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Abstract

Finite entropy and energy are obtained for the horizon of a Rindler

observer on the grounds of the nonstatic character of the geometry be-

yond the horizon. Edery - Constantineau prescription is used to find the

dynamical phase space of this particular spacetime. The number of mi-

crostates rooted from the ignorance of a Rindler observer of the parameter

t from the nonstationary region are calculated.

We suggest that the gravitational energy density constructed by means

of the horizon energy and using the Holographic Principle is proportional

to g
2, similar with a result recently obtained by Padmanabhan and with

the energy density of the electromagnetic field.

Keywords : nonstationary metric, field configurations, horizon de-

grees of freedom .

1. Introduction

The black hole (BH) physics after Bekenstein and Hawking has implied that
there is a deep connection among gravitation, thermodynamics and quantum
information theory. The Hawking formula for the BH horizon temperature is
an evidence (it includes all the fundamental constants of physics).

Since horizons block informations to certain observers, it seems reasonable
to associate an entropy with any event horizon [1]. If a family of observers have
no access to a part of spacetime, then they will attribute an entropy to the
gravitational field because of the degrees of freedom (DOF) which are hidden
behind the horizon. Padmanabhan goes further and shows [2] that the space-
time has microscopic DOF and the Einstein field equations in the continuum
limit are to be obtained as the coarse-grained, thermodynamic limit of the (un-
known) microscopic laws. Therefore, there should exist a relation similar to the
equipartition law E = (1/2)nkBT connecting the spacetime energy, temperature
and the number of the microscopic DOF within that spacetime.

It is generally accepted that the BH horizon has entropy but there is no
consensus whether this is valid for Rindler’s or deSitter’s horizon, too (the fact
that the spacetime has a microstructure allows one to obtain the dynamics
extremizing a suitable thermodynamic potential, for example entropy [2]).
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Edery and Constantineau [3] showed that non-extremal BHs contain a non-
stationary region hidden behind the event horizon where the Killing vector be-
comes spacelike. In their view, the Schwarzschild BH stems from the nonstatic
interior region: it is a measure of an outside observer’s ignorance of the value of
the time t ∈ (0, 2m) which labels a continuous set of classical microstates. The
authors of [3] applied the above idea to Schwarzschild, Reissner - Nordstrom
and Kerr BHs, stressing that the extremal BHs have zero entropy because they
do not contain nonstationary regions (that corresponds to a single metric con-
figuration).

We apply Edery-Constantineau ideas to the spacetime felt by a uniformly
accelerated observer who possesses a horizon and, beyond it, the geometry is
nonstationary in a specific set of coordinates. We further show that the number
of DOF on the Rindler horizon is proportional to 1/g2 where g is the observer
proper acceleration. Moreover, the horizon has energy and entropy thanks to the
nonstatic character of the metric beyond it. A timelike congruence of geodesic
observers is endowed with expansion and shear, depending on the acceleration
g. Throughout the paper we take G = c = ~ = kB = 1.

2. The nonstatic Rindler metric

In Ref. [4] we have shown how the well known Rindler geometry

ds2 = −(1− gX)2dT 2 + dX2 + dY 2 + dZ2 (0.1)

is obtained from the usual Minkowski metric by a coordinate transformation
(the X = const. observers move along the hyperbola x2

M − t2M = (X − 1/g)2

where (xM , tM ) are Minkowski coordinates). The transformation

1− gX =
√

1− 2gx̄ (0.2)

brings the geometry (1) in the form

ds2 = −(1− 2gx̄)dt̄2 +
dx̄2

1− 2gx̄
+ dȳ2 + dz̄2 (0.3)

where X ≺ 1/g, x̄ ≺ 1/2g and t̄ ≡ T, ȳ = Y, z̄ = Z. In the region x̄ > 1/2g,
1− 2gx̄ becomes negative, x̄ - timelike and t̄ - spacelike. Therefore, we replace
x̄ with t and t̄ with x. One obtains

ds2 = − dt2

2gt− 1
+ (2gt− 1)dx2 + dy2 + dz2 (0.4)

where t ≻ 1/2g, y = ȳ, z = z̄. The geometry (4) is flat, nonstationary and
is valid beyond the Rindler horizon X = 1/g (or x̄ = 1/2g). A similar situ-
ation is encountered when the Schwarzschild horizon r = 2m is crossed - the
timelike Killing vector becomes spacelike and the geometry inside the BH is
nonstationary [5].

According to Edery-Constantineau prescription, the phase space beyond the
Rindler horizon where the metric (4) is valid does not correspond to a single
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microstate but to a continuous set of states parameterized by the time t, with
t ∈ (1/2g,∞). Therefore, Rindler’s horizon must have an entropy due to the
inaccessibility to have informations about internal configurations beyond the
event horizon [6].

3. Congruence of timelike geodesics

Let us take a family of spacelike hypersurfaces Σ of constant t. The induced
metric on Σ is given by

hab = gab + uaub, (0.5)

where ua = (
√
2gt− 1, 0, 0, 0) is the velocity field of the congruence (habu

b = 0)
which is orthogonal to Σ. The indices a, b run from 0 to 3.The dynamical phase
space (hab, P

ab) is defined by [3]

P ab =

√
−h

16π
(Kab −Khab), (0.6)

where P ab is the momentum conjugate to hab, Kab = ˙hab/2N is the extrin-
sic curvature of Σ, h = det(hab and N(t) is the lapse function, that is N =
1/

√
2gt− 1. We have

hab = (0, 2gt− 1, 1, 1), Kxx = g
√

2gt− 1, Kyy = Kzz = 0, K =
g√

2gt− 1
.

(0.7)
Eq. (6) yields the only nonzero components

P yy = P zz = − g

16π
. (0.8)

The Hamiltonian constraint 3R + KabK
ab − K2 = 0 is obeyed nontrivially in

the spacetime (4) because KabK
ab = K2 = g2/(2gt− 1) 6= 0 (3R, constructed

with hab, is vanishing). We also note that P ab ’s are constants and depend only
on the acceleration g.

For the other kinematical parameters of the congruence one obtains (by
means of the software package Maple - GRTensor)
- the scalar expansion

Θ ≡ ∇au
a =

g√
2gt− 1

, (0.9)

namely Θ = K ≡ Ka
a .

- the shear tensor

σab =
1

2
(hc

b∇cua + hc
a∇cub)−

1

3
Θhab (0.10)

has the nonzero components

σx
x =

2g

3
√
2gt− 1

, σy
y = σz

z = − g

3
√
2gt− 1

, (0.11)
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with σ2 ≡ σabσab = 2g2/3(2gt−1). The acceleration ab = ua∇au
b = 0, showing

that the congruence is geodesic, that is the ”static” observer with ui = 0 (i =
1, 2, 3) move along a geodesic (the situation resembles the BH interior case,
where r = const. observers are geodesic [7]

Let us noting that all the kinematical parameters vanish when g = 0 or when
t → ∞. In addition, the time variation of the scalar expansion

Θ̇ ≡ ua∇aΘ = − g2

2gt− 1
(0.12)

is negative, i. e. Θ(t) decreases (otherwise the Raychaudhuri equation

Θ̇−∇ba
b + σ2 − ω2 +

1

3
Θ2 = −Rabu

aub (0.13)

will not be satisfied (we have here ab = 0, the Ricci tensor Rab = 0 and the
vorticity tensor ωab = 0, with ω2 ≡ ωabωab)).

4. Event horizon entropy

Using the Edery - Constantineau paradigm, the entropy is a measure of the
Rindler observer ignorance on the value of the parameter t which labels the
nonstationarity of the metric fields beyond the horizon. However, their model
does not give us a method to calculate the entropy or the gravitational energy,
in general.

Having known that the entropy of the Rindler spacetime should be nonzero,
we have nothing else to do than to take its expression from [8]

S =
π

4g2
(0.14)

Keeping in mind that the Rindler horizon temperature is T = g/2π, we imme-
diately obtain

E = 2TS =
1

4g
(0.15)

for the energy of the Rindler spacetime (see also [9]). We may of course get the
expression of the entropy directly from the nonstatic geometry (4). The bound-
ary of the spacetime corresponds to t = 1/2g (that is, the horizon x̄max = 1/2g).
As Edery and Constantineau have shown, most of the energy contribution
comes from a thin slice in the interior region near the event horizon (for the
Schwarzschild BH), which corresponds in our case to the initial time tmin. Tak-
ing therefore 4πt2min as the area of the initial surface, one obtains

S =
1

4
4πt2min =

π

4g2
, (0.16)

as in Eq. (14).
We are now in a position to find the number n of the DOF (or the number

of internal configurations) of (4) due to the time dependence of the metric (a
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set of classical microstates which express the ignorance of an observer located
in the static region).

From the equipartition rule we have E = (1/2)nT . Using (15) and the
relation for the horizon temperature T , we obtain

n =
π

g2
(0.17)

When all fundamental constants are recovered, (17) becomes n = (c7/G~)(π/g2).
For example, the value g = 10 m/s2 leads to n ≈ 10102 bits. In other words,
the nonstationarity of Rindler spacetime (3) beyond the horizon x̄ = 1/2g leads
to that enormous value of the number of microstates.

Incidentally, when we try to write down the energy density ρ rooted from
E, the following expression is reached

ρ =
E

V
=

1

4g

3

4π
g3 =

3g2

16π
, (0.18)

where we have used the Holographic Principle taking E to be located uniformly
on a sphere of radius 1/g (we stress here the special role played by the distance
1/g [10]), instead of being concentrated on the horizon. But the relation (18)
for the energy density of the gravitational field resembles that one obtained by
Padmanabhan [2] for a nongeodesic observer at rest in a static spacetime. That
is not surprising because a static observer in a gravitational field is equivalent to
an accelerated one in flat spacetime. We also note that one obtained the same
dependence as for the energy density of the electromagnetic field.

For the same value of the intensity, namely g = 103cm/s2, the energy den-
sity acquires the value ρ = 3g2/16πG = 1012 erg/cm3.

5. Conclusions

The prescription of Edery and Constantineau is applied in this paper to prove
that the Rindler horizon possesses microscopic DOF and, from here, an entropy
proportional to 1/g2. It is rooted from the nonstationary character of the ge-
ometry beyond the event horizon which leads to a continuous set of classical
microstates. The entropy measures the ignorance of a Rindler observer to know
the value of the label t ∈ (1/2g,∞).

Using a congruence of ”static” geodesic observers labeled by the velocity field
ua, we have written the dynamic phase space (hab, P

ab) and the extrinsic curva-
ture tensor of the hypersurface Σ of constant time. The kinematical parameters
of the congruence have a nontrivial form and Θ̇ < 0, a necessary condition for
the Raychaudhuri equation to be obeyed. Having a nonzero horizon energy, we
computed it for our particular geometry and obtained a value already found in
a previous paper.

We further found the gravitational energy density is proportional to g2. A
similar dependence has been recently obtained by Padmanabhan for an observer
at rest in a static field.
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