dragging. With in-
creasing a∗, the frame dragging effect becomes more and
more important: as the orbital radius is approaching r+,
the particle is dragged with the rotating spacetime. No
static observer exists in the ergosphere, since any particle
passing through the static limit (gtt = 0) is forced to ro-
tate with a positive angular velocity. For rapid rotations
a∗ → 1, rph is also approaching the event horizon, where
the particles move along circular orbits with the angular
velocity of the horizon, namely, ΩH = ω(r+). At r+ we
obtain Ω = Ωmin = Ωmax = ω = ΩH , as a∗ → 1.

These effects are considerably different for rotating
naked singularities, presented in the rest of the panels
in Fig. 3. At r = rs, the lapse function for the metric
vanishes, gtt = 0, as it does in the static limit for the
black holes, and Eqs. (21) and (22) give Ωmin = 0 and
Ωmax = 2ω = 1/Ma∗, without fixing the value of Ω at the
singularity. The result that at the singularity, depending
on the values of γ, Ω is either zero, or takes some non-
zero values between 0 and 2ω, follows from Eq. (30). For
relatively small scalar charges, γ = 0.99, the static case
is still similar to the static case of the black holes: the
marginally stable orbit is located at around 6M (the top
right hand panel in Fig. 2), and for the orbits with radii
greater than rph ∼ 3M , the Keplerian rotation can still
be maintained. At lower radii Ω is restricted to values
between Ωmin and Ωmax, and Ω vanishes at the singu-
larity (as it does at the event horizon of a Schwarzschild
black hole). For rotating singularities with γ = 0.99 and
a∗ = 0.7, rms is still greater than 4M , but the photon

radius has jumped to the singularity (the top right hand
panel in Fig. 1). Particles can therefore move along circu-
lar orbits in the whole spacetime, although not all these
orbits are stable. However, at the singularity, located at
∼ 2M , Ω vanishes, even if ω has a finite, non-zero value.
For γ = 1/2, Ω has already a non-zero value at the singu-
larity, which is inversely proportional to 2 + a∗, but it is
still less than ω, as shown in the middle right hand panel
in Fig 4. The panels in the bottom of Fig. 4 show that
both Ω and ω increase very rapidly close to the singular-
ity - in fact Ω exceeds the frame dragging frequency at
rs as Ω(rs) → 1/Ma∗, and the relation ω(rs) → 1/2Ma∗
holds for γ < 1/2. The relation Ω > ω for r → rs is
shown in Fig. 5, where we have plotted the ratio Ω/ω as
a function of the radius. As mentioned before, for a∗ → 0
this ratio tends to 1/2 at the singularity, the particles or-
biting at rs have finite velocities, with the speed of the
light like particles tending towards the speed of light.

The angular velocity of particles moving along sta-
ble circular geodesics around black holes is maximal at
the marginally stable orbit, and decreases monotonically,
with the increasing coordinate radius r. Eq. (30), and
Fig. 4, show that this is not the case for the particles
rotating in the gravitational potential of rotating naked
singularities with γ > 1/2. At the singularity Ω drops to

zero from its maximal value at rmax, which is still close
to the singularity (rmax−rs ≪ M). By inserting Eq. (24)
into the condition Ω,r = 0 we obtain the equation

3γ2x4 − 6γ(γ + 1)x2 + 4γ2 + 6γ + 2 = 0, (31)
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with the solution

x2
max,± =

1 + γ ±
√
(1− γ2)/3

γ
. (32)

For the limiting case of the Kerr black holes (γ = 1),
Eq. (32) has only one root, x2

max,+ = x2
max,− = 2,

or rmax = 2M , which is due to multiplication of Ω,r

by f(r) in the computation of Eq. (31). At r = 2M ,

the derivative of Ω is not zero, indicating a monotonic
decrease in the angular velocity with increasing radial
coordinate. For γ 6= 1 Eq. (32) has two roots, where
x2
max,+ = rmax/M is the value of the radial coordinate

where Ω is maximal. Since Eq. (32) does not depend on
the spin parameter a∗, the dimensionless radius xmax,+

is only determined by the parameter γ of the singular-
ity. The location of the marginally stable orbit rms still
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depends on a∗, as in the case of Kerr black holes, and it
decreases as the singularity rotates faster and faster. At
orbits with radii higher than rmax, the angular velocity is
increasing with decreasing r, but if rmax is greater than
rms, then there is an annulus between the inner edge of
the accretion disk and rmax, where for particles moving
along circular orbits Ω is decreasing for small distances
from the singularity.

VI. STANDARD ACCRETION DISKS

Accretion discs are flattened astronomical objects
made of rapidly rotating gas which slowly spirals onto
a central gravitating body, with its gravitational energy
degraded to heat. A fraction of the heat converts into
radiation, which partially escapes, and cools down the
accretion disc. The only information that we have about
accretion disk physics comes from this radiation, when it
reaches radio, optical and X-ray telescopes, allowing as-
tronomers to analyze its electromagnetic spectrum, and
its time variability. The efficient cooling via the radiation
over the disk surface prevents the disk from cumulating
the heat generated by stresses and dynamical friction.
In turn, this equilibrium causes the disk to stabilize its
thin vertical size. The thin disk has an inner edge at
the marginally stable orbit of the compact object poten-
tial, and the accreting plasma has a Keplerian motion in
higher orbits.

For the general relativistic case the theory of mass ac-
cretion around rotating black holes was developed by
Novikov and Thorne [36]. They extended the steady-
state thin disk models introduced in [37] to the case of
the curved space-times, by adopting the equatorial ap-
proximation for the stationary and axisymmetric geom-
etry. For a steady-state thin accretion disk described in
the cylindrical coordinate system (r, φ, z = cos θ) most of
the matter lies close to the radial plane. Hence its vertical

size (defined along the z-axis) is negligible, as compared
to its horizontal extension (defined along the radial di-
rection r), i.e, the disk height H , equal to the maximum
half thickness of the disk, is always much smaller than
the characteristic radius R of the disk, H ≪ R. The thin
disk is in hydrodynamical equilibrium, and the pressure
gradient and a vertical entropy gradient in the accret-
ing matter are negligible. In the steady-state accretion
disk models, the mass accretion rate Ṁ0 is supposed to
be constant in time, and the physical quantities of the
accreting matter are averaged over a characteristic time
scale, e.g. ∆t, and over the azimuthal angle ∆φ = 2π,
for a total period of the orbits and for the height H . The
plasma moves in Keplerian orbits around the compact
object, with a rotational velocity Ω, and the plasma par-

ticles have a specific energy Ẽ, and specific angular mo-

mentum L̃, which depend only on the radii of the orbits.
The particles are orbiting with the four-velocity uµ in a
disk having an averaged surface density Σ. The accreting
matter is modeled by an anisotropic fluid source, where
the rest mass density ρ0 (the specific internal energy is
neglected), the energy flow vector qµ and the stress tensor
tµν are measured in the averaged rest-frame. The energy-
momentum tensor describing this source takes the form

T µν = ρ0u
µuν + 2u(µqν) + tµν , (33)

where uµq
µ = 0, uµt

µν = 0. The four-vectors of the
energy and of the angular momentum flux are defined by
−Eµ ≡ T µ

ν(∂/∂t)
ν and Jµ ≡ T µ

ν(∂/∂φ)
ν , respectively.

The four dimensional conservation laws of the rest mass,
of the energy and of the angular momentum of the plasma
provide the structure equations of the thin disk. From
the structure equations the flux of the radiant energy
over the disk can be expressed as [38, 39]

F (r) = − Ṁ0

4π
√−g

Ω,r

(Ẽ − ΩL̃)2

∫ r

rms

(Ẽ − ΩL̃)L̃,rdr , (34)

where the no-torque inner boundary conditions were pre-
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scribed [38]. This means that the torque vanishes at the
inner edge of the disk, since the matter at the marginally
stable orbit rms falls freely into the black hole, and can-
not exert considerable torque on the disk. The latter
assumption is valid as long as strong magnetic fields do
not exist in the plunging region, where matter falls into
the hole.
The geometry of the space-time near to the equator,

or the metric potential determines the radial dependence

of Ω, Ẽ and L̃ for the particles moving on circular or-
bits around the central object. We can therefore calcu-
late the averaged radial distribution of photon emission
for accretion disks around the rotating singularity in the
equatorial approximation, by applying the flux integral
Eq. (34). Evaluating of the specific energy at the inner
edge of the disk, we can also determine the efficiency of
conversion of the rest mass into outgoing radiation.
The accreting matter in the steady-state thin disk

model is supposed to be in thermodynamical equilibrium.
Then the radiation emitted by the disk surface can be
considered as a perfect black body radiation, where the
energy flux is given by F (r) = σSBT

4(r) (σSB is the
Stefan-Boltzmann constant) and the observed luminos-
ity L (ν) has a redshifted black body spectrum [43]:

L (ν) = 4πd2I (ν) =
8

πc2
cos i

∫ rf

ri

∫ 2π

0

ν3erdφdr

exp (νe/T )− 1
.

(35)
Here d is the distance to the source, I(ν) is the Planck
distribution function, i is the disk inclination angle (we
set it to zero), and ri and rf indicate the position of the
inner and outer edge of the disk, respectively. We take
ri = rms and rf → ∞, since we expect the flux over
the disk surface vanishes at r → ∞ for any kind of gen-
eral relativistic compact object geometry. The emitted
frequency is given by νe = ν(1 + z), where the redshift
factor can be written as

1 + z =
1 + Ωr sinφ sin γ√

−gtt − 2Ωgtφ − Ω2gφφ
, (36)

where we have neglected the light bending [44, 45].
The efficiency ǫ with which the central object converts

rest mass into outgoing radiation is the other important
physical parameter characterizing the properties of the

accretion disks. The efficiency is defined by the ratio of
two rates measured at infinity: the rate of the radiation of
the energy of the photons escaping from the disk surface
to infinity, and the rate at which mass-energy is trans-
ported to the compact object. If all the emitted photons
can escape to infinity, the efficiency depends only on the
specific energy measured at the marginally stable orbit
rms,

ǫ = 1− Ẽ
∣∣∣
r=rms

. (37)

For Schwarzschild black holes the efficiency is about 6%,
no matter if we consider the photon capture by the black
hole, or not. Ignoring the capture of radiation by the
black hole, ǫ is found to be 42% for rapidly rotating black
holes, whereas the efficiency is 40% with photon capture
in the Kerr potential.

VII. ELECTROMAGNETIC SIGNATURES OF

ACCRETION DISKS AROUND ROTATING

NAKED SINGULARITIES

After analyzing, in Sections IV and V, the circular
geodesic motion around a rotating naked singularity, we
are now ready to discuss the properties of the disk radia-
tion for standard accretion disk models in the spacetime
of the naked singularity. In Fig. 6 we present the flux
profile, calculated from Eq. (34), for the physical param-
eters of the configurations already shown in Fig. 2. In
the following we set the total mass to 5M⊙, and the ac-
cretion rate to 10−12M⊙/yr. The top left hand panel
shows F (r) for the static and the rotating black holes.
The dependence of the flux distribution on the spin has
distinct features: the inner edge of the disk is located
at rms = 6M for the static black hole, and shifts to
lower radii, approaching M , as the black hole spins up
to a∗ = 1. The radii of the marginally stable orbits are
determined by the zeros of V,rr in Fig. 2. With increas-
ing spin, the maximal flux is also increasing with at least
three orders of magnitude, as compared to the cases with
a∗ = 0 and a∗ = 0.99. For higher values of the spin, the
locations of the maxima of the spectra also shift to lower
radii, located closer to the inner edge of the disk.

The rest of the panels in Fig. 6 shows the flux dis-
tribution of the thermal radiation of the accretion disks
around naked singularities. Depending on the values of
the scalar charge parameter γ, and of the spin parameter
a∗, naked singularities and black holes could exhibit ei-
ther similar, or rather different properties. For γ = 0.99,
we obtain flux profiles similar to the corresponding cases
of the black holes, with the same spin, provided that the
equation V,rr = 0 has a real solution. The top right hand

panel in Fig. 2 shows that for a∗ = 0, 0.4 and 0.7 there
exists a radius where the second order derivative of the ef-
fective potential vanishes, whereas for a∗ = 0.9 and 0.99
V,rr < 0 in the whole spacetime. Hence for γ = 0.99,
F (r) has similar characteristics to the flux profiles de-
rived in the case of the black holes for a∗ = 0, 0.4 and
0.7., but the flux distribution around the black hole and
the naked singularity is rather different for higher spin
values.
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FIG. 6: The energy flux F (r) radiated by the disk around a rotating black hole (γ = 1), and a naked singularity (γ = 0.99,
0.7, 0.5, 0.4 and 0.2), with the total mass 5M⊙, for different values of the spin parameter a∗. The mass accretion rate is set to
10−12M⊙/yr.

In the slowly rotating case, when the inner edge of the
disk is located at the marginally stable orbit, the radial
profiles of F (r) have the same shape in both the top
left and the right hand side plots, and the flux maxima
are somewhat smaller for the black holes as compared to
flux maxima for the naked singularity. This difference is
enhanced by the fast rotation of the central naked singu-

larity. Since stable circular orbits around the naked sin-
gularity with a∗ = 0.9 and 0.99 exist in the whole equa-
torial plane, the inner edge of the accretion disk reaches
the singularity. The radius rs = 2M/γ is bigger than rms

for the rotating black holes with the spin of 0.9 or 0.99,
and therefore the surface of the accretion disk around
the rotating naked singularity is smaller than the one for
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its Kerr black hole counterpart. Even this smaller disk
surface is not the whole area that can radiate thermal
photons in the thin accretion disk model, since the left
end of the flux profile is pushed to a radius somewhat
higher than rs. This is due to the fact that Ω,r changes
its sign at rmax(> rs), as seen in Fig. 4, and this also
changes the sign of the cofactor of the integral in the flux
formulae, given by Eq. (34). As a result, we obtain
negative flux values for the radii between rs and rmax,
(since the sign of the integral remains the same at rmax).
The negative flux values involve non-physical states in

the framework of the stationary thin disk model. It in-
dicates that the thermodynamical equilibrium cannot be
maintained in this region and other forms of the energy
and momentum transport become dominant over the ra-
diative cooling such as advection or convection. Then
the approximation of the steady-state and geometrically
thin disk model breaks down here. Only outside this re-
gion, which forms a very thin annulus between rs and
rmax though, one can apply the standard accretion disk
scheme. We assume the thin disk exists only in the region
for r < rmax, where the radiation gives the main contri-
bution for energy and momentum transport, and other
forms of the transport processes becomes negligible.
Here we consider the radiation properties only for the

geometrically thin, relatively cold disk, which is trun-
cated at rmax, and we discuss the contribution of the hot
matter in the region r < rmax to the total radiation of
the disk-naked singularity system in the next Section.
Thus we assume that the accretion disk emits ther-

mal photons only at radii higher than rmax, and that for
r > rmax the photon flux can be computed in the thin
disk approximation. Since rmax does depend only on γ,
but not of a∗, the left edge of F (r) is located always at the
same radii, irrespectively of the rotational speed of the
naked singularity. In spite of this reduction in the effec-
tive radiant area of the disk surface, as compared with
the Kerr black hole case, with the same spin parame-
ters (0.9 and 0.99), the flux maxima is much higher for
the rotating naked singularity as compared to the black
hole case. The two plots on the top of Fig. 6 show that
the rotating naked singularity with a∗ = 0.99 has a disk
ten times more luminous than the disk of a Kerr black
holes with the same spin. Comparing the rapidly rotat-
ing naked singularity with its static case we also see a rise
of 3 orders of magnitude in the flux maximum, whereas
this rise is only 2 orders of magnitude for the black hole.

Thus, F (r) is much more sensitive for the variation in a∗
in the case of the naked singularity. The maximal flux is
somewhat higher for a∗ = 0.9 than for a∗ = 0.99, which
indicates that the maximum of F (r) for fast rotation is
inversely proportional to the spin parameter.

The fact that the flux maximum is higher for the ro-
tating naked singularity than for the black hole, even if
it is integrated over a smaller surface area, is the conse-
quence of the considerable difference in the metric deter-
minant, characterizing the four-volume element in which
the radiant flux is measured in the vicinity of the equa-
torial plane. For Kerr black holes

√−g = r2 holds in the
equatorial approximation, but from the metric (7)-(11) of
the rotating naked singularity we obtain

√−g = f1−γr2.
Since the shape factor f vanishes as r → rs, the func-
tion f1−γ has a small value at rmax, which is close to
rs. Then the four-volume element is much smaller for
the naked singularity than for the Kerr black hole, and
it produces much higher values in the flux integral (34),

even if the disk properties determining Ω, Ẽ and L̃ are
similar in the two cases, as far as we integrate from rmax

in the case of the naked singularity (e.g., in the two plots
in the top in Fig. 4, the values of Ω have only a moderate
difference for the naked singularity and the black hole).

We obtain similar trends in the characteristics of the
radiated flux if we further decrease the values of γ. By
considering the plots for γ = 0.7 or 0.5 in Fig. 2, one
can see that the equation V,rr = 0 has a real solution
only for a∗ = 0 and a∗ = 0.4 (γ = 0.7), or only for the
static case (γ = 0.5). For higher values of a∗, the second
order derivative of the effective potential remains nega-
tive in the whole equatorial plane, and the inner edge
of the disk always jumps to rs. This effect is shown by
the two middle plots in Fig. 6, where the flux profiles
for the naked singularity can be separated into the two
groups (similarly to the case of γ = 0.99), formed by the
curves similar to those obtained for black holes (V,rr = 0
has a real solution), and the curves with higher maxima,
located almost at their left edge (V,rr < 0 holds every-
where). The high flux values obtained for the second
group are again the consequence of the rapidly shrinking
volume element in the vicinity of the singularity. We also
see that the flux maxima for the latter group is inversely
proportional to the spin parameter, but the curves fall
more rapidly for lower spin.

Since Ω approaches zero at the singularity for 1/2 <
γ < 1, the inner boundary of the radiant disk area is
located at rmax, where we obtain finite flux values for
a∗ → 0. For γ = 1/2, Ω has a non zero value at rs, and
it is a monotonous function in the entire equatorial plane.
Therefore, we cannot use rmax as a truncation radius for
the thin disk, and the inner edge of the disk would reach

the singularity, where the volume element shrinks to zero,
and the cofactor of (−g)−1/2 in the flux formula (34) goes
to infinity. Their multiplication for γ = 1/2 causes F (R)
to remain finite at the singularity, as seen in Fig. 6. For
all non-static cases, plotted in the middle right hand plot
in Fig. 6, the peaks at the left edge of the flux profiles
have infinite amplitudes, which cannot represent physical
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FIG. 7: The temperature distribution on a disk around a rotating black hole (γ = 1), and a naked singularity (γ = 0.99, 0.7,
0.5, 0.4 and 0.2), with the total mass of 5M⊙, for different values of the spin parameter a∗. The mass accretion rate is set to
10−12M⊙/yr.

states. The thin diks model is not a good approximation
at the inner edge of the disk, as the steady state of the
disk cannot be maintained close to the singularity. We
can still state that the accretion disk must be extremely
bright in its innermost area, but there must be some other
physical mechanisms besides the radiative cooling, such
as advection, which have an important role in the energy

and angular momentum transport.

For γ < 1/2, Ω ∼ a−2
∗ holds at rs, and Ω will diverge as

a∗ approaches zero. Its derivative with respect to r also
tends to infinity, also giving, together with the vanishing
volume element at rs, an infinite flux value in Eq. (34).
This effect is demonstrated by the bottom plots in Fig. 6.
Since Ω and its derivative is inversely proportional to a∗,
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the rate of the rise of the flux profiles as approaching
rs is also inversely proportional to a∗. Thus, the slowly
rotating naked singularities have brighter accretion disks
than their fast rotating counterparts do have, but in both
cases F (r) tends to infinity at the inner edge of the disk.
Without any upper boundary in the flux maxima at the
singularity, the physical state of the matter in motion
close to the singularity will recede from the thermody-
namical equilibrium. The standard accretion disk model
cannot be applied at such small distances from the singu-
larity. At higher radii there must exists a region, where
the disk matter can attain thermodynamical equilibrium.
If this radius is still close enough to rs, the flux profiles,
shown in the bottom plots of Fig. 6, still resemble the
real physical situation, with some uncertainties in the
position of their left edges. Obviously, in a physical situ-
ation, the amplitudes of the peaks must have some finite

values, but these maxima are still much higher for rotat-
ing naked singularities as compared with those calculated
for disks rotating around Kerr black holes.
In Fig. 7 we present the temperature distribution of

the accretion disk for the same configurations which we
have used to study the flux profiles. The disk tempera-
ture exhibits a similar dependence on the parameters γ
and a∗ as F (r) does. With decreasing γ, and increasing
a∗, we obtain temperature profiles with much higher and
sharper maxima than those for the Kerr black hole. For
γ ≥ 1/2, there still exist configurations with lower spin,
which give radial temperature profiles similar to those ob-
tained for the Kerr black holes. Although these tempera-
ture profiles become uncertain in the innermost region of
the accretion disk, the disk must still be extremely hot in
this region, as compared to the typical disk temperatures
obtained for Kerr black holes, with the same spin values.

In Fig. 8 we have also plotted, for the same set of values
of the parameters a∗ and γ, the disk spectra, which were
calculated from the luminosity formula Eq. (35). These
plots show the same trends found in the behavior of the
radiated flux distribution F (r), and of the disk tempera-
ture in the black hole and naked singularity geometries,
respectively. For the Kerr black hole, with γ = 1, the cut-
off frequency of the spectra shifts towards higher values,
and the maximal amplitudes increase with the increas-
ing spin parameter, i.e, the accretion disks of Kerr black
holes become hotter by rotating faster, and they produce
a blueshifted surface radiation with higher intensity. In
the case of the rotating naked singularity, the two classes
already identified in the previous discussion of the radial
distribution of F (r) and of T (r) preserve their different
natures. We have seen that there is only a moderate
decrease in the disk temperature for the static solution,
and for rotating naked singularities with γ = 0.99 and
with spin of a∗ = 0.4 and 0.7, as compared to the Kerr
black hole with the same spin values. As a result, the
disk spectra exhibit only negligible differences for black
holes and naked singularities. For fast rotation (a∗ = 0.9
and 0.99), the accretion disk is much hotter in the area
close to the singularity. Hence, the cut-off frequencies
shift blueward, and the maximal amplitudes of the spec-
tra are much higher then for the black hole disk spectra.
The spectral features for the second group are not sensi-
tive to the variations in the spin, and the relative shifts
in the cut-off frequencies and the spectral maxima are
very small, as shown in the bottom right hand plot in
Fig. (8).

In Table I we present the conversion efficiency ǫ of the
accreted mass into radiation for both rotating naked sin-
gularities and black holes, for different values of the pa-
rameters a∗ and γ. This Table demonstrates that with
increasing spin parameter, and decreasing γ (increasing
scalar charge), the efficiency is increasing to a maximal

value, and then it starts to decrease again. The rate of
the increase and of the decrease depends on the location
of the inner edge of the disk, as can be seen in Eq. (37).
The behavior of the two groups, with the inner disk edge
at rms and rs, respectively, is the same in this respect,
but ǫ varies in different ranges for the two groups. For
the configurations with inner disk edge located at rms,
the increase in a∗ causes only a moderate variation in
ǫ. While the efficiency for the slowly rotating case is
somewhat greater for the naked singularity, the rapidly
rotating black holes have a considerable higher efficiency
than the naked singularities, with the same spin parame-
ter, do have. Comparing the first two lines of the table we
see that the static and the slowly rotating configurations
have the same efficiencies, whereas the accreted mass-to-
radiation conversion mechanism is about four times more
efficient for extremely rapidly rotating black holes then
for the fast spinning naked singularities, with γ = 0.99.
We find relatively small values in the first two columns
of the third line, and in the first column of the fourth
line as well. All the values in the last four lines belong
to the second group of naked singularities, for which the
inner disk edge is located at the singularity (indicated
with the same values in the parenthesis in each line as
rs, and which does not depend on a∗). In these cases the
accretion disk radiates a great amount of thermal energy,
and the values of the efficiency are considerably higher
than those found for the first group. For the static cases
the efficiency can reach 50% for γ = 0.4, but it drops to
40%, as we decrease γ to 0.2. With increasing spin, ǫ has
a very mild increase, reaching the values 70% (γ = 0.5)
and 61% (γ = 0.4) at a∗ ∼ 0.4, and then it starts to
decrease for faster rotating singularities. For the naked
singularity with the spin of 0.99 and γ = 0.2, the effi-
ciency falls to 34%, which is still higher than the effi-
ciency for extremely fast rotating Kerr black holes. We
can conclude that there is a range of the spin parameter
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FIG. 8: The accretion disk spectra for a rotating black hole (γ = 1), and a naked singularity (γ = 0.99, 0.7, 0.5, 0.4 and 0.2),
with the total mass of 5M⊙, for different values of the spin parameter a∗. The mass accretion rate is set to 10−12M⊙/yr.

a∗, and of the scalar charge γ, where Kerr black holes
represent more effective engines in the conversion of ac-
creted mass to radiation than the naked singularities do.
Nevertheless, we have also found another range of these

parameters, where the conversion efficiency for rotating
naked singularities is much higher than for Kerr black
holes.

Some composite accretion disk models consider a geo-
metrically thick and optically thin hot corona, positioned

between the marginally stable orbit and the inner edge
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γ a∗ = 0 0.4 0.7 0.9 0.99

1.00 5.72% (6.00) 7.51% (4.62) 10.4% (3.40) 15.6% (2.32) 26.4% (1.46)

0.99 5.72% (6.00) 7.51% (4.62) 10.4% (3.37) 6.03% (2.02) 5.92% (2.02)

0.70 6.03% (6.15) 8.92% (4.14) 73.4% (2.86) 70.8% (2.86) 69.7% (2.86)

0.50 6.94% (6.00) 70.6% (4.00) 65.1% (4.00) 61.8% (4.00) 60.4% (4.00)

0.40 50.7% (5.01) 61.3% (5.01) 56.4% (5.01) 53.2% (5.01) 51.8% (5.01)

0.20 40.8% (10.0) 41.6% (10.0) 38.0% (10.0) 35.3% (10.0) 34.3% (10.0)

TABLE I: The efficiency, measured in percents, and x2 = r/M (values in parenthesis) at the inner edge of the accretion disk
for Kerr black holes, and rotating naked singularities, respectively. The value of γ = 1 corresponds to the Kerr black hole.

of the geometrically thin, and optically thick, accretion
disk, where an inner edge is lying at a few gravitational
radii ([50]. In other type of composite models, the corona
lies above and under the accretion disk, and the soft pho-
tons, arriving from the disk, produce a hard emission via
their inverse comptonization by the thermally hot elec-
trons in the corona [51]. In both configurations, the disk
is truncated at several gravitational radii - reducing the
soft photon flux of the disk - and the soft and hard com-
ponents of the broad band X-ray spectra of galactic black
holes were attributed to the thermal radiation of the ac-
cretion disk and the emission mechanism in the corona,
respectively.
Although the metric potential gives stable circular

geodesic orbits in the entire equatorial plane of the space-
time, it cannot guarantee that the matter in motion can
maintain configurations with thermodynamical equilib-
rium in the whole region, which is the basic assumption of
the geometrically thin steady state accretion disk model.
A natural limit of the region where the standard accretion
disk model applies seems to be the radius rmax, where the
Keplerian rotational frequency becomes inversely propor-
tional to the radial distance from the naked singular-
ity. This inversion in the Ω versus r relation indicates
that the structure equations of the Novikov-Thorne disk
model have non-physical solutions in the region below
rmax. Since this limiting radius depends only on the pa-
rameter γ and the geometrical mass M via Eq. (32), the
lowest radial limit of the validity of the thin disk approx-
imation is not a free parameter, but it is determined by
the charge parameter of the massless scalar field ϕ.

VIII. OBSERVATIONAL IMPLICATIONS

An interesting effect, involving the Eddington lumi-
nosity for the case of a boson star, was pointed out in
[43]. The Eddington luminosity, a limiting luminosity
that can be obtained from the equality of the gravita-
tional force inwards and of the radiation force outwards,
is given by LEdd = 4πMmp/σT = 1.3 × 1038 (M/M⊙)
erg/s, where mp is the proton’s mass, and σT is the
Thompson cross section [46]. Since a boson star- as
well as any other transparent object - has a non-constant
mass distribution, with M = M(r), and therefore the

Eddington luminosity becomes a coordinate dependent
quantity, LEdd(r) ∝ M(r). A similar effect occurs
for the case of the naked singularity solution consid-
ered in the present paper. For simplicity in the follow-
ing we will consider only the case of the static naked-
singularity. One can associate to the scalar field de-
scribed by this energy-momentum tensor a mass distribu-
tion M(r) along the equatorial plane of the disk, given by

M(r) = 4π
∫ r

rs
Tϕ0
0 r2dr = 2π

∫ r

rs
grrϕ,rϕ,rr

2dr. By using

the explicit form of the scalar field we obtain

M(r) =
π

2

M2
(
1− γ2

)

γ2

∫ r

rs

∆

r4
fγ−3dr. (38)

The corresponding coordinate-dependent Eddington lu-
minosity can be obtained as

LEdd(r) =
1.37× 1033 ×M2

(
1− γ2

)

γ2
×

∫ r

rs

∆

r4
fγ−3dr erg/s. (39)

The variation of the Eddington luminosity with respect
to the coordinate r is represented, for a naked singularity
with M = 5M⊙, in Fig. 9.
It was argued in [47] that any neutron star, composed

by matter described by a more or less general equation
of state, should experience thermonuclear type I bursts
at appropriate mass accretion rates. The question asked
in [47] is whether an ”abnormal” surface may allow such
a behavior. The naked singularities may also have such
a zero velocity, particle trapping, abnormal surface. The
presence of a material surface located at the singularity
implies that energy can be radiated, once matter col-
lides with that surface. One can also consider composite
accretion disk models as an alternative solution to this
problem, and set the truncation radius of the thin disk
at rmax. The hot corona of the composite model can lie
in the region between rs and rmax, producing hard X-
ray spectra via the inverse Compton scattering of pho-
tons radiated from the disk and the electron gas in the
corona. This hot corona could represent the ”surface” of
the naked singularity. Thus, at least in principle, naked
singularity models, characterized by high mass, normal
matter crusts/surfaces and type I thermonuclear bursts
can be theoretically constructed.
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FIG. 9: Coordinate dependent Eddington luminosity as a
function of the radial coordinate r for the case of a static
naked singularity with total mass M = 5M⊙, and for differ-
ent values of γ.

Since naked singularities could be surrounded by a thin
shell of matter, the presence of a turning point for matter
(the point where the motion of the infalling matter sud-
denly stops) at the surface of the naked singularity may
have important astrophysical and observational implica-
tions. Since the velocity of the matter at the naked sin-
gularity surface is zero, matter can be captured and de-
posited on the surface of the naked singularity. Moreover,
because matter is accreted continuously, the increase in
the size and density of the surface will ignite some ther-
monuclear reactions [47]. The ignited reactions are usu-
ally unstable, causing the accreted layer of gas to burn
explosively within a very short period of time. After the
nuclear fuel is consumed, the naked singularity also re-
verts to its accretion phase, until the next thermonuclear
instability is triggered. Thus, once a thin material sur-
face is formed, naked singularities may undergo a semi-
regular series of explosions, called type I thermonuclear
bursts, discovered first for X-ray binaries [48, 49].

The observational signatures indicating the presence of
X-ray bursts from naked singularities are similar to those
of standard neutron stars, and are the gravitational red-
shift of a surface atomic line, the touchdown luminosity of
a radius-expansion burst, and the apparent surface area
during the cooling phases of the burst [52].

If the thermal radiation with wavelength λe emitted by
the thin shell of matter at the surface of the naked singu-
larity has absorption or emission features characteristic of
atomic transitions, these features will be detected at in-
finity at a wavelength λo, gravitationally redshifted with

a value zgrav = (λo − λe) /λe = (1− 2M/γr)
−γ/2 − 1,

where we have assumed, for simplicity, that the radia-
tion emission takes place in the equatorial plane of the
naked singularity. The value of the redshift for a neu-
tron star with mass M = 2M⊙ and radius R = 106 cm
is zNS = 0.56. By assuming a naked singularity of mass

M = 4 × 106M⊙ and radius R = 1.4 × 1012 cm, for
γ = 1 we obtain a surface redshift of zgrav = 1.55, for
γ = 0.99 we obtain zgrav = 1.6057, while for γ = 0.85,
zgrav = 9.99. Therefore the radiation coming from the
surface of a naked singularity may be highly redshifted
(in standard general relativity the redshift obeys the con-
strain z ≤ 2).
Type I X -ray bursts show strong spectroscopic ev-

idence for rapid expansion of the radius of the X-ray
photosphere. The luminosities of these bursts reach the
Eddington critical luminosity at which the outward radi-
ation force balances gravity, causing the expansion lay-
ers of the star. The touchdown luminosity of radius-
expansion bursts from a given source remain constant
between bursts to within a few percent, giving empirical
verification to the theoretical expectation that the emerg-
ing luminosity is approximately equal to the Eddington
critical luminosity. The Eddington luminosity at infinity
of a naked singularity with a thin surface is given by [52]

L∞
Edd =

4πmpr
2
s

σT

(√−gtt√
grr

d

dr

√−gtt

)∣∣∣∣
r=rs

(40)

For the metric given by Eqs. (7)-(11) we obtain

L∞
Edd =

4πmpM

σT

[
∆

r
f3(γ−1)/2

]∣∣∣∣
r=rs

=

1.3× 1038
M

M⊙

[
∆

r
f3(γ−1)/2

]∣∣∣∣
r=rs

. (41)

For r → 2M/γ, L∞
Edd → ∞. This shows that the

luminosity of naked singularities with thin surfaces can
reach much higher values than in the case of standard
astrophysical objects. Finally, we consider the apparent
surface area during burst cooling. Observations of the
cooling tails of multiple type I bursts from a single source
have shown that the apparent surface area of the emit-
ting region, defined as S∞ = 4πD2Fc,∞/σSBT

4
c,∞, where

Fc,∞ is the measured flux of the source during the cooling
tail of the burst, Tc,∞ is the measured color temperature
of the burst spectrum, D is the distance to the source and
σSB is the Stefan-Boltzmann constant, remains approx-
imately constant during each burst, and between bursts
from the same source. The color temperature on the sur-
face of the compact object Tc,h is related to the color tem-

perature measured at infinity by Tc,h = Tc,∞

√
gtt [52].

By introducing the color correction factor fc = Tc/Teff ,
where Teff is the effective temperature at the surface, we
obtain

S∞ = 4π

{
r2

f4
c

[z(r) + 1]2
}∣∣∣∣

r=rs

. (42)

Since the radius of the naked singularity as well as its
redshift may be very large quantities, the apparent area
of the emitting region as measured at infinity may be
also very large. Hence all the astrophysical quantities
related to the observable properties of the X-ray bursts,
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originating at the surface of the naked singularity can be
calculated, and have finite values on the surface of the
naked singularity and at infinity.

IX. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the properties
of the accretion disks that could form around naked sin-
gularities, hypothetical singular general relativistic theo-
retical objects, characterized by the absence of an event
horizon. As for the naked singularity we have considered
a rotating solution of the Einstein - massless scalar field
equations, which reduces to the Kerr solution when the
scalar charge tends to 1. As a first step in our study
we have investigated the motion of the particles in the
gravitational potential of this solution. Depending on
the values of the mass, scalar charge, and of the spin pa-
rameter, respectively, there are two types of disks that
could exist around naked singularities. For the first type
there are marginally stable orbits, located outside the
naked singularity, while for the second type the particles
can reach, and be in direct contact, with the singularity.
Consequently, the properties of the disk radiation are sig-
nificantly different for these two types of disks. While
the first type shows similarities with the Kerr black hole
disk, the thermodynamic/electromagnetic properties of
the second type could differ by several orders of mag-
nitude from the Kerr disks. A very puzzling result is
represented by the behavior of the angular velocity of
the particles at the singularity, which is inversely pro-
portional to the spin parameter of the naked singularity.
The frame dragging properties of the naked singularity
also show significant differences as compared to the Kerr
black hole case.
In our approach we have used the thin disk model,

which is an idealized physical model. The thin disk model
is derived under several physical and geometrical assump-
tions [38]. The basic assumptions for the geometrically
thin and optically thick model are as follows: a) The
space-time geometry is given by the metric of the ro-
tating naked singularity, and the disk with a negligible
self-gravity resides in its central plane. b) The disk is
geometrically thin. c) There exist a time interval ∆t,
small enough for neglecting any change in the parame-
ters of the naked singularity during ∆t, but large enough
for measuring the total inward mass flows at any r in the
disk, as compared with the total disk mass between r and
2r. d) The stress energy tensor of the disk plasma can be
algebraically decomposed with respect to the 4-velocity
of the plasma. e) The averaged motion of the baryons
over the azimuthal angle and ∆t can be described as a
circular geodesic motion in the equatorial plane. f) The
heat flow within the disk is negligible, except in the verti-
cal direction. g) The averaged stress-energy propagating
to the disk surface is carried by thermal photons, and the
photons are emitted from the disk surface vertically on
the average. h) The role of the photons emitted from the

disk surface is neglected in the energy and momentum
transport between the different regions of the disk. Once
any of these conditions is violated, the thin disk model
cannot be applied. On the other hand in all the covari-
ant general relativistic formulations of disk models the
physical quantities are obtained upon integrations over
the four volume element. In our case, the behavior of the
volume element near the singular state gives the domi-
nant contribution to the flux, temperature, and spectrum
of the disk, and this contribution is much larger than the
possible effect on the physical parameters from some im-
proved disk models.

It is generally expected that most of the astrophysical
objects grow substantially in mass via accretion. Re-
cent observations suggest that around most of the active
galactic nuclei (AGN’s) or black hole candidates there
exist gas clouds surrounding the central far object, and
an associated accretion disk, on a variety of scales from
a tenth of a parsec to a few hundred parsecs [53]. These
clouds are assumed to form a geometrically and optically
thick torus (or warped disk), which absorbs most of the
ultraviolet radiation and the soft x-rays. The gas exists in
either the molecular or the atomic phase. Evidence for
the existence of super massive black holes comes from
the very long baseline interferometry (VLBI) imaging of
molecular H2O masers in active galaxies, like NGC 4258
[54], and from the astrometric and radial velocity mea-
surements of the fully unconstrained Keplerian orbits for
short period stars around the supermassive black hole at
the center of our galaxy [55, 56]. The VLBI imaging,
produced by Doppler shift measurements assuming Kep-
lerian motion of the masering source, has allowed a quite
accurate estimation of the central mass, which has been
found to be a 3.6 × 107M⊙ super massive dark object,
within 0.13 parsecs.

Hence, important astrophysical information can be ob-
tained from the observation of the motion of the gas
streams in the gravitational field of compact objects.
Therefore the study of the accretion processes by com-
pact objects is a powerful indicator of their physical na-
ture. However, up to now, the observational results have
confirmed the predictions of general relativity mainly in
a qualitative way. With the present observational preci-
sion, one cannot distinguish between the different classes
of compact/exotic objects that appear in the theoreti-
cal framework of general relativity [47]. However, im-
portant technological developments may allow to image
black holes and other compact objects directly [57]. Re-
cent observations at a wavelength of 1.3 mm have set a
size of microarcseconds on the intrinsic diameter of SgrA*
[58]. This is less than the expected apparent size of the
event horizon of the presumed black hole, thus suggest-
ing that the bulk of SgrA* emission may not be centered
on the black hole, but arises in the surrounding accre-
tion flow. A model in which Sgr A* is a compact object
with a thermally emitting surface was considered in [59].
Given the very low quiescent luminosity of Sgr A* in
the near-infrared, the existence of a hard surface, even
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in the limit in which the radius approaches the hori-
zon, places a severe constraint on the steady mass ac-
cretion rate onto the source: Ṁ ≤ 10−12M⊙/yr. This
limit is well below the minimum accretion rate needed
to power the observed submillimeter luminosity of Sgr
A*: Ṁ > 10−10M⊙/yr. Thus it follows that Sgr A*
does not have a surface, i.e., that it must have an event
horizon. This argument could be made more restrictive
by an order of magnitude with microarcsecond resolution
imaging, e.g., with submillimeter very long baseline inter-
ferometry. Submilliarcsecond astrometry and imaging of
the black hole Sgr A* at the Galactic Centre may become
possible in the near future at infrared and submillimetre
wavelengths [60]. The expected images and light curves,
including polarization, associated with a compact emis-
sion region orbiting the central black hole were computed
in [61]. From spot images and light curves of the observed
flux and polarization it is possible to extract the black
hole mass and spin. At radio wavelengths, disc opacity
produces significant departures from the infrared behav-
ior, but there are still generic signatures of the black hole
properties. Detailed comparison of these results with fu-
ture data can be used to test general relativity, and to
improve existing models for the accretion flow in the im-
mediate vicinity of the black hole.
With the improvement of the imaging observational

techniques, it will also be possible to provide clear obser-
vational evidence for the existence of naked singularities,
and to differentiate them from other types of compact
general relativistic objects.
Indeed, in the present paper we have shown that the

thermodynamic and electromagnetic properties of the
disks (energy flux, temperature distribution and equi-
librium radiation spectrum) are different for these two
classes of compact objects, consequently giving clear ob-
servational signatures that could help to identify them
observationally. More specifically, comparing the en-
ergy flux emerging from the surface of the thin accretion
disk around black holes and naked singularities of similar
masses, we have found that for some values of the spin
parameter and of the scalar charge its maximal value is
much higher for naked singularities. In fact all the ther-
modynamical properties of the disks strongly depend on
the values of the spin parameter and on the scalar charge
parameter. These effects are confirmed from the analysis
of the disk temperatures and disk spectra. In addition
to this, we have also shown that for a given range of
the spin parameter and of the scalar charge, the con-
version efficiency of the accreting mass into radiation of
naked singularities is generally much larger than the con-
version efficiency for black holes, i.e., naked singularities
provide a much more efficient mechanism for convert-
ing mass into radiation than black holes. Thus, these
observational signatures may provide the possibility of
clearly distinguishing rotating naked singularities from
Kerr-type black holes.
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