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Infrared behavior and gauge artifacts in de Sitter spacetime

I. The photon field
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We study the infrared (long distance) behavior of the free photon field in de Sitter spacetime.
Using a two-parameter family of gauge fixing terms, we show that the infrared (IR) behavior of the
two-point function is highly gauge-dependent and ranges from vanishing to growing. This situation
is in disagreement with its counterpart in flat spacetime, where the two-point function vanishes in
the IR for any choice of the gauge fixing parameters. A criterion to isolate the “physical” part of
the two-point function is given and is shown to lead to a well-behaved two-point function in the IR.

INTRODUCTION

The study of quantum field theory in the de Sitter
background is of paramount importance to the under-
standing of the early universe as well as its present accel-
erated expansion. One of the most striking, yet poorly
understood, aspects of de Sitter QFT is the so called
infrared problem. The simplest and most serious mani-
festation of this problem being the non-vanishing of the
correlation functions for largely - spacelike and timelike
-separated points. This is for instance a well-known fact
for the massless minimally coupled (mmc) scalar and the
graviton fields. In this letter we study the IR behavior of
the photon field in de Sitter space and show that it ex-
hibits similar IR pathologies. More importantly we are
able to show that these are purely gauge artifacts.
The organization of the letter is as follows. First we

compute the correlation function using the Rλ gauges
λ(∇aA

a)2/2. Then we generalize the computation to
the larger family of higher derivative gauge fixing terms
λ(∇aA

a)2/2 + ξR2(∇aA
a)�(∇aA

a)/2. Finally we pro-
pose a decomposition of the two-point function into a
physical and a gauge part and we show that the physical
part is vanishing in the IR.
The d-dimensional de Sitter spacetime Xd of “radius”

R can be identified with the real one-sheeted hyperboloid
in the d+ 1 Minkowski spacetime Md+1

Xd =
{

x ∈ R
d+1, ηµνx

µxν = R2
}

where ηµν is the “mostly plus” flat metric
diag(−1,+1, · · · ,+1). Let µ(x, x′) denote the geodesic
distance between the points x and x′ and gab be the
d-dimensional de Sitter (or d-dimensional Minkowski
if R → ∞) metric. We will compute the Wightman
two-point function Waa′(x, x′) = 〈Ω|A(x)A(x′)|Ω〉 in
different gauges. In the previous formula |Ω〉 designates
the Euclidean (Bunch-Davies) vacuum state. This
vacuum being de Sitter invariant, Waa′(x, x′) is a
maximally symmetric bi-tensor. As shown in detail in
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[5], all such bi-tensors can be expressed in terms of the
parallel propagator gaa′(x, x′) between x and x′, and the
two vectors na = ∇aµ and na′ = ∇a′µ. Our two-point
function is thus written as

Waa′(x, x′) = α1(µ)gaa′ + α2(µ)nana′

where, for spacelike separations (µ2 > 0), α1 and α2 are
scalar functions of the geodesic distance µ only. We will
frequently use the following formulas [5]:

g b′

a nb′ = −na′ , gab = g c′

a gc′b

∇anb = A(gab − nanb), ∇anb′ = C(gab′ + nanb′)

∇agbc′ = −(A+ C)(gabnc′ + gac′nb)

where

A =
cot(µ/R)

R
, and C = −csc(µ/R)

R
.

It is also useful to introduce the quantity z given for
spacelike separations (µ2 > 0 or 0 < z < 1) by

z = cos2
( µ

2R

)

. (1)

All of our calculations are performed in the spacelike
region 0 < z < 1. They can be extended further by
analytic continuation in the z variable to the cut com-
plex plane C \ (1,∞). Finally, the Feynman propagator
GF

aa′ = i〈Ω|TAa(x)Aa′ (x′)|Ω〉, can be obtained as the
limiting value of Waa′ when approaching the branch cut
z > 1 from above.
We end our introduction by noting that several, quite

interesting, recent works (see [2] among many others)
were devoted to the study of infrared effects in de Sit-
ter. In these articles however, only massive (although
interacting) fields are considered. IR pathologies are of
course much stronger for massless fields and they appear
already at the linear level.

THE Rλ GAUGES

The gauge fixed action describing the massless vector
field Aa is

Sλ =

∫

d4x
√−g

(

1

4
FabF

ab +
λ

2
(∇aA

a)2
)

(2)
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where Fab = ∇aAb − ∇bAa. The resulting equation of
motion is DabA

b = 0 where

Dab = gab�− (d− 1)

R2
gab + (λ− 1)∇a∇b. (3)

Flat space. In flat space (R → ∞), the Fourier
transform of the Feynman propagator reads

GF
aa′(k) =

1

k2 − iǫ
gaa′ +

1− λ

λ

1

(k2 − iǫ)2
kaka′ .

Using the (massless limit) of the scalar Feynman propa-
gator (given, as always, for spacelike separations)

GF (x, x′) =

∫

d4k

(2π)4
eik(x−x′)

k2 +m2 − iǫ
=

im

(2π)2
K1(mµ)

µ
(4)

(where K is the modified Bessel function of the second
kind) and its derivatives with respect to x and x′ we get
the coordinate-space two-point function

Waa′ =

[

λ+ 1

8π2λµ2

]

gaa′ −
[

λ− 1

4π2λµ2

]

nana′ . (5)

For all values of λ, this expression vanishes for large time-
like and spacelike separations as expected.
De Sitter space. Following [5], we write the two-

point function in de Sitter space as

W
[λ]
aa′(x, x

′) = α
[λ]
1 (z) gaa′ + α

[λ]
2 (z) nana′ . (6)

where α1, α2 are scalar functions of the invariant quantity
z defined in (1). The equation of motion DabW

b
a′ = 0

implies two independent equations on α1 and α2. These
equations are most easily solved in the Feynman gauge
λ = 1 and the result is found in [5] to be

α
[λ=1]
1 (z) =

1

48π2R2

[

3

1− z
+

1

z
+

(

2

z
+

1

z2

)

ln(1 − z)

]

α
[λ=1]
2 (z) =

1

24π2R2

[

1− 1

z
+

(

1

z
− 1

z2

)

ln(1− z)

]

Instead of vanishing for largely separated points, the cor-
relation goes to a non-zero constant function

lim
z→∞

W
[λ=1]
aa′ (x, x′) =

1

24π2R2
nana′ . (7)

This constant vanishes in the flat spacetime limit (R →
∞) as expected. The non-vanishing of the correlator in
de Sitter space seems to contradict our experience with
the more familiar flat space QFT. It is indeed a general
result of the latter, sometimes referred to as the cluster
decomposition principle [1], that the correlation functions
must decay in the IR. To our knowledge, only very special
QFT models, e.g confinement models like the massless
scalar in two-dimensional flat space, seem to escape this
result.
As explained in the introduction, it turns out that this

IR pathological behavior of the photon field is typical of

de Sitter massless fields. The most notable examples are
the mmc scalar and the graviton fields. The correlation
functions of these fields exhibit even stronger pathologies
as they grow in the IR (see for instance [3, 4, 7, 8]).
This “IR problem” is at the heart of an open discus-

sion in the community. It led some authors [6] to speak
of a “striking violation of cluster decomposition proper-
ties of the de Sitter invariant vacuum state”. It has also
been shown that this growing of the graviton two-point
function render scattering amplitudes divergent [11]. As
a consequence, the authors of [6], among many others,
suspect a quantum instability of de Sitter space, mean-
ing that the de Sitter geometry is not a stable ground
state of quantum gravity with a cosmological constant.
Other workers in the field, mainly motivated by the

fact that the correlations of some gauge invariant quan-
tities fall-off in the IR limit, claim that the non-vanishing
of the two-point functions in the IR is nothing but a
gauge artifact. For instance, the electromagnetic field
correlation function is well-behaved in the IR [5]:

〈FabF
a′b′〉 = 1

8π2R4

1

(1− z)2

(

g
[a′

[a g
b′]

b] + 4 n[ag
[b′

b] na′]
)

.

The same is true for the graviton field [9] as there is no
growing terms in the correlation function of the Riemann
tensor 〈R cd

ab (x)R c′d′

a′b′ (x′)〉.
In the following we will study in detail the IR problem

in the case of the photon field in de Sitter. The IR be-
havior of this field received considerably less attention in
the literature than its counterpart for the mmc and the
graviton field. This is certainly due to the importance
of these two-fields in inflation theory. It is also probably
due to the fact that in actual QED calculations, the non
vanishing term (7) will not contribute to scattering pro-
cesses (see last section). This model will however prove
to be precious in realizing that - at least for some sit-
uations - serious IR pathologies in de Sitter space are -
without doubt - gauge artifacts.
The equation of motion (3) applied to the two-point

function (6) leads after some algebra to a coupled system
of differential equations. Hereafter we will only need one
of these equations, namely:

H

[

1, d− 2,
1

2
+

1− λ

2

]

α1 +
λ− 1

2
α′
2

+
λ− λd

λd − 1

[

α1

z
+

1

2

(

1

1− z
− 1

z

)

α2

]

= 0 (8)

where the prime denote derivation with respect to the

variable z, λd =
d− 3

d− 1
and H is the hypergeometric op-

erator defined by

H[a, b, c] = z(1− z)
d2

dz2
+ [c− (a+ b+ 1)z]

d

dz
− ab

Another, moreover first order, relation between α1 and
α2 is obtained by considering the two-point function of
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the field strength

〈FabF
a′b′〉 = β1 g

[a′

[a g
b′]

b] + β2 n[ag
[b′

b] na′].

In fact, the equation of motion (in vacuum) ∇aFab = 0
implies the relation [5]

α2 =
z

8π2R2(z − 1)
+ 2(1− z) (zα′

1 + α1) (9)

We now specialize our results to the d = 4 case for sim-
plicity. The general solution in the Euclidean vacuum is
found to be

α
[λ]
1 (z) =

1

48π2R2λ

[

3(λ+ 1)

2(1− z)
+

3λ− 1

2z
+

(3λ− 1)

(

1

z
+

1

2z2

)

ln(1− z)

]

α
[λ]
2 (z) =

1

24π2R2λ

[

1− 3(λ− 1)

2(1− z)
− 3λ− 1

2z
+

(3λ− 1)

(

1

2z
− 1

2z2

)

ln(1− z)

]

and the IR behavior is given by

lim
z→±∞

W
[λ]
aa′(x, x

′) =
1

24π2R2λ
nana′ . (10)

This result means that one can cure any IR bad behavior
by going to the Landau gauge λ → ∞. More importantly,
we see that the IR behavior of the correlation function
is pure gauge, thus asking whether or not the two-point
function is well or ill-behaved in the IR is in itself -at
least partially-a misleading question.
Finally we note that there exists a special choice of the

gauge fixing parameter, namely λ = 1
3 (more generally

λd in d dimensions), that cancels logarithmic terms and
gives a particularly simple two-point function. We note,
perhaps as a curiosity for the time being, that for large
dimensions d, λd goes to the Feynman gauge λ = 1, which
is the simplest gauge in flat space.

MORE PATHOLOGICAL GAUGES

We now consider a larger family of gauge fixing terms.
Our motivation is that the IR pathology we exhibited
in the last section, namely that the correlation function
tends to a constant, might seem -I believe mistakenly-
mild enough not to worry about. We will show that in
this more general gauge, the two-point function is actu-
ally growing in the IR, exactly like the mmc scalar or the
graviton fields. We consider the action

Sλ,ξ = Sλ +
ξ

2m2

∫

d4x
√−g(∇aA

a)�(∇aA
a) (11)

where we have added a higher derivative gauge fixing
term. Similar higher derivative gauge fixing are occasion-
ally used in QCD and the electro-weak theories. They

were also used to study flat space perturbative quantum
gravity [10]. We note that if we want λ and ξ to be dimen-
sionless, such higher derivative gauge fixing terms require
the introduction of a mass quantity m . In flat space m
is introduced by hand, while in de Sitter space the in-
verse of the de Sitter radius plays naturally this role:
m2 = 1

R2 . This observation renders the introduction of
higher derivative gauge fixing somehow more natural in
the de Sitter case. The equation of motion reads

[

�gab + (λ− 1)∇a∇b +
ξ

m2
�∇a∇b

]

Ab = 0 (12)

Flat space. The flat space Feynman propagator is
found in Fourier space to be

G̃F
aa′(k) =

gaa′

k2 − iǫ
+

[

1− λ

λ (k2 − iǫ)2

+
ξ

m2λ2

(

1

k2 − iǫ
− 1

k2 − m2λ
ξ − iǫ

)]

kaka′

The reader will note the relative negative sign typical of
higher derivative theories in front of the last propagator.
Using (4) and its derivatives the coordinate-space two-
point function is then found to be

Waa′ =

[

1

2π2m2λµ4ν2
+

1

2π2m2λµ4ν2
+

K2(imµν)

4π2λµ2

]

gaa′+

[

2

π2m2λµ4ν2
+

1− λ

4π2λµ2
+

K0(imµν)

π2λµ2

+i

(

mν

4π2λµ
− 2

π2mλµ3ν

)

K1(imµν)

]

nana′

where we have introduced the quantity ν = (λ/ξ)1/2. For
all values of λ and ν, this expression vanishes for large
timelike and spacelike separations as expected. The short
distance singularity is given by

Waa′ ∼ 1

8π2µ2
(gaa′ − 2nana′) .

We emphasize that the short distance singularity of the
two theories (2) and (11) are different. This is due to the
non commutation of the limits ξ → 0 and µ → 0.
De Sitter space. We now consider the action (11) in

de Sitter space and thus set 1/m2 = R2. Following the
same methods described above we obtain the following
equations on α1:

α
(4)
1 =

4(τ − 2)(τ + 3)

(z − 1)2z2
α1 +

3(2z − 1)
(

τ2 + τ − 16
)

(z − 1)2z2
α′
1

− 12− (z − 1)z(τ − 8)(τ + 9)

(z − 1)2z2
α′′
1 − 8

(

1

z
+

1

z − 1

)

α′′′
1

where we introduced the parameter τ =
√
4λ+9ξ−

√
ξ

2
√
ξ

. Ob-

taining this equation requires some elaborate algebraic
manipulations. The calculations in this section were thus
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verified with the tensor algebra system xAct on Mathe-
matica [12]. This equation can be solved in closed form.
Using the asymptotic formulas in table I the solution
verifying: i)regularity at z = 0 and ii)flat space short
distance singularity is found. For non integer values of τ
it reads

α
[λ,τ ]
1 (z) =

2Q2
τ(2z − 1)− π cot(πτ)P 2

τ (2z − 1)

32π2R2λ (z − 1)z (τ2 + τ − 2)

+
3λ− 1

96π2R2λ

[

(2z + 1) ln(1− z)

z2
+

1

z

]

+
1

32π2R2λ(τ − 1)(τ + 2)
[

1

(z − 1)2
− (λ+ 1)τ (τ + 1)− 2λ

z − 1

]

where P and Q are Legendre functions of the first and
second kind respectively. As before, α2 is obtained by (9).
The asymptotic behavior in the IR is given by (τ > 1):

α
[λ,τ ]
1 (z) ∼ − 22τ−5 cot(πτ)Γ

(

τ + 1
2

)

π3/2R2λ(τ + 2)Γ(τ)
zτ−2

α
[λ,τ ]
2 (z) ∼24τ−1(τ − 1)τ cot(πτ)Γ

(

τ + 3
2

)

Γ
(

τ + 5
2

)

π2R2λ(2τ + 3) (2τ2 + 5τ + 2)Γ(2τ + 2)
zτ−1

Thus for τ > 2 for instance, the two-point function grows
like zτ−2 in the IR. This strong IR growing is purely a
gauge artifact since, as proven in the beginning of this
letter, no IR pathologies arise in the Landau gauge.

z → 0 z → 1 z → ∞

P (2)
τ

(2z − 1) −
sin(πτ)

πz

Γ(τ + 3)

2 Γ(τ − 1)
(z − 1)

22τΓ(τ + 1/2)
√
π Γ(τ − 1)

zτ

Q(2)
τ

(2z − 1) −
cos(πτ)

2z

1

2(z − 1)

√
π Γ(τ + 3)

22(τ+1)Γ(τ + 3/2)

1

zτ+1

TABLE I. Asymptotics of the Legendre functions near singu-
lar points.

A PHYSICAL DECOMPOSITION

The previously described situation, namely that the
IR behavior of the two-point function in de Sitter space
contains important gauge artifacts makes it natural to
look for a decomposition of the two-point function into
a physical and a non-physical parts. We show now that
such a decomposition exists and is given by the following
rewriting of the two-point function

W
[λ]
aa′ (x, x

′) = gaa′β1(z) +∇a∇a′β2(z). (13)

In fact, most of the physics is included in the quantum
action WJ defined by

exp

[

i

~
WJ

]

=

∫

D[Aa] exp

[

i

~

(

S +

∫

d4x
√−g AaJ

a

)]

where Ja is an external conserved current∇aJ
a = 0. The

tree-level expression of the effective action is given by

WJ =

∫

dVxdVx′Ja(x)Waa′ (x, x′)Ja′

(x′)

where dVx = d4x
√

−g(x) is the invariant volume ele-
ment. Since the current Ja is conserved, integration by
parts ensures that only β1 will contribute to WJ and it
thus fully deserves to be referred to as the “physical”
two-point function. An explicit form of the functions β1

and β2 can be found by solving the system

α1 = β1 +
1

2R2
β′
2, R2α2 = (1 − z)β′

2 + z(1− z)β′′
2 .

The solutions are unique if one requires regularity near
z = 0 and we obtain

WPhys
aa′ (x, x′) =

1

16π2R2

(

1

1− z
+

ln(1 − z)

z

)

gaa′ (14)

It is a remarkable fact that WPhys
aa′ is (λ, ξ) independent

and is well behaved in the IR. In flat space-time, the
Feynman gauge (λ = 1, ξ = 0) gives precisely this physi-
cal two-point function. The situation in de Sitter is quite
different and no choice of the gauge fixing parameters
gives the physical two-point function. A natural question
is wether a more general gauge fixing term gives directly
WPhys

aa′ (x, x′) in de Sitter space.

OUTLOOK

We showed that the IR pathological behavior of the
photon’s two-point function is nothing but a gauge ar-
tifact. We suggest that the situation is similar for the
graviton field. The IR behavior of the latter is however
necessarily more intricate since it has been shown that
the (transverse-traceless) growing term of the two-point
function does not cancel out from scattering amplitudes
[7, 11]. This implies in particular that a decomposition
like (14) does not lead to a well-behaved “physical” two-
point function. The IR behavior of the graviton field will
be examined in [13].
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