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Abstract: We shall present here a general apt technique to induce connections along bundle reductions

which is different from the standard restriction. The technique is a generalization of the mechanism

presented in [1] to define at spacetime level the Barbero-Immirzi (BI) connection used in LQG.

The general prescription to define such a reduced connection is interesting from a mathematical viewpoint

and it allows a general and direct control on transformation laws of the induced object. Moreover, unlike

what happens by using standard restriction, we shall show that once a bundle reduction is given, then any

connection induces a reduced connection with no constraint on the original holonomy as it happens when

connections are simply restricted.

1. Introduction

Barbero-Immirzi (BI) connection is used in LQG to describe gravitational field on space; see

[2], [3]. In standard literature it is obtained by a canonical transformation on the phase space

of the spatial Hamiltonian system describing classical GR; see [4].

Samuel argued that there is no spacetime connection which restricts to BI connection due

to holonomy considerations; see [5]. Thiemann claimed (see [6]) that all it is needed for the

theory to make sense is the definition of the connection on space, while Samuel and others

would privilege spacetime objects. Despite we partially agree with Thiemann’s point of view,

we have to remark that even when bundle topologies are assumed to be trivial and there is no

issue about objects’ globality, still transformation laws are essential for the interpretation of the

theory. In these trivial situations transformation laws are not used to obtain globality, but they

are used for covariance. For the object defined to be called BI-connection it must trasform as

a SU(2)-connection, though transformation laws are inherited by the original spin connections

and cannot be imposed at will. Moreover, one has to define the SU(2)-gauge transformations

as a subgroup of the original Spin(3, 1)-gauge transformations and such a subgroup must be

defined canonically, i.e. in a gauge and observer-independent fashion.

This is particularly evident when one considers that the BI connections are then described

by means of their holonomy; of course holonomies are motivated and meaningful only for

connections and one could not be satisfied with a generic spatial field which resembles a SU(2)-

connection but has different transformation laws. If the action of the gauge group is modified

then the holonomies are not necessarily gauge covariant quantities any longer. On the other

hand, if gauge covariance is abandoned the hole argument (see [4]) is compromised and the

∗
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obtain its cancellation.
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physical observables of the theory (together with its interpretation) are compromized, too.

For these reasons we have investigated a possible construction to define BI connection keeping

gauge covariance under full control; see [1]. The construction is based on the existence of a

SU(2)-reduction of the original principal spin bundle P . A SU(2)-reduction is a pair (+P, ι)

where +P is a SU(2)-bundle and ι : +P → P a (vertical) principal morphism with respect to

the canonical group embedding i : SU(2) → Spin(3, 1):

+P P

M M
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..............................................................................................................................

(1.1)

In standard situations, when spacetimes are required to allow global Lorentzian metrics and

global spinors (that is equivalent to require that first and second Stiefel-Whitney classes vanish)

such a reduction can be shown to exist always (see [7]) with no further topological obstruction.

For a simplified situation, when we can imagine the spin bundle P to be trivial, the reduction

always exists and the reduced bundle +P is also trivial.

The SU(2)-reduction defines a canonical embedding of SU(2)-gauge transformations (namely,

Aut(+P )) into the Spin(3, 1)-gauge transformations (namely, Aut(P )). One can now consider

a spin connection ω on P . This cannot always be restricted to +P . To be able to restrict the

connection ω to the sub-bundle ι(+P ) ⊂ P , ω-horizontal spaces must happen to be tangent

to the sub-bundle itself. Of course, this is a condition on ω for it being restrictable; a trivial

necessary condition for this is that the holonomy of the original connection ω happens to get

value in the subgroup SU(2) ⊂ Spin(3, 1) in the first place. Hence there are spin connections

that cannot be restricted (see [5]; we thank Smirnov for addressing our attention on this point

[8]).

In [1] we proposed a different prescription to induce a SU(2)-connection A on +P out of the

spin connection ω on P ; despite this presciption is not canonical (and below we shall describe

exactly in which sense it is not) it is generic; all spin connections ω induce a reduced connection

A on +P , in particular with no restriction on holonomies.

To summarize, we showed in [1] that one can define a SU(2)-connection on +P , i.e. over

spacetime. This connection can be then restricted to space to obtain the standard BI connection.

However, the spacetime reduced SU(2)-connection is not the restriction of a spin connection on

spacetime and its holonomy is not necessarily dictated by the original spin connection (which

therefore is not required to be in SU(2) as argued instead in [5] and [8]).

This paper is organized as follows: in Section 2 we shall define the reduction prescription from

a more general point of view with respect to what we did in [1]. In Section 3 we shall obtain

the BI prescription defined in [1] from our new and more general point of view. In Section 4

we shall start discussing BI connection in any dimension m > 2.

Hoping it could help readers who are approaching these issues for the first time we add a detailed

derivation of some of the algebraic facts. If the reader wishes to skip these details, recompile this

TEX sourcefile uncommenting (just above the title) the command \CollapseAllCNotes.

We shall use below the following typographic conventions: paired color terms cancel out, underlined

terms are similar (or to be collected together), framed terms are zero.
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2. Induced Connections along Reductions and Reductive Algebras

In this Section we shall consider the algebraic structures that enable us to reduce the connec-

tions. Let us consider a principal bundle P with group G and a subgroup i : H → G. Let us

then assume and fix any H-reduction (Q, ι) given by

Q P

M M
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(2.1)

The group embedding i : H → G induces an algebra embedding Tei : h → g. Let us define the

vector space V = g/h so to have the short squence of vector spaces

0 h g V 0..............................................................
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.......................................................................................
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Φ (2.2)

where Φ : V → g is a sequence splitting (i.e. p ◦ Φ = idV ) which always exists for sequences of

vector spaces. Accordingly, one has g = h⊕ Φ(V ).

We say that H is reductive in G if there is an action λ : H × V → V such that ad(h)(Φ(v)) ≡

Φ ◦ λ(h, v) where ad : H × g → g is the restriction to the subgroup H of the adjoint action of

G on its algebra g; see [9], [10], [11]. In other words, the subspace Φ(V ) ⊂ g is invariant with

respect to the adjoint action of H ⊂ G on the algebra g.

Let us stress that the vector subspace Φ(V ) ⊂ g is not required to be (and often it is not) a

subalgebra; accordingly, one is not choosing any group splitting G = H ×K (as for example it

happens (incidentally) in the case of the (anti)selfdual decomposition Spin(4) = SU(2)×SU(2)).

A group splitting (and the corresponding projection) is not at all used; one just needs the group

embedding i : H → G.

We shall show hereafter that a bundle H-reduction ι : Q → P with respect to a subgroup H

reductive in G is enough to allow that each G-connection ω on P induces an H-connection on

Q, which will be called the reduced connection.

Let us consider a G-connection ω on P locally given by

ω = dxµ ⊗
(

∂µ − ωA
µ (x)ρA

)

(2.3)

where ρA is the pointwise basis for vertical right invariant vector fields on P associated to a

basis TA of the Lie algebra g; see [12] for notation.

Resorting to the algebra splitting one can consider an adapted basis TA = (Ti, Tα), Ti being a

basis of h and Tα a basis of Φ(V ). The corresponding basis of vertical right invariant vector

fields on P splits as ρA = (ρi, ρα).

In view of the reductive splitting of the algebras, for any H-gauge transformation ϕ : U → H ,

one has

(ρ′i, ρ
′
α) ≡ ρ′A = adBA(ϕ)ρB ≡ (adji (ϕ)ρj , λ

β
α(ϕ)ρβ) (2.4)
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Accordingly, the G-connection can be splitted as

ω = dxµ ⊗
(

∂µ − ωi
µ(x)ρi

)

⊕ (−ωα
µ(x)dx

µ ⊗ ρα) (2.5)

Since ρi transform with respect to the adjoint representation of H and ρα transform wrt to the

representation λ, then the quantities

A = dxµ ⊗
(

∂µ − ωi
µ(x)ρi

)

K = −ωα
µ(x)dx

µ ⊗ ρα (2.6)

are (modulo trivial and canonical isomorphisms) an H-connection on Q and a vector valued

1-form on Q, respectively.

In the following Section we shall show how the standard BI connection can be obtained in this

framework as done in [1].

Let us stress that, once the H-reduction is assumed and the corresponding splitting is shown

to be reductive, then all connections ω of P induce a H-connection A on Q, in particular with

no holonomy constraints.

As argued in [8], torsionless connections obey severe constraints on possible holonomies they

can have; see [13], [14]. These results do not directly apply to gauge connections (and spin

connections in particular); however, when a frame is considered, as it is done in LQG, spin

connections induce also spacetime connections which are in fact constrained in their possible

holonomies, so that one could eventually consider this as a constraint on the holonomy of the

original spin connection. Since GR field equations imply torsionless spin connections, then a

potential issue can be considered:

can torsionless Spin(1, 3)-connections (among which all solutions of GR) induce Spin(3)-

connections when the holonomy group Spin(3) is forbidden by the classification?

The answer is in the negative if Spin(3)-connections are induced by restriction. But it is in

the positive if Spin(3)-connections are induced by reduction as above.

Of course, one could argue that the existence of bundle reduction and the reductive splitting

is a constraint equivalent to the one on the holonomies. However, this is not the case; one can

consider the subgroup i : SU(2) → Spin(3, 1) which is in fact reductive (as we shall show below).

If the spin bundle P considered is trivial then there is no topological obstruction to the existence

of the reduction ι : +P → P . In this situation all hypotheses about the prescription for reduced

connections are satisfied and each Spin(3, 1)-connection induces a reduced SU(2)-connection,

included the torsionless connections which cannot be restricted in view of the constraints on

holonomy.

3. An Example: i : SU(2) → Spin(3, 1)

The group Spin(3, 1) is isomorphic to SL(2,C) which is a sort of complexification of SU(2) that

is identified accordingly as a real section i : SU(2) → SL(2,C).

The corresponding algebra of sl(2,C) is spanned (on R) by (τi, σi) where σi are standard Pauli

matrices and τi = iσi. An element of sl(2,C) is thence in the form ξ = ξi(1)τi + ξi(2)σi and the

algebra embedding is given by

Tei : su(2) → sl(2,C) : ξiτi 7→ ξiτi (3.1)

4



The quotient V is spanned by σi and the splitting of the algebra sequence can be fixed as

Φ : V → sl(2, C) : σi 7→ σi + γτi (γ ∈ R) (3.2)

which is in fact always transverse to su(2) ⊂ sl(2,C).

One can easily show that such a splitting is reductive and the representation λ : SU(2) → SO(3)

coincides with the standard covering map exhibiting the group SU(2) as the double covering of

the orthogonal group SO(3) on space.

Let us consider S = a0I+ aiτi ∈ SU(2), which is obtained by a0, a
i ∈ R with (a0)

2 + |~a|2 = 1 and

set γτk + σk = ek . We have to compute

SekS
−1 =(a0I+ aiτi)(γτk + σk)(a0I− ajτj) =

=(a0I+ aiτi)(γa0τk + a0σk − γaj (−ǫkj
lτl − δkjI)− aj (−ǫkj

lσl + iδkjI)) =

=(a0I+ aiτi)(γ(a0δ
l
k + ajǫkj

l)τl + (a0δ
l
k + aj ǫkj

l)σl + (γ − i)a ·
kI) =

=γ(a0a0δ
l
k + a0a

j ǫkj
l)τl + (a0a0δ

l
k + a0a

j ǫkj
l)σl + (γ − i)a0a

·
kI+

+γ(a0a
iδlk + aiaj ǫkj

l)(−ǫil
nτn − δilI) + i(a0a

iδlk + aiajǫkj
l)(iǫil

nσn + δilI) + (γ − i)aia ·
kτi =

=γ((a0)
2δlk + a0a

jǫkj
l)τl + ((a0)

2δlk + a0a
j ǫkj

l)σl + (γ − i)a0a
·
kI+

−γa0a
iǫik

nτn − γa0a
·
kI+ γaiaj(δkiδ

n
j − δnk δji)τn − γaiajǫkjiI +

−a0a
iǫik

nσn + ia0a
·
kI+ aiaj (δkiδ

n
j − δnk δji)σn + iaiajǫkjiI + (γ − i)a ·

ka
iτi =

=(γ − i)((a0)
2δlk + a0a

jǫkj
l)τl + (γ − i)a0a

·
kI+

−(γ − i)a0a
iǫik

nτn − (γ − i)a0a
·
kI+ (γ − i)a ·

ka
jτj − (γ − i)|~a|2τk + (γ − i)a ·

ka
iτi =

=
[(

(a0)
2 − |~a|2

)

δ
j
k − 2a0a

iǫik
j + 2a ·

ka
j
]

(γτj + σj ) = λlk(S)el

(3.3)

This shows how S(γτk + σk)S
−1 ∈ V , hence the splitting is reductive and the representation λ is

given by

λ : SU(2)× V → V : (S, ek) 7→ λlk(S)el (3.4)

where in view of (3.3) one has

λlk(S) =







(a0)
2 + (a1)2 − (a2)2 − (a3)2 2(a ·

1a
2 − a0a

3) 2(a ·
1a

3 + a0a
2)

2(a ·
1a

2 + a0a
3) (a0)

2 − (a1)2 + (a2)2 − (a3)2 2(a ·
2a

3 − a0a
1)

2(a ·
1a

3 − a0a
2) 2(a ·

2a
3 + a0a

1) (a0)
2 − (a1)2 − (a2)2 + (a3)2






(3.5)

Let us also stress that Φ(V ) in this case is not a subalgebra.

It is sufficient to show that V is not closed with respect to commutators. For example (assuming

γ 6= 0) one has:

[σ1 + γτ1, σ2 + γτ2] =[σ1, σ2] + 2γ[τ1, σ2] + γ2[τ1, τ2] =

=2(γ2 + 1)τ3 − 4γσ3 = −2γ
(

−1
γ τ3 + σ3

)

− 2γ (σ3 + γτ3)
(3.6)

The result is not in Φ(V ) unless one has − 1
γ = γ (i.e. γ2 + 1 = 0).
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The basis σab of vertical right invariant vector fields is given by the following identification

with the algebra
−4σ12 = τ3 4σ13 = τ2 −4σ23 = τ1

4σ01 = σ1 4σ02 = σ2 4σ03 = σ3
(3.7)

as one can check by computing commutators of fields σab (see Appendix A for notation). Hence

the basis of Φ(V ) is ek = 4
(

σ0k +
γ
2 ǫk

ijσik

)

, i.e.

e1 = 4 (σ01 + γσ23) e2 = 4 (σ02 − γσ13) e3 = 4 (σ03 + γσ12) (3.8)

Then we can split a generic connection

ω =dxµ ⊗
(

∂µ − ωab
µ σab

)

= dxµ ⊗
(

∂µ − ωij
µ σij − 2ω0i

µ σ0i

)

=

=dxµ ⊗
(

∂µ − ωij
µ σij − 2ω0i

µ (σ0i ±
γ
2 ǫi

jkσjk)
)

=

=dxµ ⊗
(

∂µ − (ωjk
µ + γω0i

µ ǫi
jk)σjk

)

− 1
2ω

0i
µ ei

(3.9)

Hence one can define

Ai
µ = 1

2ǫ
i
jkA

jk
µ = 1

2ǫ
i
jkω

jk
µ + γω0i

µ K i
µ = − 1

2ω
0i
µ (3.10)

According to the general theory, Ai
µ is a SU(2)-connection andK i

µ is a Lie algebra valued 1-form;

this can be easily seen by a direct calculation.

Now that we have reproduced the results of [1], we are ready to show that the ones considered

are the only reductive splittings. A generic splitting is in fact Φ : V → sl(2,C) : σi 7→ σi + βj
i τj .

If one imposes reductivity one easily finds the condition

βm
i δjk = δljδ

m
i β

l
k (3.11)

that is satisfied if and only if βj
i = γδji .

Let us set ek = σk + βikτi. Following the line of the proof of reductivity given above one can easily

show that

S · ek · S−1 = λ
j
k(S)ej + 2aiaj (δmi βlkδlj − βmj δki)τm + 2a0a

j(βlkǫlj
m − ǫkj

nβmn )τm (3.12)

Since the span of (τn, n = 1, 2, 3) is transverse to Φ(V ) which is spanned by (ek : k = 1, 2, 3) the

extra terms must vanish for all S ∈ SU(2).

Hence one must have







δm(i δj)lβ
l
k = βm(j δi)k

βlkǫlj
m = ǫkj

nβmn ⇒ ǫih
j
(

βm[j δi]k − δm[j δi]lβ
l
k

)

= 0
⇒ βmj δik = δmj δilβ

l
k (3.13)

which proves equation (3.11). By tracing (3.11) wrt the indices (im) one has

βδjk = 3δljβ
l
k ⇒ β

j
k = β

3 δ
j
k (3.14)
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4. Barbero-Immirzi Connections in Dimension m > 2

Let us consider here spacetimes with dimension m ≡ n + 1 > 2; the relevant spin groups are

Spin(n) for space and Spin(n, 1) for spacetime. Here both the groups are thought as embedded

within their relevant Clifford algebra; see [12]. The even Clifford algebras (where the groups’

Lie algebras are embedded) are spanned by even products of Dirac matrices, here denoted by

I, Eαβ , Eαβγδ , . . . with α, β . . . = 0..n. The Clifford algebras are suitably embedded one into the

other by

i0 : C(n) → C(n, 1) : Ei1 ...i2l 7→ Ei1...i2l (4.1)

with i1, i2 . . . = 1..n. In other words, the lower dimensional Clifford algebra C(n) is realized

within the higher dimensional one C(n, 1) by means of even products of Dirac matrices, except

E0. Such an algebra embedding restricts to a group embedding

i : Spin(n) → Spin(n, 1) (4.2)

The corresponding covering maps allow to define the embedding of i : SO(n) → SO(n, 1) which

corresponds to rotations that fix the time axes, i.e.

ℓi : SO(n) → SO(n, 1) : λ 7→

(

1 0

0 λ

)

(4.3)

We have to show that such an embedding is reductive. For this, let us consider the sequence

0 so(n) so(n, 1) V 0...................................................
..

.....
..
..
..
.

.....................................................
..

.....
..
..
..
.

Tei
...............................................................

..

.....
..
..
..
.

p
.............................................................

..

.....
..
..
..
.

.............

.............

..........................
....
...
....
..

..

..

..

..

..

..

.

.

.

...

.

.

.

.

..

..
..

.

.

.

.

.

.

..

..
..

Φ (4.4)

The complement vector space V is spanned by E0i and we fix the splitting by setting

Φ : V → so(n, 1) : E0i 7→ E0i +
1
2βi

jkEjk (4.5)

One can write down the condition for which such a splitting is reductive, i.e.

λl
iβl

jk = βi
lmλj

l λ
k
m (4.6)

which must hold true for any λ ∈ SO(n). Then one can consider a 1-parameter subgroup λ(t)

based at the identity (i.e. λ(0) = I) and the corresponding Lie algebra element λ̇ = λ̇(0); the

infinitesimal form of (4.6) is then

λ̇l
iβl

jk = βi
lkλ̇j

l + βi
jmλ̇k

m (4.7)

which must hold for any λ̇ ∈ so(n), i.e. for any skew–symmetric matrix.

Then one should try to look for solutions of condition (4.7) that correspond to reductive

splittings. We shall here provide explicit solutions for 2 ≤ n ≤ 5 (i.e. spacetime dimension

3 ≤ m ≤ 6).

For n = 2, Latin indices range in i, j, . . . = 1, 2. The condition (4.7) specifies to

{

β1
12 = β2

12

β2
12 = −β1

12
(4.8)
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Hence one has β1
12 = β2

12 = 0, so that there is no reductive splitting other then βi
jk = 0.

For n = 3 (i.e. m = 4), Latin indices range in i, j, . . . = 1, 2, 3. The condition (4.7) is now

equivalent to (3.11) as one can show by setting βl
i = 1

2ǫ
l
mnβi

mn. Hence the only solution is

βi
jk = γǫi

jk which span reductive splittings.

For n = 4 and n = 5 (i.e m = 5 and m = 6, respectively), one can check directly (using Maple

tensor package; see [15]) and show again that the only solution is the trivial one: βi
jk = 0.

5. Conclusions and Perspectives

We showed that BI-connections can be properly understood in terms of bundle reductions along

reductive group splittings. As a side effect this overcomes any objection about the holonomy

constraints since the holonomy of the reduced connection is not identical to the holonomy of

the original connection.

To summarize, the standard BI connection is not the spatial restriction of a spacetime spin

connection. It is instead the restriction of the reduction of a spacetime spin connection and

the restricted spacetime connection is the spacetime counterpart of the spatial BI connection,

though it is not a Spin(n, 1)-connection.

Further investigation will be devoted to see whether non-trivial reductive splittings exist in

higher dimension (m ≥ 7) or different signatures. If they exist, then one will be able to study

the dynamics of higher-dimensional gravity along the lines of [16]. This would be possible using

the Holst dynamics as written in [17] or the modified dynamics (the ones equivalent to f(R)

models) as in [18].

Appendix A. Commutators of σab

A pointwise right-invariant basis for vertical vector fields on a principal Spin(η)-bundle P is

induced by a frame e : P → L(M) locally represented by the matrices eµa in the form (see [12])

σab = ηc[be
µ
a]

∂

∂eµc
(A.1)

One can easily prove that the commutators are

[σab, σcd] =
1
2

(

ηacδ
e
bδ

f
d + ηbdδ

e
aδ

f
c − ηadδ

e
bδ

f
c − ηcbδ

e
aδ

f
d

)

σef (A.2)

In dimension 4 the indices run in the range a, b = 0, ..3 and one can set

σ̂i := 4σ0i τ̂i = −2ǫi
jkσjk (⇒ σjk = − 1

4ǫjk
iτ̂i) (A.3)

The commutators (A.2) specify to

[σ̂i, σ̂j ] = 2ǫij
k τ̂k [σ̂i, τ̂j ] = −2ǫij

kσ̂k [τ̂i, τ̂j ] = −2ǫij
k τ̂k (A.4)

which accounts for the identification of vertical vector fields with algebra generators given by

(3.7).
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