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Abstract

Unified exact average capacity results fobranch coherent diversity receivers including equah@ambining
(EGC) and maximal-ratio combining (MRC) are not known. Thaper develops a novel generic framework for
the capacity analysis af-branch EGC/MRC over generalized fading channels. The dreork is used to derive
new results for the Gamma shadowed generalized Nakagefading model which can be a suitable model for
the fading environments encountered by high frequeéyGHz and above) communications. The mathematical
formalism is illustrated with some selected numerical amdutation results confirming the correctness of our

newly proposed framework.

Index Terms

Average capacity, diversity, equal-gain combining (EG@aximal-ratio combining (MRC), correlated channel

fading, Gamma shadowed generalized Nakagarfading.

I. INTRODUCTION

Equal gain combining (EGC) is of practical interestdf GHz communications because its perfor-
mance is comparable to that of maximal ratio combining (MPR@) it offers a greater simplicity of
implementation (see [1] for an extended discussion on EGE MRC performance difference). Due

to high data-rate and coverage requirements of currentygéngeand future high-frequency (60 GHz
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or above) communication systems, the average capacity éhalysis of these two diversity combiners
(i.,e., EGC and MRC) becomes an important and fundamentaé if®@m both theoretical and practical
viewpoints.

In literature, there are several papers dealing with thesgeesymbol error probability (ASEP) analysis
of the diversity receivers (see for example [1] and the ezfees therein). Advances over the last decade
on the symbol error performance analysis of EGC and MRC sdlityereceivers in fading channels has
accentuated the importance of the moment generating ansc{MGF) as a powerful tool for simplifying
the analysis of diversity receivers. For example, the foihg identity has been widely used to simplify

the symbol error performance analysis of EGC and MRC ditxersiceivers in fading channels,

exfe (/o) = % /O " exp <_Sizgn(de))d9, (1)

whereerfc () is the complementary error function [2, Sec.(6.13)], ancemhy.,4 is the total signal-
to-noise ratio (SNR) at the diversity receiver. On the othand, and to the best of our knowledge,
published papers dealing with the AC analysis of EGC and MRE€rsity combiners over fading channels
have been scarce when compared to those concerning the ASEPnpance [1]. In particular, Bhaskar
derived in [3] the average capacity btbranch EGC relying on the Gamma approximation of the sum of
mutually independent and identically distributed Raytergndom variables (RVSs). In addition, using an
MGF-based approach, Hamdi obtained in [4] a new expressiothé average capacity of MRC diversity
combiner over arbitrarily correlated Rician fading chdsn®lore recently, Di Renzet. alproposed a hew
framework in [5] in order to compute the average capacity &@@Adiversity combiner over generalized
fading channels through the medium of the exponential matdg transform. However, the MGF-based
approaches developed in [4], [5] were limited to the capaaftcalculation of MRC diversity receivers
and are not easily extendible to the computation of the ¢gpat EGC diversity receivers. In this paper,
we show that it is actually possible to express the condifi@apacitylog, (1 + 7enq) in @ form similar

to (1), which facilitates the development of a new unified M&Sed approach for the calculation of
the ergodic capacity in arbitrarily correlated/uncortethfading channels. More specifically, we present a
unified MGF based average capacity computation not onlyHer/tbranch MRC diversity receiver but
also for theL-branch EGC diversity receiver over a wide variety of fadaiginnels and for an arbitrary
number of diversity branches.

The remainder of this paper is organized as follows. In $adt, a unified capacity analysis of diversity
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receivers over generalized fading channels is introduceldsame key results are presented. In Section lll,
after the introduction of Gamma-shadowed generalized dkam (GNM) fading channel model, the
exact average capacities for the EGC and MRC diversity vecgiover Gamma-shadowed GNM fading
channels are derived and many special cases are deducedriairexamples are then given in Section IV
to illustrate the mathematical formalism. Finally, the magsults are summarized and some conclusions

are drawn in the last section.

[I. AN MGF-BASED CAPACITY ANALYSIS OF DIVERSITY COMBINERS

For EGC and MRC diversity receivers, before the signals endiliersity branches are being summed
to form the resultant output, the signals on the diversignibhes are first co-phased and then weighted
equally in EGC or weighted with the fading envelopes in MRGeTnstantaneous SNRR,,; at the output
of the diversity receiver can be generically written as

L q
E

en = Ry 2

s = (z ) @

where the parameteyse {1,2} andq € {1,2} are chosen as

(1,2), EGC
(p.q) = : (3)
(2,1), MRC

In (2), L denotes the number of branches afig/ N, is the transmitted SNR per symbol, and foe
{1,2,3,..., L}, R, is the(th branch fading.

Considering the (instantaneous) Shannon capacity of Wergiiy receiver (i.e., EGC or MRC) with
bandwidthW over fading channels (i.e(;,, , = Wlog,(1+7.n4)), the average ergodic channel capacity
defined as’,,, = E [V log, (1 + 7.nq)], WhereE [] denotes the expectation operator, can be obtained by

averaging the instantaneous capacity , over the probability density function (PDF) of,.;, namely

Cavg =W / logy (14 7) pry.,a (7) d, (4)
0

wherep,_, (v) is the PDF of the instantaneous SNR,; (that is, 7.4 iS generically defined in (2)).
Due to several reasons (e.g., insufficient antenna spaciogupling among radio frequency (RF) layers),

correlation may exist among diversity branches of the wereWith or without that, the average capacity
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using (4) involves ar_-fold integral given by

') [e'e] L q
E, ,
Coag =W /.../10g2 <1+W<;Q> )pRPRQ ..... R, (ry, 79, ...,y )drydry. ..dr;, (5)

0 0 0
—_———
L-fold

wherepr, =,...r, (11,79, ...,7;) iS the joint multivariate PDF oR |, R,, ..., R, fading envelopes. The
L-fold integration in (5) is tedious and complicated in adftto the fact that it cannot be separated into
a product of one dimensional integrals. In addition, it tagdong time to evaluate numerically, especially
as the number of branchdsincreases. Thus, referring to (4), researchers in litegaave tried to find
the PDF of the instantaneous SNR,; given in (2) in order to find the average capacity. Nevertgléhis
technique is often complicated and tedious for generalfadihg environment since it involves multiple
convolutions / integrals even if the fading enveloges R,, ..., R, of the branches are assumed to be
independent. Referring to (2), the Jensen’s inequalit§ff,(12.411)], which is based on concavitylog
function such thak [log,(1 4+ Yena)] < logy(14+E [vend)), @and fractional moments [6, Eq. (1.511)], which is
based on the infinite series l, (1+7cnq) SUch thatl [logy (1 + Yena)] = — 32,1 (—1)"E [77,4]/ log(2"),
are commonly used in particular to compute the AC approxagatl he other mostly used way to compute
the AC hinges upon the inverse Laplace transform (ILT) whethe PDF of the instantaneous SNR4
can be approximated through the medium of applying the ILThenMGFM,,_ , (s) = E [exp (—5Yena)]-
It is pertinent to say here again that the AC computation wéidity combiners (especially for the MGF
of EGC since it is often more difficult than that of MRC due t@ tfact that it may not be possible to
obtain the MGF of EGC receiver in general fading environmegbecomes more difficult, problematic,
and perplexing as the number of branches (i¢.increases.

In what follows, we present a new exact and unified MGF-bapgdoach that overcomes the difficulty
mentioned above, and offers a generic single integral egpe for the average capacity of EGC and

MRC diversity combiners over generalized fading channels.

Theorem 1 (Average Capacity of the Diversity Combiners over CoredaNot-Necessarily ldentically
Distributed Fading ChannelsThe exact average capacity éfbranch diversity combiner over mutually

not-necessarily independent nor identically distribufading channels with a bandwidtiV is given by

W o 0
C(wg - m /; Cq (8) [&Mﬁp ((I)p’qS):| dS, (6)
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wherep € {1,2} andq € {1,2} and are selected based ¢8), and where the paramet@r, , is defined

as®,, = V/E,/NyLF-4-D/2, and where the auxiliary functiofi, (s) is given by

,q) | )

whereH""[] represents the Fox's H functidi, Eq. (1.1.1)}?. Moreover, M, (s) = Elexp(—s >, RY)]
is the joint MGF for thep-exponent ofR = {R{,R,,...,R,} fading envelopes of the branches.

Proof: See Appendix A. [ |
Note that, in order to find the average capacity, the propdd€d--based technique in Theorem 1
eliminates the necessity of finding the PDF of the instardaseSNR~.,,,, through the ILT of the joint
p-exponent MGFM 3, (s). Shortly, Theorem 1 suggests that one can readily obtaimbeage capacity
of the diversity receiver by using the joiptexponent MGFM 3, (s). Additionally, the integral in (1)
can be readily estimated accurately by employing the G&hebyshev quadrature (GCQ) formula [11,
Eq. (25.4.39)], yielding

W 9
Cons ™ 10 @) ; w,Cy (s,) { 5 Mz (Pp45)

}, @®)

which converges rapidly and steadily, requiring only femrts for an accurate result, where the coefficients

w,, ands,, are defined as

72 sin (2”_17r)

_ x 21 e _ 2N
sn = tan (F cos (3%51m) + I) and Wn = s (T oos (20m) +2)° 9)

respectively, where the truncation inddkcould be chosen a& = 50 to obtain a high level of accuracy.
In addition, when there is no correlation between the fadingelopesk = {R,,R,....,R,} for the

branches of the diversity receiver, the average capacigyven in the following corollary.

Corollary 1 (Average Capacity of the Diversity Receiver over Mutualhdépendent Not Necessarily
Identically Distributed Fading Channels)he exact average capacity 6ftbranch diversity receiver over
mutually independent and non-identically distributedif@dchannels with the bandwidtii is given by

L
(=

L 0 =
Covs = 5y, Co I [y (@) | TT M (5 10)

1
k£l

1For more information about the Fox’s H function, the readmes referred to [7], [8]
2Note that the Fox's H function is still not available in stand mathematical software packages such as Mathematicd@laplerv.
However, using [9, Eqg. (8.3.2/22)], an efficient mathenaiimplementation of this function is available in [10, AppenA].
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where, forl € {1,2,..., L}, Mze (s) = E [exp (—sR})] is the MGF of the fading?, that the/th branch

is subjected to.

Proof: When there is no correlation between the fading enveldpes {R,,R,,...,R,}, one can

readily write M z,(s) = [[/_, Mgz» (s), whose derivative with respect tois given by

B " 1o L
SiMa(5) = 3 | 5 M ()] TT Mg ) 1)
=t oy
Finally, substituting (11) into (6) results in (10), whiclhhopes Corollary 1. [ |

Despite the fact that the novel technique represented bgréhel and Corollary 1 are easy to use, the
numerical computation of the auxiliary functid@r, (s) can also be done using the more familiar Meijer’s
G function, which is available in standard mathematicatvgafe packages such as Mathematica® and

Maplen, as shown in the following corollary.

Corollary 2 (Meijer's G Representation of the Auxiliary Functi@, (s)). The auxiliary functionC, (s)

can be given in terms of the more familiar Meijer's G functias follows

~1 ¢ [1,1,2
Cq (s) = 71_(};:32,2 [5 et (12)
q(2m) " ’
whereEEfg =z el zinclwith o € C andn e N.
Proof: See Appendix B. [ |

Let us consider the special cases=(1 for MRC andq = 2 for EGC) of the auxiliary functiorC, (s)

in order to check analytical simplicity and accuracy:

Special Case 1(Maximal Ratio Combining)For L-branch MRC diversity receiver (i.e¢ = 1), the

auxiliary functionCurre (s) = C, (s)],_,, can be obtained as

11,1
Cumre (s) = —Ggﬁ {g ‘ 0 } (13)

by means of applying [9, Eq. (8.2.2/9)] on (12). Utilizing, [Bqg. (8.2.2/14)] and [9, Eq. (8.4.11/1)]
together, (13) reduces further to

CMRC (S) = El (—S) s (14)
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whereEi (-) is the exponential integral function [2, Eq. (6.15.3].Then, referring to Theorem 1, the

average capacity of thé-branch MRC receiver can be given by

w R 0 E,
= ), B e () (19

which is in perfect agreement with [5, Eq. (7)] when choosthg transmitted power is unit (i.e.,

Es/Ny = 1). In addition, when the branches are subjected to mutualigpendent and non-identical

fading distributions, the average capa(m&’fc can be also given, referring to Corollary 1, as follows

gl [ e (o (B oo

Special Case 2Equal Gain CombiningNote that, referring (7) withy = 2, the auxiliary function for

L-branch EGC diversity receiver, i.€scc (s) = C, (s)],_,, can be re-written as

0,2 4 1717%
Crac (s) = _\/%G3:1 2 0 ) (17)

by means of setting = 2 in (12). Eventually, using [9, Eq. (8.4.12/4)], the auxijidunction for L-branch

EGC diversity receiveCrqc (s) simplifies to
CEGC (S) =2 Ci (u) s (18)

where Ci (z) is the cosine integral function [11, Eq. (5.2.27)Then, using Theorem 1 with (18), the

average capacity of thé-branch EGC diversity receiver can be readily expressed as

Croc = log / Ci (u [ (ﬁ )]ds (19)

in general when the fadin@R,,R,,...,R; are subjected to are correlated. When the branches are

subjected to mutually independent and non-identical fadine average capaciqgfjc can be also given,

as/\/lm (@) H/\/lm (M )ds (20)

In the following section, the model of Gamma shadowed GNMnigathannel will be introduced and

referring to Corollary 1, as

L
2W o0
EGC _
avg log Zl

®Note that both the cosine integral functi@li (z) = — f cos (t)/tdt and the exponential integrdli (z) = — f exp (—t)/tdt are
implemented as a built-in function in the more popular mathatical software packages such as Mathematlca® and Maple
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then the average capacity of bothbranch MRC and.-branch EGC diversity receivers will be derived

for Gamma-shadowed GNM fading channels.

[Il. AVERAGE CAPACITY OF DIVERSITY COMBINERS OVERGAMMA -SHADOWED GENERALIZED

NAKAGAMI -m FADING CHANNELS

As an example for the application of both Theorem 1 and Canplll, we assume that Gamma
shadowing affects the GNM [10] fading channels, that is,ltli@al mean power of the fading is a Gamma
RV. For example, in60 GHz non-line-of-sight (NLOS) propagation, standard deéeraof shadowing is
typically larger than that of propagation &atGHz. It is therefore not a misstep to assume that the local
mean power of channel fading is a RV distributed o\erc). Hence, the Gamma-shadowed GNM fading
model can be accommodated to pretest the evaluation ofrefiffevireless communications 0 GHz
non-line-of-sight (NLOS) environment. Thus, we first derihe analytical expressions for both PDF and
MGF of the fading amplitudes = {ay, a,, ..., } for the branches of-branch EGC in a Gamma-
shadowed GNM fading channel. Using these results, we will fire exact average capacity for the EGC
over a Gamma-shadowed GNM fading channel, and will give asngkes of the simplified expressions
for different special cases.

We first derive the analytical expressions for both PDF andPVi@ the fading envelope® =
{R{,R,,...,R,} for the branches of.-branch diversity receiver in a Gamma-shadowed GNM fading
channel. Using these results, we will find the exact averagmdity for the diversity receiver over a

Gamma-shadowed GNM fading channel and enumerate theatiffspecial cases.

A. Gamma-Shadowed Generalized Nakagantading Channels

Let us consider, > 1 mutually independent and non-identical GNM RYs,}._,, each representing

the fading amplitude thé.-branch diversity combiner is subjected to and each hanegPDF

m 13 2¢
2§£ /86 5[ ¢ 25 -1 - (gl) Za 14
pOl[ (Of) F (mz) (QZ Qe € ¢ Y 0 — « ( )

where the parameters, > 1/2, {, > 0 and {2, > 0 are the fading figure, the shaping parameter and
the local mean power of théh GNM RV andg, = I" (m, + 1/¢,) /T (m,). Furthermore, the special or
limiting cases of the GNM distribution are well-known indititure as the Rayleighm, = 1,§, = 1),
exponential(m, = 1,§, = 1/2), Half-Normal (m, = 1/2,{, = 1), Nakagamim ({, = 1), Gamma

(¢, = 1/2), Weibull (m, = 1), lognormal(m, — co0,§, — 0), and AWGN (m, — o0, ¢, = 1).



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. XX, DEC. 200 9

As mentioned before, let the local mean power,of the GNM fading amplitude for théth branch of

the L-branch diversity combiner has, due to the shadowing,idigton with the Gamma PDF given by

1 m.\ e m 1
0) = st QO™s -1 14 <0 < 22
pQ[ ( ) F<msf> (QSZ) Z o ( Qs@ ) 7 ! - 2~ st ( )

where(2, is the average power of shadowing in the area of interestwdretem , inversely reflect the
shadowing severity such that the severity of the shadowewedses as the value of,, increases. For
example, in the limit case:,, — oo, the distribution of the local mean closes to the Dirac’dribation
aspq, (2) = 0(22 — Q). Hence, there is no shadowing effects.

Eventually, averaging (21) with respect@, i.e., fooo Pa, (@) pa, (€,) dS,, then utilizing [7, Theorem
2.9] with [7, Eq. (2.9.4)], we obtain the PDF of the Gammaekiveed GNM fading as introduced in the

following definition.

Definition 1 (Gamma-Shadowed Generalized Nakagani®V). The distributionR, follows an Gamma-

shadowed GNM distribution if the PDF &, is given by

2 ﬁemz)msz om ,—1 < Mgy Bymyy o 1)
pr, (r) = 5 reMse 0 m, — —=,0, —=r°, — (23)
. (7) ['(m,)T(m,) ( Qg ‘ & Qg &

wherem, (0.5 < m, < co) and¢, (0 < ¢, < co) represent the fading figure (diversity severity / order)
and the shaping factor, respectively, white,, (0.5 < m , < oco) and 2, (0 < Q,, < oo) denote the
severity and the average power of shadowing, respectivayeover,’ (-, -, -, -) is the extended incomplete
Gamma function defined d$(«, x,b, ) = f;o r*Lexp (—7’ — br‘ﬁ) dr [12, Eg. (6.2)] wherea and x

are complex parameters, > 0 and b is a complex variable.

In what follows, the shorthand notatioR ~ Ns(m,&,m,,$2,) denotes thatR follows a Gamma-
shadowed GNM RV with the fading figure:, the shaping parametér the shadowing severity:, and
the shadowing average power.

Let us consider some special cases of (23) in order to chelitityaln fact, this PDF is a very
general shadowed PDF which includes many special casespésned in the second paragraph of this
section. For example, By using [11, Eq. (6.1.47)] with thellMeBarnes contour integral representation
[7, Eq. (1.1.1)] of (23), the PDF reduces to the PDF of the GNistribution [10, Egs. (1) and (2)]
for m,, — oo as expected. Here again, by using [12, Eq. (6.41)], the PDiedsced into the PDF of

Gamma-shadowed Nakagamidistribution [13, Eq. (9)] when the shaping paraméte+ 1. Furthermore,
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the special or limiting cases of the Gamma-shadowed GNMildigion are well-known in literature as
exponential-shadowed Rayleigh,, = 1,m, = 1,{, = 1), K distribution (m,, = 1,{, = 1), generalized-

K distribution(¢, = 1), Rayleigh(m, = 1,{, = 1,m,, — c0), exponentialm, = 1,§, = 1/2,m,, — c0),
Half-Normal (m, = 1/2,¢, = 1,m , — oo), Nakagamim ({, = 1, m, — o), Gamma({, = 1/2,m , —
oo), Weibull (m, = 1,m, — oo), lognormal (m, — 0,{, — 0,m, — oo), and AWGN (m, —
o0, &, = 1,m,, — o0). Regarding these special and limit cases, the Gamma-sle@d®NM distribution

R ~ Ns(my,, &, m,,Q,,) has the advantage of modeling the envelope statistics of kmmsvn wireless
and optical communication channels. Accordingly, it pdms a unified theory as to model the envelope
statistics.

Referring to Theorem 1 and Corollary 1, we need to obtain th@RWf the fading envelop®, ~
Ns(my, &,my,, Q) 1.6, Mg, (s) = Elexp (—sR,)] for ®{s} € R" in order to find the exact average
capacity of EGC, and also we need to obtain the MGF of the fpgiower~, = R?, i.e., Mzpz (s) =
E [exp (—sR?)] for R{s} € R™ in order to find the exact average capacity of MRC. As suchhin t
following theorem (i.e., Theorem 2), these MGF functions abtained in a unified closed form such that
we can readily reduce it to the MGF of théh branch of EGC and for that of MRC when the values

p =1 andp = 2 are selected, respectively.

Theorem 2 (Unified MGF of Gamma-Shadowed GNM RVJhe unified MGF of the Gamma-shadowed
GNM envelope distributio®R, ~ Ns(my, &, my, Qy), 1.8, Mze (s) = E [exp (—sR})] is given by

_ 4 2.1 | (B pi
M () = F(mse)r(mz)Hm {< Qg ) &

with the convergence regioR {s} € R*.

(1,2)

2
(msbp)v (meap/@) ( 4)

Proof: Note that the unified MG z» (s) = E [exp (=sRY)], R ~ Ns(my, §, my,, ) can readily
be given asMz» (s = [ exp (—srP) pr, (), Where substituting the Fox's H representation of both
extended incomplete Gamma function (i.e., [12, Eq. (6)23)ld exponential function [7, Eq. (2.9.4)]

results in

(Mggy 1), (my, 1/8,)

- 2 ool LO| op.p
My 9= g | 7988
0

T T 20 Bym g,
(0,1) } Q[QH

dr. (25)

Eventually, applying [7, Theorem 2.3] on (25), one can ryaaltain the MGF of the Gamma-shadowed

GNM distribution given in (24), which proves Theorem 2. [ ]
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Now, let us consider some special cases in order to checltamralsimplicity and accuracy of (24).

a+b)ac
a+c)ab

When setting the shadowing severity,, — oo, and applyingL}Lrgo EE ~ 1, where || < a and
lc| < a, on the Mellin-Barnes integral representation [7, Eq. .@]lof (24), the unified MGF is, as
expected, reduced to the MGFs of GNM [10, Eq. (2)] and geir@lGamma [14, Eq. (11)] for the
valuesp = 1 andp = 2, respectively.

Note that the unified MGF given by (24) may lead to some contfutalifficulty to compute due to the
fact that the implementation of the Fox's H function is cathg not available in standard mathematical
software packages but an Mathematica® implementationisfftimction is offered by the authors in [10,
Appendix A]. As such, it may be useful to represent (24) imziof Meijer's G function with the aid of
[9, Eq. (8.3.2/22)]. More specifically, (26) is the Meije representation of (24) for the rational values

of the parametef (that is, we restrict to ¢ = k/I, wherek and! are arbitrary positive integers.), namely

ST \m m— 2k 2k %)k” —(—2k)
MR (S> o l/’ﬂ'(k‘p) st (lp) =1 ka—i-lp,Qk ( s ) ( Q,, _“_‘(ij) (26)
A kp o 2k, kp-+ k I —(m_,) —(m,) |
’ (27’(’) 5>t +k 21—\(mz)r(msz) pTip (]Cp) P(lp) P :Ek’pé)é)7 :‘Elpf)

It may be useful to notice that the rational representatibyg,cc R* remains essentially unchanged if
there does not exist any rational number close enoug$),ttulfilling the condition |k/l — &,| < €/I?,
with e chosen to ba0~2. For more accuracy to rationalizg, the conditional parametercan be chosen
much smaller. Nevertheless, the number of coefficients®Mkijer's G function in (26) gets higher as
gets smaller, so much so that its computation efficiencyidenable reduces and its computation laténcy
increases. In consequence, the Fox’s H function is prefeialthis case since its computation efficiency

is much better than that of Meijer's G function in this siioat

B. Unified Average Capacity of Diversity Combiners

Let us find the derivative of the unified MGF given by either)(®4 (26) with respect t& since we
need it in order to find the average capacity Iobranch diversity combiners operating over Gamma-
shadowed GNM fading channels. Referring to the relatiomait MGF. M7y, (s) and its derivative, i.e.,

9 Mgz, (s) = =E[Ryexp (—sRy)], the derivation of the unified MGF for diversity combinerseagting

over Gamma-shadowed GNM fading channels in give in theiolig theorem.

Theorem 3 (Derivative of the Unified MGF of Gamma-Shadowed GNM RVYhe derivative of the unified

“The computation latency of Meijer's G functigid’;"[-] is primarily addressed by the total number of coefficients g.
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MGF for the Gamma-shadowed GNM envelope distribufton~ Ns(m,, &, m,,, Q,,), i.€., %M@ (s) =
—E [R} exp (—sRY)] is given by

Q _ 2/s 3.1 (Bemge pi
&S’MRZZ () = ['(mg,)L(m,) e [( Qyp ) s

with the convergence regioR {s} € R*.

(1,2),(0,1)
(17 1)? (ms£>p)7 (meap/@) (27)

Proof: Using either [7, Eq. (2.2.2)] or [9, Eq. (8.3.2/15)], the pfds obvious. [ ]
Again, following the same steps in the derivation of (26)7)(2an be represented on the basis of the
Meijer's G function for the rational values of the parametet &/, wherek and! are arbitrary positive

integers. Accordingly, (27) can be given by

kp
m,— 2k M :(—2k)
Y VAR @)™ e | ) (%) =620 ”
85 [( ) kp+ +k—2 2k+1,kp+ip+1 (k’ )kp(l )lp 1 ’:‘(msl) ,:,(m[) . ( )
(2m)=> 7> ['(my)T(m,,) p)\'p 1 =(kp) > =(ip)

Finally, by employing Corollary 1 with (24) and (27), new ekasingle-integral expressions for the

evaluation of the average capacy,, of L-branch diversity combiners over Gamma-shadowed GNM

X

fading channels are immediately written as
(1,2),(0,1) }

L
= Bmg\? 1
Cavg / |:< sZ ) (I)1217q82 (17 1)7 (msbp)v (mg,p/@)

L
T] w2 Kﬁkmsk)p 1
1.2
k=1 QSk ®I277q82

k£l

(1,2)
(M gs 0), (M4, /&,

)}ds, (29)

where both the coefficienk, , and the auxiliary functiorC, (s) are defined in Theorem 1. Furthermore,

the coefficientg,, is defined agj, = 2 [Hg , D(my,)T (mz)} Additionally, referring to (8) (i.e.,
by changing the variable of the integration in (29) sas= tan(f) and then using GCQ formula [11,
Eq. (25.4.39)]), we specifically get a finitd/{terms) sum approximation converging rapidly and steadily

and requiring few terms for an accurate result as shown

o~ gLZWncqs(sn) XL:H ‘}”Kﬁé ) (1)2152 (1,2),(0,1) ]X

p,q°n (17 1)7 (ms€7p)7 (mbp/gé)

L

HHZI[( kmsk>p 1
1,2

k=1 st (I):% qS%

k£l

(1,2)
(mskvp)v (mkvp/gk)

}, (30)

wherew, ands, are defined in (9). In the sense of both that either specialnut tases of Gamma-
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shadowed GNMNs(m,, &,, m,, §2,,) model are commonly used fading models in the literature, that
the auxiliary functionC, (s) is a unified expression for diversity combiners (eqgs 1 for MRC and

q = 2 for EGC), it is sufficient to show that the average capacitegiby (29) is a unified expression not
only for commonly used channel fading models but also forabmmonly used MRC and EGC diversity
combiners. For example, referring (14) (i.e., using the M&@cial case of the auxiliary functiary, (s)
given by (7)) and performing algebraic manipulations [7sE.1.1)-(2.1.5)] after choosing= 2 for
MRC, it is straight forward to show that, the unified averagpacity (29) reduces to the average capacity

of L-branch MRC diversity combiner over Gamma-shadowed GNNhtadhannels, namely

ovre _ 91 /°° Bi (~s) ng,l Nofsm (1,1),(0,1) y
e 2t 0 S /=1 3 ESQsZS (171)7(m3671>7<m871/£é>
L
NoB,m (1,1)
H2’1[70 kT sk ’ }ds, 31
LI 0 5 1), (g 176 | % @Y

oy
Substituting the fading figures, — m, fading shaping factor§, = 1, the shadowing severities,, — oo

and shadowing powerQ,, = Q2 for all ¢ € {1,2,..., L} in (29), and then using [7, Egs. (2.1.1), (2.1.2),
and (2.9.1)], the average capacity given by (31) reducesa@verage capacity over mutually independent
and identically distributed Nakagami-fading channels,

CMRC _ _ WL /OO Ei(—s) Q21 Nom
“vs log(2)I'(m) J, s 22| B,Qs

Lm| " EQs|m

L—1
L } ds. (32)

1,0:| 171|iN0m

Subsequently, note that we hatg';[u|}] = u®(1+u)"*T(a) [9, Eq. (8.4.2/5)] anct}gé[u\ 12] -
—u® (1 +u) """ T(a) [9, Eq. (8.4.49/14)]. The average capacity of MRC diversiéyn be then attained
in closed-form through the instrumentality of th&-transform equality [ Ei (—u) (1 +au) " du =

—1/T(b)Gy3; [a ‘Of’:b}, wherea, b € R*, that is,

(33)

CMRC _ WL qls|
avg log(2)T'(mL + 1) **|m

0,0, —mL}
0,—1 ’
wherey = E,Q/ N, is the average SNR recovered by one branch of the MRC diyessinbiner. Note
that (33) represents an alternative compact closed-fopresgion (that is not limited to integer values of
the fading figurem) to the result presented in either [15, Egs. (19) and (20]L6r Egs. (23) and (24)].
In addition, by choosing = 1 andq = 2 for EGC, the auxiliary functiorC, (s) simplifies into (18)
and the unified average capacity given by (29) reduces tovitiage capacity of.-branch EGC diversity
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combiner over Gamma-shadowed GNM fading channels, that is,

C,ﬁgc _ gL >~ Ci (S) Z Hg’g 4LN05ZW2LsZ (0, 1), (%, 1) «
Vrl Jo s =TT Bl (msg,l),(mg,g—)
L
H H22 4L Ny, mg, (1,1), (%7 1) ds, (34)
L 2.2 EQ s (my, 1), (my, é) ’

which is obtained after using [7, Egs. (2.1.1)-(2.1.5)]eBwally, substituting the fading figures, — m,
fading shaping factor§, = 1, the shadowing severities,, = m, and shadowing powerQ_, = (2 for all
¢e{1,2,...,L}in(34), and then using [7, Egs. (2.1.1), (2.1.2), and (2]9the average capacity given by
(34) reduces to the average capacity over mutually indeggerahd identically distributed generaliz&d-

fading channels as

LG [ Ci(s) oo[4LNgmm, | 0,1 7 oo[4LNgmm, | 1,2 1"
cEGC = FL G2 s| 2 @2 s ) e d 35
o \/7T_L 0 22 Ests2 ms? m 22 ESstz ms’ m " ( )

which can be readily computed by means of GCQ rule as seen.in (8
It might be useful to notice that Tables I-1ll offer simplifieexpressions for the unified MGF and its
derivative, for the variety of commonly used generalizedirfg channels in order to facilitate for the

readers the use of our average capacity results for both MRICE&C.

IV. NUMERICAL RESULTS

In this section, we provide some selected numerical re$ottshe previous example, illustrating the
average capacity at-branch diversity receiver over Gamma-shadowed GNM fadimnnels. As seen in
all figures (from Fig. 1 to Fig. 4), MRC gives better capag@srformance than EGC as expected, however
it is a complex technique since it requires the envelopenadibn of the channel fading. In addition, the
minimum difference between their performances is obtaimgdwvo-branch combining.

In Fig. 1, the average capacity of diversity receiver is dega with respect to SNR (i.eZ;/Ny)
for difference number of branches with Gamma shadowed GNihépparameters? € {1,2,..., L},

m, = 2§, =2,m, = 3 andQ, = 1. This figure also displays the capacity per unit bandwidtié. (i

W = 1). Increasing the number of branches, i.e.;> 2, the average capacity increases but note that,
regarding the relation among diversity gain and number téramas, the diversity gain obtained by adding

an antenna/branch decreases as the total number of antaanabsl increases. Note again that selected

numerical and simulation results are in perfect agreement.
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Amount of fading (AF) is another important statistical chaeristic of fading channels, particularly
in the context of applying diversity techniques in the trarssion of the signals from transmitter to the
receiver such as relay technologies. Shortly, this AF is@ased with the fading figure / diversity order,
of the PDF given by (23), and faR, ~ Ns(m,, &, m,,, Q,,), it is defined asn, = E? [Rgf] /Var [Rﬂ,
where Var -] and E [-] are the variance and the expectation operators, respgctA® seen in Fig. 2,
note that the large diversity gain is obtained by increasauing figure / diversity order from.5 to 2.0.

For example, a relay between transmitter and receiver angdihe more antenna to the transmitter may
increase the diversity order froin0 to almost2.0. Form, > 2, increasing the fading figure gradually and
linearly increases the average capacity. In other wordseasing the number of relays or the number of
the antennas at the transmitter more tRagradually and linearly increases the average capacitglligin
note again that numerical and simulation results are ineperigreement.

When the signal recovered by tlith branch ofZ-branch diversity receiver from the wireless channel
(¢ € {1,2,...,L}) is composed of clusters of a multipath wave, each of whiabpagates in non-
homogeneous environménguch that they possess similar delay times and with the ditey spreads
of different clusters and their phases are independent[19]. In this case, the envelope of the received
signal, i.e.,R, is considered as a non-linear function of multipath comptsmieMore specifically, lef;
and ), be the in-phase and quadrature Gaussian elements of thal segrovered from théth branch
of the L-branch diversity receiver. Then, the envelope is repteseas| X, + iye@, wherei = /—1 is
the imaginer number and whegg is the shaping factor. Shortly, the shaping factor is somegi not a
sufficiently qualified parameter to comprehend and contatepihe fading conditions in some wireless
communication applications. As such, for the PP (r) of the fading envelop&,, the tail properties,
i.e., bothlim, o [pr, (r)] andlim,_. [dpr, (r) /Or] are changed by the shaping factor As seen in
Fig. 3, the average capacity goes to zero when the shapingr fagoes to zeroY € {1,2,...,L},
¢, = &) because, fof) < £ < 1, the tail properties approach to zero very fast with respethe possible
envelope values € [0,00), i.e., lim, o [pr, (r)] = 07 andlim, ., [Opg, () /Or] = 0~. Also note that,
for the higher values of shaping factérs> 1, the average capacity very gradually and linearly increase
as seen in Fig. 3 as the shaping factdncreases.

As mentioned at the beginning of the previous section, thlke uality is affected by variation of
the local mean power due to the shadowing caused by movingaes, scatters and reflectors between

®Note that non-homogeneous wireless communications envieat is very common in high frequencies suct6@<$GHz or above due to
the fact that the wave-length is very small when it is comgasith the non-homogeneous (singular) environment.
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transmitter and the receiver. The intensity of shadowinghenbranches of.-branch diversity receiver is
characterized by the shadowing facters, € [0.5, c0) for the brancheg € {1,2,..., L}. In Fig. 4, the
average capacity is depicted with respect to shadowingffaat (i.e., v/ € {1,2,...,L}, m, = m,).
Note that, as seen in Fig. 4, the average capacity does nogehas the shadowing factet, goes to

infinity (i.e., m, — oo) since the variation of the local mean power diminishesrgsncreases.

V. CONCLUSION

In this paper, we presented a unified framework to computavkeage capacity of diversity combining
schemes (i.e., EGC and MRC) over fading channels. We algmopeal a versatile fading model, which we
term Gamma-shadowed GNM fading, in order to characterieddting environment in high frequencies
such as60 GHz and above. Additionally, we derived novel closed-forrpressions for the moment
generating function (MGF) of both Gamma shadowed GNM fading its special cases. Some selected
simulations have been carried out for different scenarioading environment in order to verify the

accuracy of the presented framework. Numerical and sinomagesults are in perfect agreement.
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APPENDIX A

PROOF FORTHEOREM 1

Note that, forq € {1,2} (i.e.,¢ = 1 for MRC combining, and; = 2 for EGC combining), using the
derivation equalityo log (1 + yX?) /oy = R?/(1 + yR?), we can readily show that

1 L1 xot
—log (1 + X?) = — d A.l
st = [ 2 (A1)

for n € RT. Using the equality[,” 2/~ exp (—s2) Ea 5 (—yz*) dz = s*7/(s* +y) [20, Eq. (5.2.3)],
whereE, s () is the Mittag-Leffler function [21, Eq. (1)], we get

%log(l + X9) :/0 exp (—sX) [/0 lEq,l <—%q) du] ds. (A.2)
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Upon substitutin% exp (—sX) = —X exp (—sX) into (A.3), and then applying the well-known Leibnitz

rule [11], it is easily shown thadbg (1 + X?) can be expressed as

log (1 + X?) = —/OO [82 exp(—sX)} {/1 lEqJ (—S—q) du} ds. (A.3)
0 $ 0o u u

After substituting the Mellin-Barnes representation & Mittag-Leffler function, i.e.Fs 5 () = 5= . T (p) T (1 — p

[21, Eq. (3)] and performing algebraic manipulations, (jAc&n immediately be expressed as

1

log (1 + X7) = _/OOO {% exp(_sX)} 2 {_ (1,

s

1),(1,1),(1,9)

d A4
(1,1),(0,1) ™ (A4)
by favor of the Mellin-Barnes representation of Fox’s H ftioo [7, Eqg. (1.1.1)]. Eventually, substituting
(A.4) into (5) and using some algebraic manipulations, therage capacity of linear diversity receivers

(EGC and MRC) can be readily given as in (6), which proves Té@ol.

APPENDIX B

PROOF FORCOROLLARY 2

Note that, by means of [7, Eq. (1.1.1)], the auxiliary fuontC, (s) given in (7) can be represented in

terms of Mellin-Barnes integral as

1 D(1+2)0(=2)T(=2) ..
CM:%}{ Ta— T tgs) ° 0% (B.1)

with the convergence regioR {C'} € (—1,0), wherei is the imaginary number (i.ei,= \/—1). Then,
substituting Gauss’ multiplication formula(nz) = (2r)7 =3 [T T (= + =1) [11, Eq. (6.1.20)]

into (B.1) and using some algebraic manipulations, we get

I S I O O N I G N G I A
Cq (s) = q(27T)1_q 27i jﬁ I(1—2)][e,T <§ + Z) <Sq> dz o . (B.2)

Finally, applying [7, Eqg. (2.9.1)] on the parenthesis pédrt(®.2), the auxiliary functionC, (s) can be

derived as in (12), which proves Corollary 2.
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Fig. 1. Average capacity versus the average power for diffenumber of branches over Gamma-shadowed GNM fading el&ann
Wee{1,2,...,L}, my =2,¢, =2,m,, =3 and,, = 1). The number of samples for the simulation is choserVas: 10000.
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Wee{1,2,...,L}, & =2,m, =3 andQ,, = 1). The number of samples for the simulation is choseriVas: 10000.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. XX, DEC. 200 22

9.5 T T T T T T T T T

85

(o]
T

Average Capacity, i.e(avg
\I
ul
T

7 -
6.5F -
- EGC Analysis
------- MRC Analysis
® Simulation
6 il | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Shaping Factor ¢ (V¢ € {1,2,...,L}, § =€)
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TABLE |

UNIFIED MGFs oF SOMEWELL-KNOWN FADING CHANNEL MODELS

Envelope Distribution, i.e., pr, (1)

Unified MGF Mz» (s) and its derivative gMR§ (s), where the exponentp € {1, 2}
S

One-Sided Gaussiaf1, Sec. 2.2.1.4]

2 r?
RN =450, P Tag,
14 14

defined overr € R, and whereQ, is the average power
(i.e., 2, > 0). Note that one-sided Gaussian fading coincides
with the worst-case fading or equivalently, the largest anto
of fading (AoF) for all Gaussian-based fading distribution

1
2 . [1/ 1 \[(1,2) 2 o4/ 1 V301
0= 2[5 (Y [0] - gz |4 (Y |2 ]
2 ﬁ S 295]9 (Eap) (27T)p+1 S 2le :(;)
1
3 - 4 2,1 1 1 p (172),(071) o 4 1,2 4 1 p ’5 O
gm0 = 73 5 ) [ o T Tarm, 2 \an,) (580 |

(p)”

whereGy'y"[-] andHyp ;" [-] represent the Meijer's G function [9, Eq. (8.2.1/1)] and Bd function [9, Eq. (8.3.1/1)], respectively. In
addition, the the coefficierﬁg )) of the Meijer’'s G function is a set of coefficients such thasitlefined ag(®) = = a+1 ceey L:fl

) (n) = m’ m
with z € C andn € N.

Rayleigh [1, Eg. (2.6)]

2r r2
pr, (1) = a exp O
¢ ¢

defined overr ¢ RT, and whereQ, is the average power
(i.e., €2, > 0). Note that Rayleigh fading distribution has unit
AoF (that is,AoF = 1).

My (5) =218 |

(9 4 2,1
gMR,? (s) = gHz,z {

1 (1,2),(0,1)] _ | 8p 1Gp+12 4 1 V1,30
s2(Q.p)” | (1,p), (1,1) (2m)P s OPH 2Q,p Eg;l ’

Rayleigh distribution typically agrees very well with exjpeental data for mobile systems where no line-of-sight 8)@ath exists between
the transmitter and receiver antennas [1, Sec. 2.2.1.1].

Nakagami-m [1, Eq. (2.20)]

2 mz) e 2m,—1 ( me7°2 )
F(me) (Qe Q,

defined overr € RT, whereQ, is the average power, and
wherem, (0.5 < m,) denotes the fading figure. Moreover,
I'(-) is the Gamma function [6, Sec. 8.31].

PR, (1) =

o= (3|20 - e ) )

Ry (8) = SN oA row T @ m,) 2P| 2\ Qp) g |

: I'(m,) s2\ &y ) | (my,p) (@m)’T(m,) [ \Qp) |50

9 My (5) = szl{i<@)p (L1 ]—1@@’“2 4<m€>p ey
ds” R L(m,)s >?[s2\ Q, (my,p), (1,1) (2m)"T (my)s e Qep EEZ;E)’l 7

Note that the Nakaganmi distribution spans via then parameter the widest range of amount of fading (AoF) amohghel multipath
distributions [1]. As such, Nakagamgi{Hoyt) and Nakagamit (Rice) can also be closely approximated by Nakagamdistribution [1,
Eq. (2.25)], [1, Eq. (2.26)].

Weibull [1, Eq. (2.27)]

& ¢
Wy - ” .
pr, (1) = 2§ <Q_) r28e~exp <— (j) r2£z>
¢

defined overr € R, wherew, = I'(1 + 1/¢,) and where
&, (0 < &,) denotes the fading shaping factor. Moreovey,
is the average power.

=(—2k)
Mas (s) = 21 | 2 (wz >p (1,2) ] _ 2pkl pan | @bt (2R)* | ~En
S 15 I ) Py | = 2k+pl—2 2k,pl k 1| =1 )
¢ S Qsé (11 'fe) (27T) p P SQkﬂgz (pl)p :.Ep?)
=(=2k)
QMR (s) = 4H2’1 1 (W )p (1,2),(0,1) ] _ \/8pk3l pl+1,2k W (2k)*" | —Ear) 0
7 — 2202\ - 2k+1,pl4+1 | “op Ak, pl | — )
ds” s s\, | (1, £),(1,1) (2m)2HPi=2 g P $ZRQPE (pl)P :22)’1
where the Meijer's G representations are given for the matizalue of the fading shaping factgr, (that is, we let , = k/I, wherek,

and! are arbitrary positive integers.) through the medium othigic manipulations utilizing [9, Eq. (8.3.2.22)]. In d@éwh, note that if
R, is a sample of a Weibull distribution with the fading shapfiagtor £,, then’R§ is also a sample of a Weibull distribution with the
fading shaping factog, /a.
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UNIFIED MGFs oF SOMEWELL-KNOWN FADING CHANNEL MODELS

TABLE I

i
Envelope Distribution, i.e., r Unified MGF Mx» (s) and its derivative g/\/l » (), where the exponentp € {1,2 3
p PR, RY a5 R p p 5 3
S
b4
n
2 [ (m ' Ko 22m \'| 1.1 z
Hyper Nakagami-m [22, Eq. (1)] Mgz ()= - Lk H ke ’ =y =———tah| | _(my) |- 3
K My im0y 57 (g, (mfk’p) o1V (2m) T (my,) 57 Qyp =) 7
PR, ( F2€lk (mfk) r2me. =1 exp (_ Moy 7,2> 2
(my,) 73 K P K 2 P 1
QMRP (s) = Z 48,/ s Hg; My, (1,2), (0, 1 Z \/ 8p?™ek fek G‘g“’f 27 My, 1’ 2’)(8
defined oven- € R*, wherem,, (0.5 < m,,) is the fading ds ¢ B T(m ) 2 m Pt 2 =My ’
figure, Q,, (0 < Q,,) is the él\glerage pov{/lér, arg, (0 < k=1 (M) s? g, (mgi ), (1, k=1 (mfk) s7 8y ~(p) %
&) is the accruing factor, of théth fading environment. whereT'(+) is the Gamma function [11, Eq. (6.1.1)]. In addition, It may tiseful to notice that the sum of the accruing probabilifigs %
ke {l1,2,...,K} of K possible fading environments is unit such t@le Eop, = 1 %
o
1Z
. 1+ q2 > \Ijk 1.1 1 CI)@ P (1 2) 1+ q2 > p2k+1\11k 2 CI)[ 17 5.(”
Nakagami< (Hoyt) [1, Eq. (2.10)] Mapr (s) = £ —Hy | = (= ’ = £ b :
, R )=, kzzo @R 2\ ) [@k+1p) ] a®e S \/2pen)P(2k) 2T 52 Qp Egjj*@
(1+gp)r (1+q7)7r? 1—q} » x
PR, (1) = ——o=—exp [ —— 20, I 0, - ) :
qef?, ‘N ‘N Mo (5) 1+¢q; Z 20, H2_1{1 <(I)g> (1,2),(0,1) } g
- P — ’ JE— R e .
defined overr € RT, whereq, (0 < g, < 1) is the ds’ R 5qePy s (2k)! 2282 Qg (2k+ 11p)7(111) §
Nakagami-q fading parameter (that is, it is defined as rdtio o - “U
the powers of the received signal’s in-phase and quadrature 2k+1 P 1, 120
with different standard deviations), and wheog (0 < €2,) 1+ Qg Z Vi p"'}ﬁ ( o ) @ kih ,
is the average power. In additiod, (-) is the zeroth order SQE(I)E \/2p 27T (2k)! o Qp E( ) g, 1
modified Bessel function of the first kind [11, Eq. (9.6.20)]. ) . 2k)
where ®, is defined asb, = 0. 25(1 +4q ) /q%, and ¥y, is given by ¥y, (¢) = TENZaTE (1—¢*)/(1+q )) , wherek € N. It may
be useful to notice that the series expression of the unifie&FNor the Nakagar'm}( oyt) is converging very fast such thad summation
terms is generally enough.
1
. . Zu g1 L+n2\"| (1,2 > pF Zu a2 L /1+n2\"| 1,5
Nakagamin (Rice) [1, Eq. (2.15)] Mgy (5) = 22 Hi'| 9, i +1 ») kz il o EEI;)H) ,
2(1 + n2)e iy Ot o 1+ n}
PR, (r): ( ks E) € o IO 2ny £y p ) P
& £, s (5= 4 o~ Zk o [1 (1+n§) (1,2),(0,1) } 29pzpkz¢k b1z 1 (1+n§) 1,5,0
7. /VIRY = 2,2 p+1 0 —
defined overr € RT, wheren, (0 < n,) and, (0<Qy) ds ¢ k=0 k! Q, (k+1,p), (1,1 i Qp :Ekﬂ) 1
are the LOS figure and average power, respectively. where Z;, = n2k exp ( ne) /k! and the coefficient,, = \/2p/+/(27)". In addition, the LOS figure i.ez, is related to the Riciark,
factor by K, = nl which corresponds to the ratio of the power of the LOS (sperudomponent to the average power of the scattered
component.
1
. . . 2 2.1 1 m P (1 2) 2\/Epm3[ 2 4 m P 17 2
K-Distribution [1, Eq. (2.15)] Mpr (5) = Hp, [— ( Sf) ’ = Gh | = st ,
o P T 2\ ) (W) ) | T @ T e [P\ 7)) |2l =
4(7”5/3) Sg
Q. m_, r?
PR (1) = =y Ko (2 Q—> O My () = ———H21 [ ! (m) (1,2) } 2VEP" o 4 < my ) L3
0 © 0 S/VIR? = 12| 3 = o 2| 2 - - )
| S 1 S s R T Ty 22\ Q) (L) Gmygep) | T @ my) e |2\ Q7)) 20
defined overr € R, wherem,, (3 < m,) denotes It may be useful to notice that the shadowing effect in thenoeadisappears whem, approaches to infinityrg_, — oo) such that the
the shadowing severity, an@_, (0 < Q_,) represents the worst shadowing occurs when_, = 1 »

average power. Moreovefs,, (-) is the nth order modified
Bessel function of the second kind [11, Eq. (9.6.24)].
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TABLE 11l
UNIFIED MGFs oF SOMEWELL-KNOWN FADING CHANNEL MODELS

Envelope Distribution, i.e., pr, (1) Unified MGF My» (s) and its derivative 8_MR5 (s), where the exponentp € {1, 2}
s
. 2 1 v 1,2 2 praetme—1 4 P 1,3
Generalized-K [23, Eq. (5)] Mz (s) = g—Hfjé {—2 <mgmz) ( () ’( ) )} = \/_p—Ggf;’f, [—2 (%) —m) (my) |
d;e 4 S sl My, P), (Mgp, P (277)2p_1g[ S seP :(p) ’:(p)
4( fsz[me) m_,m,r? P
— s - s 0 4 1 (mgm (1,2),(0,1)

pr, (1) = ¢ roe-1g 9, st 9 m §) = = il {_ (M) y4)5 (U, _

’ I(m,) v Qg gs M (8) = Gt | Q., ) |(m,p),(m,,p),(1,1) 1
defined overr € Rt, where¢, = m_, +m, and ¢, = 2\/§pm“+mrl q2rtl2 4 (mm, P 1, 270
mg,—m,. Moreover,m, (0.5 < m,) andm_, (0.5 < m_,) 2y 1 3.2p+1 |2\ Q) p2 =(m ) =(m,)
represent the fading f|gure (dlverSIty severlty / order) ﬂr&i \/ (2m) PGy s st () ()

shadowing severity, respectivel®,, (0 < ©_,) represents

the average power whereG, = I'(m_,)T'(m,). It may be useful to notice that the shadowing effect in thanclel disappears and generalized-K distribution

turns into Nakagamin whenm _, approaches to infinityrt_, — oo) such that the worst shadowing occurs when, = 5

N, 1 N, 1

. . o= Hap _ao[4( m, \P](1,1),(3,1) 2pmer A H, 5| 4 m Pl 15

Composite Nakagami / Lognormal[1, Eq. (2.57)] Mxz» (s) = — " _HY [—( £ ) ALY = n_GP2 < ——— o
=g (5) 7T r; L(m,) *! Ge(zy) (m,p) (27) =S ; L(m,) 2P| s2\ G(xn)p :E )@)
oo 2
2,,,2771[—1 / ( m, )Wu _ (gbﬂ” +u2)
r) = e ew) du N P 1
PR, (T) T(my) Go(w) QMRP (s) = 1 H,, 122 4( m, (1,1),(3,1),(0,1)] _
—00 0s ¢ TS “— I‘(mg) 52 gé(xn) (map)v (1 1)
defined overr € R*, where Gy(u) = 10(v20¢ utm)/10, n=1 N 1
and whereu,(dB) ando,(dB) are the mean and the standard 2pme*§ L Ha, pi12 [ 4 < m, )p 1,3,
deviation of channel shadowing. Moreoven,, (0.5 < m,) 3p+l| 2\ A7 —
is the fading figure (diversity order), anﬂll 0 < Qﬁ) s (27r)pT+1 el L(m,) °° Ge(zn) p :E 0
represents the average power. ) ) )
\[Aﬂer_?,bf:)rgseli{)]l,z ..., Np}, {Hgs, } and {z,} are the weight factors and the zeros (abscissas) ofMh@rder Hermite polynomial
, Table 25.10].
Composite Nakagami / Weibull[24, Eq. (4)] Mg (5) 2 21|l (m“ W)p (1,2)
y . RP\S) = G )
¢ F(msg) 1,2 g2 Qé (msgvp)a (17 g%)
2 2,0 | Mg We o -
r)= Hy Sy
PR, (1) L(m,)r 0,2[ Q, (m,), (1, é) QMRP (s) = 4 L (msg w)P (1,2),(0,1)
88 ¢ S F(msf) 23 52 st (mséap)v (L %)a (17 1)

defined overr € RT, whereQ, (0 < Q,) is the average
power and¢, (0 < ¢,) denotes the Weibull (fading shaping)
factor chosen to yield a best fit to measurement results. In
addition, w, = I'(1 + 1/§,) andm_, (0.5 < m_,) is the
shadowing severity

Note that Composite Nakagami / Lognormal distribution ie 8pecial case of Gamma-shadowed GNM distribution so thgeNeiG
representation of the composite Nakagami / Lognormalibligton can be readily obtained by means of substituting= 1 andQ_, = Q,
into both (26) and (28).

—L Ly (a1, 00), (a2, @), ..., (an, o
Fox’s H distribution [25, Eq. (3.1)], [26] Mo (5) = ’Cf et gf (=503 (@, 01), (a2, 02),. . ( ) ,
¢ , P (blaﬂl)v(b27ﬂ2)7"'7(bmvﬂ’m)
PR (,,,) *K[Hm’n |:gg,,, (alaal)v(a23a2)v'-'7(an7an)4 11
. . (b1, 1), (b2, 2), - .., (b, Bm) B Ke vomnt1| e [ (=50 5): (a1, 1), (a2, a2), .. ., (an, an)
%MR:Z (S) - p+1 Hp-‘,—l,q 1 b b b )
defined overr € R*, and whereK, € R andG, € R are psr (b1, 51), (b, B2), - - (b, Bim)

such two numbers thaf™ pr, (r)dr = 1.
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