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Abstract

Unified exact average capacity results forL-branch coherent diversity receivers including equal-gain combining

(EGC) and maximal-ratio combining (MRC) are not known. Thispaper develops a novel generic framework for

the capacity analysis ofL-branch EGC/MRC over generalized fading channels. The framework is used to derive

new results for the Gamma shadowed generalized Nakagami-m fading model which can be a suitable model for

the fading environments encountered by high frequency (60 GHz and above) communications. The mathematical

formalism is illustrated with some selected numerical and simulation results confirming the correctness of our

newly proposed framework.

Index Terms

Average capacity, diversity, equal-gain combining (EGC),maximal-ratio combining (MRC), correlated channel

fading, Gamma shadowed generalized Nakagami-m fading.

I. INTRODUCTION

Equal gain combining (EGC) is of practical interest in60 GHz communications because its perfor-

mance is comparable to that of maximal ratio combining (MRC)but it offers a greater simplicity of

implementation (see [1] for an extended discussion on EGC and MRC performance difference). Due

to high data-rate and coverage requirements of current, emerging and future high-frequency (60 GHz
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or above) communication systems, the average capacity (AC)analysis of these two diversity combiners

(i.e., EGC and MRC) becomes an important and fundamental issue from both theoretical and practical

viewpoints.

In literature, there are several papers dealing with the average symbol error probability (ASEP) analysis

of the diversity receivers (see for example [1] and the references therein). Advances over the last decade

on the symbol error performance analysis of EGC and MRC diversity receivers in fading channels has

accentuated the importance of the moment generating functions (MGF) as a powerful tool for simplifying

the analysis of diversity receivers. For example, the following identity has been widely used to simplify

the symbol error performance analysis of EGC and MRC diversity receivers in fading channels,

erfc (
√
γend) =

2

π

∫ ∞

0

exp

(

− γend
sin2 (θ)

)

dθ, (1)

where erfc (·) is the complementary error function [2, Sec.(6.13)], and where γend is the total signal-

to-noise ratio (SNR) at the diversity receiver. On the otherhand, and to the best of our knowledge,

published papers dealing with the AC analysis of EGC and MRC diversity combiners over fading channels

have been scarce when compared to those concerning the ASEP performance [1]. In particular, Bhaskar

derived in [3] the average capacity ofL-branch EGC relying on the Gamma approximation of the sum of

mutually independent and identically distributed Rayleigh random variables (RVs). In addition, using an

MGF-based approach, Hamdi obtained in [4] a new expression for the average capacity of MRC diversity

combiner over arbitrarily correlated Rician fading channels. More recently, Di Renzoet. alproposed a new

framework in [5] in order to compute the average capacity of MRC diversity combiner over generalized

fading channels through the medium of the exponential integral Ei transform. However, the MGF-based

approaches developed in [4], [5] were limited to the capacity of calculation of MRC diversity receivers

and are not easily extendible to the computation of the capacity of EGC diversity receivers. In this paper,

we show that it is actually possible to express the conditional capacitylog2 (1 + γend) in a form similar

to (1), which facilitates the development of a new unified MGF-based approach for the calculation of

the ergodic capacity in arbitrarily correlated/uncorrelated fading channels. More specifically, we present a

unified MGF based average capacity computation not only for theL-branch MRC diversity receiver but

also for theL-branch EGC diversity receiver over a wide variety of fadingchannels and for an arbitrary

number of diversity branches.

The remainder of this paper is organized as follows. In Section II, a unified capacity analysis of diversity
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receivers over generalized fading channels is introduced and some key results are presented. In Section III,

after the introduction of Gamma-shadowed generalized Nakagami-m (GNM) fading channel model, the

exact average capacities for the EGC and MRC diversity receivers over Gamma-shadowed GNM fading

channels are derived and many special cases are deduced. Numerical examples are then given in Section IV

to illustrate the mathematical formalism. Finally, the main results are summarized and some conclusions

are drawn in the last section.

II. A N MGF-BASED CAPACITY ANALYSIS OF DIVERSITY COMBINERS

For EGC and MRC diversity receivers, before the signals on the diversity branches are being summed

to form the resultant output, the signals on the diversity branches are first co-phased and then weighted

equally in EGC or weighted with the fading envelopes in MRC. The instantaneous SNRγend at the output

of the diversity receiver can be generically written as

γend =
Es

N0

√
L1−p+q

(
L∑

ℓ=1

Rp
ℓ

)q

(2)

where the parametersp ∈ {1, 2} andq ∈ {1, 2} are chosen as

(p, q) =







(1, 2), EGC

(2, 1), MRC
. (3)

In (2), L denotes the number of branches andEs/N0 is the transmitted SNR per symbol, and forℓ ∈
{1, 2, 3, . . . , L}, Rℓ is theℓth branch fading.

Considering the (instantaneous) Shannon capacity of the diversity receiver (i.e., EGC or MRC) with

bandwidthW over fading channels (i.e.,Cγend
, W log2(1+ γend)), the average ergodic channel capacity

defined asCavg ≡ E [W log2 (1 + γend)], whereE [·] denotes the expectation operator, can be obtained by

averaging the instantaneous capacityCγend
over the probability density function (PDF) ofγend, namely

Cavg = W

∫ ∞

0

log2 (1 + γ) pγend
(γ) dγ, (4)

where pγend
(γ) is the PDF of the instantaneous SNRγend (that is, γend is generically defined in (2)).

Due to several reasons (e.g., insufficient antenna spacing or coupling among radio frequency (RF) layers),

correlation may exist among diversity branches of the receiver. With or without that, the average capacity
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using (4) involves anL-fold integral given by

Cavg = W

∞∫

0

∞∫

0

. . .

∞∫

0
︸ ︷︷ ︸

L-fold

log2

(

1 +
Es

N0

√
L1−p+q

(
L∑

ℓ=1

rpℓ

)q)

pR1,R2,...,RL
(r1, r2, . . . , rL)dr1dr2. . .drL, (5)

wherepR1,R2,...,RL
(r1, r2, . . . , rL) is the joint multivariate PDF ofR1,R2, . . . ,RL fading envelopes. The

L-fold integration in (5) is tedious and complicated in addition to the fact that it cannot be separated into

a product of one dimensional integrals. In addition, it takes a long time to evaluate numerically, especially

as the number of branchesL increases. Thus, referring to (4), researchers in literature have tried to find

the PDF of the instantaneous SNRγend given in (2) in order to find the average capacity. Nevertheless, this

technique is often complicated and tedious for generalizedfading environment since it involves multiple

convolutions / integrals even if the fading envelopesR1,R2, . . . ,RL of the branches are assumed to be

independent. Referring to (2), the Jensen’s inequality [6,Eq. (12.411)], which is based on concavity oflog

function such thatE [log2(1 + γend)] ≤ log2(1+E [γend]), and fractional moments [6, Eq. (1.511)], which is

based on the infinite series oflog2(1+γend) such thatE [log2(1 + γend)] = −∑n≥1 (−1)nE [γnend]/ log(2
n),

are commonly used in particular to compute the AC approximately. The other mostly used way to compute

the AC hinges upon the inverse Laplace transform (ILT) whereby the PDF of the instantaneous SNRγend

can be approximated through the medium of applying the ILT onthe MGFMγend
(s) = E [exp (−sγend)].

It is pertinent to say here again that the AC computation of diversity combiners (especially for the MGF

of EGC since it is often more difficult than that of MRC due to the fact that it may not be possible to

obtain the MGF of EGC receiver in general fading environments) becomes more difficult, problematic,

and perplexing as the number of branches (i.e.,L) increases.

In what follows, we present a new exact and unified MGF-based approach that overcomes the difficulty

mentioned above, and offers a generic single integral expression for the average capacity of EGC and

MRC diversity combiners over generalized fading channels.

Theorem 1 (Average Capacity of the Diversity Combiners over Correlated Not-Necessarily Identically

Distributed Fading Channels). The exact average capacity ofL-branch diversity combiner over mutually

not-necessarily independent nor identically distributedfading channels with a bandwidthW is given by

Cavg =
W

log (2)

∫ ∞

0

Cq (s)

[
∂

∂s
M ~Rp (Φp,qs)

]

ds, (6)
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wherep ∈ {1, 2} and q ∈ {1, 2} and are selected based on(3), and where the parameterΦp,q is defined

asΦp,q =
q
√

Es/N0L(p−q−1)/2, and where the auxiliary functionCq (s) is given by

Cq (s) = −H1,2
3,2

[
1

sq

∣
∣
∣
∣

(1, 1), (1, 1), (1, q)

(1, 1), (0, 1)

]

, (7)

whereHm,n
p,q [·] represents the Fox’s H function[7, Eq. (1.1.1)]1,2. Moreover,M ~Rp (s) ≡ E[exp(−s

∑

ℓRp
ℓ)]

is the joint MGF for thep-exponent of~R ≡ {R1,R2, . . . ,RL} fading envelopes of the branches.

Proof: See Appendix A.

Note that, in order to find the average capacity, the proposedMGF-based technique in Theorem 1

eliminates the necessity of finding the PDF of the instantaneous SNRγend through the ILT of the joint

p-exponent MGFM ~Rp (s). Shortly, Theorem 1 suggests that one can readily obtain theaverage capacity

of the diversity receiver by using the jointp-exponent MGFM ~Rp (s). Additionally, the integral in (1)

can be readily estimated accurately by employing the Gauss-Chebyshev quadrature (GCQ) formula [11,

Eq. (25.4.39)], yielding

Cavg ≈
W

log (2)

N∑

n=1

wnCq (sn)

{
∂

∂s
M ~Rp (Φp,qs)

∣
∣
∣
∣
s→sn

}

, (8)

which converges rapidly and steadily, requiring only few terms for an accurate result, where the coefficients

wn andsn are defined as

sn = tan
(
π
4
cos
(
2n−1
2N

π
)
+ π

4

)
and wn =

π2 sin
(
2n−1
2N

π
)

4N cos2
(
π
4
cos
(
2n−1
2N

π
)
+ π

4

) , (9)

respectively, where the truncation indexN could be chosen asN = 50 to obtain a high level of accuracy.

In addition, when there is no correlation between the fadingenvelopes~R ≡ {R1,R2, . . . ,RL} for the

branches of the diversity receiver, the average capacity isgiven in the following corollary.

Corollary 1 (Average Capacity of the Diversity Receiver over Mutually Independent Not Necessarily

Identically Distributed Fading Channels). The exact average capacity ofL-branch diversity receiver over

mutually independent and non-identically distributed fading channels with the bandwidthW is given by

Cavg =
W

log (2)

∫ ∞

0

Cq (s)
L∑

ℓ=1

[
∂

∂s
MRp

ℓ
(Φp,qs)

] L∏

k=1
k 6=ℓ

MRp
k
(Φp,qs)ds (10)

1For more information about the Fox’s H function, the readersare referred to [7], [8]
2Note that the Fox’s H function is still not available in standard mathematical software packages such as Mathematica® and MapleTM.

However, using [9, Eq. (8.3.2/22)], an efficient mathematica implementation of this function is available in [10, Appendix A].
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where, forℓ ∈ {1, 2, . . . , L}, MRp
ℓ
(s) ≡ E [exp (−sRp

ℓ )] is the MGF of the fadingRℓ that theℓth branch

is subjected to.

Proof: When there is no correlation between the fading envelopes~R ≡ {R1,R2, . . . ,RL}, one can

readily writeM ~Rp(s) =
∏L

ℓ=1MRp
ℓ
(s), whose derivative with respect tos is given by

∂

∂s
M ~Rp(s) =

L∑

ℓ=1

[
∂

∂s
MRp

ℓ
(s)

] L∏

k=1
k 6=ℓ

MRp
k
(s) . (11)

Finally, substituting (11) into (6) results in (10), which proves Corollary 1.

Despite the fact that the novel technique represented by Theorem 1 and Corollary 1 are easy to use, the

numerical computation of the auxiliary functionCq (s) can also be done using the more familiar Meijer’s

G function, which is available in standard mathematical software packages such as Mathematica® and

MapleTM, as shown in the following corollary.

Corollary 2 (Meijer’s G Representation of the Auxiliary FunctionCq (s)). The auxiliary functionCq (s)

can be given in terms of the more familiar Meijer’s G functionas follows

Cq (s) =
−1

√

q(2π)1−q
G1,2
q+2,2

[

qq

2q

∣
∣
∣
∣
∣

1, 1,Ξ
(1)
(q)

1, 0

]

, (12)

whereΞ(x)
(n) ≡ x

n
, x+1

n
, . . . , x+n−1

n
with x ∈ C andn ∈ N.

Proof: See Appendix B.

Let us consider the special cases (q = 1 for MRC andq = 2 for EGC) of the auxiliary functionCq (s)

in order to check analytical simplicity and accuracy:

Special Case 1(Maximal Ratio Combining). For L-branch MRC diversity receiver (i.e.,q = 1), the

auxiliary functionCMRC (s) ≡ Cq (s)|q→1 can be obtained as

CMRC (s) = −G0,2
2,1

[
1

s

∣
∣
∣
∣

1, 1

0

]

(13)

by means of applying [9, Eq. (8.2.2/9)] on (12). Utilizing [9, Eq. (8.2.2/14)] and [9, Eq. (8.4.11/1)]

together, (13) reduces further to

CMRC (s) = Ei (−s) , (14)
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whereEi (·) is the exponential integral function [2, Eq. (6.15.2)].3. Then, referring to Theorem 1, the

average capacity of theL-branch MRC receiver can be given by

CMRC
avg =

W

log (2)

∫ ∞

0

Ei (−s)

[
∂

∂s
M ~R2

(
Es

N0

s

)]

ds (15)

which is in perfect agreement with [5, Eq. (7)] when choosingthe transmitted power is unit (i.e.,

Es/N0 = 1). In addition, when the branches are subjected to mutually independent and non-identical

fading distributions, the average capacityCMRC
avg can be also given, referring to Corollary 1, as follows

CMRC
avg =

W

log (2)

∫ ∞

0

Ei (−s)

L∑

ℓ=1

[
∂

∂s
MR2

ℓ

(
Es

N0
s

)] L∏

k=1
k 6=ℓ

MR2
k

(
Es

N0
s

)

ds. (16)

Special Case 2(Equal Gain Combining). Note that, referring (7) withq = 2, the auxiliary function for

L-branch EGC diversity receiver, i.e.,CEGC (s) ≡ Cq (s)|q→2 can be re-written as

CEGC (s) = −√
πG0,2

3,1

[
4

s2

∣
∣
∣
∣

1, 1, 1
2

0

]

, (17)

by means of settingq = 2 in (12). Eventually, using [9, Eq. (8.4.12/4)], the auxiliary function forL-branch

EGC diversity receiverCEGC (s) simplifies to

CEGC (s) = 2Ci (u) , (18)

whereCi (x) is the cosine integral function [11, Eq. (5.2.27)]3. Then, using Theorem 1 with (18), the

average capacity of theL-branch EGC diversity receiver can be readily expressed as

CEGCavg =
2W

log (2)

∫ ∞

0

Ci (u)

[

∂

∂s
M ~R

(√

Es

N0L
s

)]

ds (19)

in general when the fadingR1,R2, . . . ,RL are subjected to are correlated. When the branches are

subjected to mutually independent and non-identical fading, the average capacityCEGCavg can be also given,

referring to Corollary 1, as

CEGCavg =
2W

log (2)

∫ ∞

0

Ci (u)
L∑

ℓ=1

[

∂

∂s
MRℓ

(√

Es

N0L
s

)]
L∏

k=1
k 6=ℓ

MRk

(√

Es

N0L
s

)

ds. (20)

In the following section, the model of Gamma shadowed GNM fading channel will be introduced and

3Note that both the cosine integral functionCi (x) = −
∫∞
x

cos (t)/tdt and the exponential integralEi (x) = −
∫∞
−x

exp (−t)/tdt are
implemented as a built-in function in the more popular mathematical software packages such as Mathematica® and MapleTM.
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then the average capacity of bothL-branch MRC andL-branch EGC diversity receivers will be derived

for Gamma-shadowed GNM fading channels.

III. AVERAGE CAPACITY OF DIVERSITY COMBINERS OVERGAMMA -SHADOWED GENERALIZED

NAKAGAMI -m FADING CHANNELS

As an example for the application of both Theorem 1 and Corollary 1, we assume that Gamma

shadowing affects the GNM [10] fading channels, that is, thelocal mean power of the fading is a Gamma

RV. For example, in60 GHz non-line-of-sight (NLOS) propagation, standard deviation of shadowing is

typically larger than that of propagation at5 GHz. It is therefore not a misstep to assume that the local

mean power of channel fading is a RV distributed over(0,∞). Hence, the Gamma-shadowed GNM fading

model can be accommodated to pretest the evaluation of different wireless communications in60 GHz

non-line-of-sight (NLOS) environment. Thus, we first derive the analytical expressions for both PDF and

MGF of the fading amplitudes~α ≡ {α1, α2, . . . , αL} for the branches ofL-branch EGC in a Gamma-

shadowed GNM fading channel. Using these results, we will find the exact average capacity for the EGC

over a Gamma-shadowed GNM fading channel, and will give as examples of the simplified expressions

for different special cases.

We first derive the analytical expressions for both PDF and MGF of the fading envelopes~R ≡
{R1,R2, . . . ,RL} for the branches ofL-branch diversity receiver in a Gamma-shadowed GNM fading

channel. Using these results, we will find the exact average capacity for the diversity receiver over a

Gamma-shadowed GNM fading channel and enumerate the different special cases.

A. Gamma-Shadowed Generalized Nakagami-m Fading Channels

Let us considerL ≥ 1 mutually independent and non-identical GNM RVs{αℓ}Lℓ=1, each representing

the fading amplitude theL-branch diversity combiner is subjected to and each having the PDF

pαℓ
(α) =

2ξℓ
Γ (mℓ)

(
βℓ
Ωℓ

)ξℓmℓ

α2ξℓmℓ−1e
−
(βℓ
Ωℓ

)ξℓα2ξℓ
, 0 ≥ α (21)

where the parametersmℓ ≥ 1/2, ξℓ > 0 andΩℓ > 0 are the fading figure, the shaping parameter and

the local mean power of theℓth GNM RV andβℓ = Γ (mℓ + 1/ξℓ) /Γ (mℓ). Furthermore, the special or

limiting cases of the GNM distribution are well-known in literature as the Rayleigh(mℓ = 1, ξℓ = 1),

exponential(mℓ = 1, ξℓ = 1/2), Half-Normal (mℓ = 1/2, ξℓ = 1), Nakagami-m (ξℓ = 1), Gamma

(ξℓ = 1/2), Weibull (mℓ = 1), lognormal(mℓ → ∞, ξℓ → 0), and AWGN(mℓ → ∞, ξℓ = 1).



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. XX, DEC. 2010 9

As mentioned before, let the local mean power,Ωℓ of the GNM fading amplitude for theℓth branch of

theL-branch diversity combiner has, due to the shadowing, distribution with the Gamma PDF given by

pΩℓ
(Ω) =

1

Γ(msℓ)

(
msℓ

Ωsℓ

)msℓ

Ωmsℓ−1 exp

(

−msℓ

Ωsℓ
Ω

)

, 0 ≤ Ωsℓ,
1

2
≤ msℓ (22)

whereΩsℓ is the average power of shadowing in the area of interest, andwheremsℓ inversely reflect the

shadowing severity such that the severity of the shadowing decreases as the value ofmsℓ increases. For

example, in the limit casemsℓ → ∞, the distribution of the local mean closes to the Dirac’s distribution

aspΩℓ
(Ω) = δ(Ω− Ωsℓ). Hence, there is no shadowing effects.

Eventually, averaging (21) with respect toΩℓ, i.e.,
∫∞
0

pαℓ
(α) pΩℓ

(Ωℓ) dΩℓ, then utilizing [7, Theorem

2.9] with [7, Eq. (2.9.4)], we obtain the PDF of the Gamma-shadowed GNM fading as introduced in the

following definition.

Definition 1 (Gamma-Shadowed Generalized Nakagami-m RV). The distributionRℓ follows an Gamma-

shadowed GNM distribution if the PDF ofRℓ is given by

pRℓ
(r) =

2

Γ(msℓ)Γ(mℓ)

(
βℓmsℓ

Ωsℓ

)msℓ

r2msℓ−1Γ

(

mℓ −
msℓ

ξℓ
, 0,

βℓmsℓ

Ωsℓ
r2,

1

ξℓ

)

(23)

wheremℓ (0.5 ≤ mℓ < ∞) and ξℓ (0 ≤ ξℓ < ∞) represent the fading figure (diversity severity / order)

and the shaping factor, respectively, whilemsℓ (0.5 ≤ msℓ < ∞) and Ωsℓ (0 ≤ Ωsℓ < ∞) denote the

severity and the average power of shadowing, respectively.Moreover,Γ (·, ·, ·, ·) is the extended incomplete

Gamma function defined asΓ (α, x, b, β) =
∫∞
x

rα−1 exp
(
−r − br−β

)
dr [12, Eq. (6.2)], whereα and x

are complex parameters,β > 0 and b is a complex variable.

In what follows, the shorthand notationR ∼ NS(m, ξ,ms,Ωs) denotes thatR follows a Gamma-

shadowed GNM RV with the fading figurem, the shaping parameterξ, the shadowing severityms and

the shadowing average powerΩs.

Let us consider some special cases of (23) in order to check validity. In fact, this PDF is a very

general shadowed PDF which includes many special cases as explained in the second paragraph of this

section. For example, By using [11, Eq. (6.1.47)] with the Mellin-Barnes contour integral representation

[7, Eq. (1.1.1)] of (23), the PDF reduces to the PDF of the GNM distribution [10, Eqs. (1) and (2)]

for msℓ → ∞ as expected. Here again, by using [12, Eq. (6.41)], the PDF isreduced into the PDF of

Gamma-shadowed Nakagami-mdistribution [13, Eq. (9)] when the shaping parameterξℓ = 1. Furthermore,
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the special or limiting cases of the Gamma-shadowed GNM distribution are well-known in literature as

exponential-shadowed Rayleigh(msℓ = 1, mℓ = 1, ξℓ = 1), K distribution(msℓ = 1, ξℓ = 1), generalized-

K distribution(ξℓ = 1), Rayleigh(mℓ = 1, ξℓ = 1, msℓ → ∞), exponential(mℓ = 1, ξℓ = 1/2, msℓ → ∞),

Half-Normal (mℓ = 1/2, ξℓ = 1, msℓ → ∞), Nakagami-m (ξℓ = 1, msℓ → ∞), Gamma(ξℓ = 1/2, msℓ →
∞), Weibull (mℓ = 1, msℓ → ∞), lognormal (mℓ → ∞, ξℓ → 0, msℓ → ∞), and AWGN (mℓ →
∞, ξℓ = 1, msℓ → ∞). Regarding these special and limit cases, the Gamma-shadowed GNM distribution

R ∼ NS(mℓ, ξℓ, msℓ,Ωsℓ) has the advantage of modeling the envelope statistics of most known wireless

and optical communication channels. Accordingly, it provides a unified theory as to model the envelope

statistics.

Referring to Theorem 1 and Corollary 1, we need to obtain the MGF of the fading envelopeRℓ ∼
NS(mℓ, ξℓ, msℓ,Ωsℓ), i.e., MRℓ

(s) = E [exp (−sRℓ)] for ℜ{s} ∈ R+ in order to find the exact average

capacity of EGC, and also we need to obtain the MGF of the fading powerγℓ ≡ R2
ℓ , i.e., MR2

ℓ
(s) =

E [exp (−sR2
ℓ)] for ℜ{s} ∈ R

+ in order to find the exact average capacity of MRC. As such, in the

following theorem (i.e., Theorem 2), these MGF functions are obtained in a unified closed form such that

we can readily reduce it to the MGF of theℓth branch of EGC and for that of MRC when the values

p = 1 andp = 2 are selected, respectively.

Theorem 2 (Unified MGF of Gamma-Shadowed GNM RV). The unified MGF of the Gamma-shadowed

GNM envelope distributionRℓ ∼ NS(mℓ, ξℓ, msℓ,Ωsℓ), i.e.,MRp
ℓ
(s) = E [exp (−sRp

ℓ )] is given by

MRp
ℓ
(s) =

4

Γ(msℓ)Γ(mℓ)
H2,1

1,2

[(
βℓmsℓ

Ωsℓ

)p
1

s2

∣
∣
∣
∣

(1, 2)

(msℓ, p), (mℓ, p/ξℓ)

]

(24)

with the convergence regionℜ{s} ∈ R+.

Proof: Note that the unified MGFMRp
ℓ
(s) = E [exp (−sRp

ℓ)], Rℓ ∼ NS(mℓ, ξℓ, msℓ,Ωsℓ) can readily

be given asMRp
ℓ
(s) =

∫∞
0

exp (−srp) pRℓ
(r), where substituting the Fox’s H representation of both

extended incomplete Gamma function (i.e., [12, Eq. (6.22)]) and exponential function [7, Eq. (2.9.4)]

results in

MRp
ℓ
(s) =

2

Γ(msℓ)Γ(mℓ)

∞∫

0

1

r
H1,0

0,1

[

srp
∣
∣
∣
∣

−−−
(0, 1)

]

H2,0
0,2

[
βℓmsℓ

Ωr−2

∣
∣
∣
∣

−−−
(msℓ, 1), (mℓ, 1/ξℓ)

]

dr. (25)

Eventually, applying [7, Theorem 2.3] on (25), one can readily obtain the MGF of the Gamma-shadowed

GNM distribution given in (24), which proves Theorem 2.
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Now, let us consider some special cases in order to check analytical simplicity and accuracy of (24).

When setting the shadowing severitymsℓ → ∞, and applying lim
a→∞

Γ(a+b)ac

Γ(a+c)ab
≈ 1, where |b| ≪ a and

|c| ≪ a, on the Mellin-Barnes integral representation [7, Eq. (1.1.1)] of (24), the unified MGF is, as

expected, reduced to the MGFs of GNM [10, Eq. (2)] and generalized Gamma [14, Eq. (11)] for the

valuesp = 1 andp = 2, respectively.

Note that the unified MGF given by (24) may lead to some computation difficulty to compute due to the

fact that the implementation of the Fox’s H function is currently not available in standard mathematical

software packages but an Mathematica® implementation of this function is offered by the authors in [10,

Appendix A]. As such, it may be useful to represent (24) in terms of Meijer’s G function with the aid of

[9, Eq. (8.3.2/22)]. More specifically, (26) is the Meijer’sG representation of (24) for the rational values

of the parameterξ (that is, we restrictξ to ξ = k/l, wherek andl are arbitrary positive integers.), namely

MRp
ℓ
(s) =

√

l/π(kp)msℓ(lp)mℓ−1

(2π)
kp
2
+ lp

2
+k−2Γ(mℓ)Γ(msℓ)

Gkp+lp,2k
2k,kp+lp






(
2k
s

)2k
(
βℓmsℓ

Ωsℓ

)kp

(kp)kp(lp)lp

∣
∣
∣
∣
∣
∣
∣

−Ξ
(−2k)
(2k)

Ξ
(msℓ)

(kp) ,Ξ
(mℓ)

(lp)




. (26)

It may be useful to notice that the rational representation of ξℓ ∈ R+ remains essentially unchanged if

there does not exist any rational number close enough toξℓ, fulfilling the condition |k/l − ξℓ| < ǫ/l2,

with ǫ chosen to be10−2. For more accuracy to rationalizeξℓ, the conditional parameterǫ can be chosen

much smaller. Nevertheless, the number of coefficients of the Meijer’s G function in (26) gets higher asǫ

gets smaller, so much so that its computation efficiency considerable reduces and its computation latency4

increases. In consequence, the Fox’s H function is preferable in this case since its computation efficiency

is much better than that of Meijer’s G function in this situation.

B. Unified Average Capacity of Diversity Combiners

Let us find the derivative of the unified MGF given by either (24) or (26) with respect tos since we

need it in order to find the average capacity ofL-branch diversity combiners operating over Gamma-

shadowed GNM fading channels. Referring to the relation with an MGFMRℓ
(s) and its derivative, i.e.,

∂
∂s
MRℓ

(s) = −E [Rℓ exp (−sRℓ)], the derivation of the unified MGF for diversity combiners operating

over Gamma-shadowed GNM fading channels in give in the following theorem.

Theorem 3 (Derivative of the Unified MGF of Gamma-Shadowed GNM RV). The derivative of the unified

4The computation latency of Meijer’s G functionGm,n
p,q [·] is primarily addressed by the total number of coefficientsp+ q.
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MGF for the Gamma-shadowed GNM envelope distributionRℓ ∼ NS(mℓ, ξℓ, msℓ,Ωsℓ), i.e., ∂
∂s
MRp

ℓ
(s) =

−E [Rp
ℓ exp (−sRp

ℓ)] is given by

∂

∂s
MRp

ℓ
(s) =

2/s

Γ(msℓ)Γ(mℓ)
H3,1

2,3

[(
βℓmsℓ

Ωsℓ

)p
1

s2

∣
∣
∣
∣

(1, 2), (0, 1)

(1, 1), (msℓ, p), (mℓ, p/ξℓ)

]

(27)

with the convergence regionℜ{s} ∈ R+.

Proof: Using either [7, Eq. (2.2.2)] or [9, Eq. (8.3.2/15)], the proof is obvious.

Again, following the same steps in the derivation of (26), (27) can be represented on the basis of the

Meijer’s G function for the rational values of the parameterξ = k/l, wherek and l are arbitrary positive

integers. Accordingly, (27) can be given by

∂

∂s
MRp

ℓ
(s) =

√

4l/π(kp)msℓ(lp)mℓ−1k

(2π)
kp
2
+ lp

2
+k−2Γ(mℓ)Γ(msℓ)

Gkp+lp+1,2k
2k+1,kp+lp+1






(
2k
s

)2k
(
βℓmsℓ

Ωsℓ

)kp

(kp)kp(lp)lp

∣
∣
∣
∣
∣
∣
∣

−Ξ
(−2k)
(2k) , 0

1,Ξ
(msℓ)

(kp) ,Ξ
(mℓ)

(lp)




. (28)

Finally, by employing Corollary 1 with (24) and (27), new exact single-integral expressions for the

evaluation of the average capacityCavg of L-branch diversity combiners over Gamma-shadowed GNM

fading channels are immediately written as

Cavg = GL
∫ ∞

0

Cq (s)

s

L∑

ℓ=1

H3,1
2,3

[(
βℓmsℓ

Ωsℓ

)p
1

Φ2
p,qs

2

∣
∣
∣
∣

(1, 2), (0, 1)

(1, 1), (msℓ, p), (mℓ, p/ξℓ)

]

×

L∏

k=1
k 6=ℓ

H2,1
1,2

[(
βkmsk

Ωsk

)p
1

Φ2
p,qs

2

∣
∣
∣
∣

(1, 2)

(msk, p), (mk, p/ξk)

]

ds, (29)

where both the coefficientΦp,q and the auxiliary functionCq (s) are defined in Theorem 1. Furthermore,

the coefficientGL is defined asGL = 2L+1W
log(2)

[
∏L

ℓ=1 Γ(msℓ)Γ(mℓ)
]−1

Additionally, referring to (8) (i.e.,

by changing the variable of the integration in (29) ass = tan(θ) and then using GCQ formula [11,

Eq. (25.4.39)]), we specifically get a finite (N-terms) sum approximation converging rapidly and steadily

and requiring few terms for an accurate result as shown

Cavg ≈ GL
N∑

n=0

wn
Cq (sn)

sn

L∑

ℓ=1

H3,1
2,3

[(
βℓmsℓ

Ωsℓ

)p
1

Φ2
p,qs

2
n

∣
∣
∣
∣

(1, 2), (0, 1)

(1, 1), (msℓ, p), (mℓ, p/ξℓ)

]

×

L∏

k=1
k 6=ℓ

H2,1
1,2

[(
βkmsk

Ωsk

)p
1

Φ2
p,qs

2
n

∣
∣
∣
∣

(1, 2)

(msk, p), (mk, p/ξk)

]

, (30)

wherewn and sn are defined in (9). In the sense of both that either special or limit cases of Gamma-
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shadowed GNMNS(mℓ, ξℓ, msℓ,Ωsℓ) model are commonly used fading models in the literature, andthat

the auxiliary functionCq (s) is a unified expression for diversity combiners (e.g.,q = 1 for MRC and

q = 2 for EGC), it is sufficient to show that the average capacity given by (29) is a unified expression not

only for commonly used channel fading models but also for thecommonly used MRC and EGC diversity

combiners. For example, referring (14) (i.e., using the MRCspecial case of the auxiliary functionCq (s)

given by (7)) and performing algebraic manipulations [7, Eqs. (2.1.1)-(2.1.5)] after choosingp = 2 for

MRC, it is straight forward to show that, the unified average capacity (29) reduces to the average capacity

of L-branch MRC diversity combiner over Gamma-shadowed GNM fading channels, namely

CMRC
avg = − GL

2L+1

∫ ∞

0

Ei (−s)

s

L∑

ℓ=1

H3,1
2,3

[
N0βℓmsℓ

EsΩsℓs

∣
∣
∣
∣

(1, 1), (0, 1)

(1, 1), (msℓ, 1), (mℓ, 1/ξℓ)

]

×

L∏

k=1
k 6=ℓ

H2,1
1,2

[
N0βkmsk

EsΩsks

∣
∣
∣
∣

(1, 1)

(msk, 1), (mk, 1/ξk)

]

ds, (31)

Substituting the fading figuresmℓ → m, fading shaping factorsξℓ = 1, the shadowing severitiesmsℓ → ∞
and shadowing powersΩsℓ = Ω for all ℓ ∈ {1, 2, . . . , L} in (29), and then using [7, Eqs. (2.1.1), (2.1.2),

and (2.9.1)], the average capacity given by (31) reduces to the average capacity over mutually independent

and identically distributed Nakagami-m fading channels,

CMRC
avg = − WL

log(2)ΓL(m)

∫ ∞

0

Ei (−s)

s
G2,1

2,2

[
N0m

EsΩs

∣
∣
∣
∣

1, 0

1, m

]

G1,1
1,1

[
N0m

EsΩs

∣
∣
∣
∣

1

m

]L−1

ds. (32)

Subsequently, note that we haveG1,1
1,1

[
u| 1

a

]
= ua (1 + u)−a Γ(a) [9, Eq. (8.4.2/5)] andG2,1

2,2

[

u| 1,0
1,a

]

=

−ua (1 + u)−a−1 Γ(a) [9, Eq. (8.4.49/14)]. The average capacity of MRC diversitycan be then attained

in closed-form through the instrumentality of theEi-transform equality
∫∞
0

Ei (−u) (1 + au)−b du =

−1/Γ(b)G1,3
3,2

[

a
∣
∣
∣
0,0,1−b
1,−1

]

, wherea, b ∈ R+, that is,

CMRC
avg =

WL

log(2)Γ(mL+ 1)
G1,3

3,2

[
γ̄

m

∣
∣
∣
∣

0, 0,−mL

0,−1

]

, (33)

where γ̄ , EsΩ/N0 is the average SNR recovered by one branch of the MRC diversity combiner. Note

that (33) represents an alternative compact closed-form expression (that is not limited to integer values of

the fading figurem) to the result presented in either [15, Eqs. (19) and (20)] or[16, Eqs. (23) and (24)].

In addition, by choosingp = 1 and q = 2 for EGC, the auxiliary functionCq (s) simplifies into (18)

and the unified average capacity given by (29) reduces to the average capacity ofL-branch EGC diversity
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combiner over Gamma-shadowed GNM fading channels, that is,

CEGCavg =
GL√
πL

∫ ∞

0

Ci (s)

s

L∑

ℓ=1

H2,2
2,2

[

4LN0βℓmsℓ

EsΩsℓs
2

∣
∣
∣
∣
∣

(0, 1), (1
2
, 1)

(msℓ, 1), (mℓ,
1
ξℓ
)

]

×

L∏

k=1
k 6=ℓ

H2,2
2,2

[

4LN0βkmsk

EsΩsks
2

∣
∣
∣
∣
∣

(1, 1), (1
2
, 1)

(msk, 1), (mk,
1
ξk
)

]

ds, (34)

which is obtained after using [7, Eqs. (2.1.1)-(2.1.5)]. Eventually, substituting the fading figuresmℓ → m,

fading shaping factorsξℓ = 1, the shadowing severitiesmsℓ = ms and shadowing powersΩsℓ = Ω for all

ℓ ∈ {1, 2, . . . , L} in (34), and then using [7, Eqs. (2.1.1), (2.1.2), and (2.9.1)], the average capacity given by

(34) reduces to the average capacity over mutually independent and identically distributed generalized-K

fading channels as

CEGCavg =
LGL√
πL

∫ ∞

0

Ci (s)

s
G2,2

2,2

[
4LN0mms

EsΩss
2

∣
∣
∣
∣

0, 1
2

ms, m

]

G2,2
2,2

[
4LN0mms

EsΩss
2

∣
∣
∣
∣

1, 1
2

ms, m

]L−1

ds, (35)

which can be readily computed by means of GCQ rule as seen in (8).

It might be useful to notice that Tables I-III offer simplified expressions for the unified MGF and its

derivative, for the variety of commonly used generalized fading channels in order to facilitate for the

readers the use of our average capacity results for both MRC and EGC.

IV. NUMERICAL RESULTS

In this section, we provide some selected numerical resultsfor the previous example, illustrating the

average capacity ofL-branch diversity receiver over Gamma-shadowed GNM fadingchannels. As seen in

all figures (from Fig. 1 to Fig. 4), MRC gives better capacity/performance than EGC as expected, however

it is a complex technique since it requires the envelope estimation of the channel fading. In addition, the

minimum difference between their performances is obtainedby two-branch combining.

In Fig. 1, the average capacity of diversity receiver is depicted with respect to SNR (i.e.,Es/N0)

for difference number of branches with Gamma shadowed GNM fading parameters∀ℓ ∈ {1, 2, . . . , L},

mℓ = 2, ξℓ = 2, msℓ = 3 and Ωsℓ = 1. This figure also displays the capacity per unit bandwidth (i.e.,

W = 1). Increasing the number of branches, i.e.,L ≫ 2, the average capacity increases but note that,

regarding the relation among diversity gain and number of antennas, the diversity gain obtained by adding

an antenna/branch decreases as the total number of antennas/branchsL increases. Note again that selected

numerical and simulation results are in perfect agreement.
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Amount of fading (AF) is another important statistical characteristic of fading channels, particularly

in the context of applying diversity techniques in the transmission of the signals from transmitter to the

receiver such as relay technologies. Shortly, this AF is associated with the fading figure / diversity ordermℓ

of the PDF given by (23), and forRℓ ∼ NS(mℓ, ξℓ, msℓ,Ωsℓ), it is defined asmℓ ≡ E2
[

Rξℓ
ℓ

]

/Var
[

Rξℓ
ℓ

]

,

whereVar [·] and E [·] are the variance and the expectation operators, respectively. As seen in Fig. 2,

note that the large diversity gain is obtained by increasingfading figure / diversity order from0.5 to 2.0.

For example, a relay between transmitter and receiver or adding one more antenna to the transmitter may

increase the diversity order from1.0 to almost2.0. Formℓ ≫ 2, increasing the fading figure gradually and

linearly increases the average capacity. In other words, increasing the number of relays or the number of

the antennas at the transmitter more than2 gradually and linearly increases the average capacity. Finally,

note again that numerical and simulation results are in perfect agreement.

When the signal recovered by theℓth branch ofL-branch diversity receiver from the wireless channel

(ℓ ∈ {1, 2, . . . , L}) is composed of clusters of a multipath wave, each of which propagates in non-

homogeneous environment5 such that they possess similar delay times and with the delay-time spreads

of different clusters and their phases are independent [17]–[19]. In this case, the envelope of the received

signal, i.e.,Rℓ is considered as a non-linear function of multipath components. More specifically, letXℓ

andYℓ be the in-phase and quadrature Gaussian elements of the signal recovered from theℓth branch

of theL-branch diversity receiver. Then, the envelope is represented as|Xℓ + iYℓ|
1
ξ
ℓ , wherei =

√
−1 is

the imaginer number and whereξℓ is the shaping factor. Shortly, the shaping factor is sometimes not a

sufficiently qualified parameter to comprehend and contemplate the fading conditions in some wireless

communication applications. As such, for the PDFpRℓ
(r) of the fading envelopeRℓ, the tail properties,

i.e., bothlimr→∞
[
pRℓ

(r)
]

and limr→∞
[
∂pRℓ

(r) /∂r
]

are changed by the shaping factorξℓ. As seen in

Fig. 3, the average capacity goes to zero when the shaping factor ξ goes to zero (∀ℓ ∈ {1, 2, . . . , L},

ξℓ = ξ) because, for0 < ξ ≪ 1, the tail properties approach to zero very fast with respectto the possible

envelope valuesr ∈ [0,∞), i.e., limr→∞
[
pRℓ

(r)
]
= 0+ and limr→∞

[
∂pRℓ

(r) /∂r
]
= 0−. Also note that,

for the higher values of shaping factorξ ≫ 1, the average capacity very gradually and linearly increases

as seen in Fig. 3 as the shaping factorξ increases.

As mentioned at the beginning of the previous section, the link quality is affected by variation of

the local mean power due to the shadowing caused by moving obstacles, scatters and reflectors between

5Note that non-homogeneous wireless communications environment is very common in high frequencies such as60 GHz or above due to
the fact that the wave-length is very small when it is compared with the non-homogeneous (singular) environment.
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transmitter and the receiver. The intensity of shadowing onthe branches ofL-branch diversity receiver is

characterized by the shadowing factorsmsℓ ∈ [0.5,∞) for the branchesℓ ∈ {1, 2, . . . , L}. In Fig. 4, the

average capacity is depicted with respect to shadowing factor ms (i.e., ∀ℓ ∈ {1, 2, . . . , L}, msℓ = ms).

Note that, as seen in Fig. 4, the average capacity does not change as the shadowing factorms goes to

infinity (i.e., ms → ∞) since the variation of the local mean power diminishes asms increases.

V. CONCLUSION

In this paper, we presented a unified framework to compute theaverage capacity of diversity combining

schemes (i.e., EGC and MRC) over fading channels. We also proposed a versatile fading model, which we

term Gamma-shadowed GNM fading, in order to characterize the fading environment in high frequencies

such as60 GHz and above. Additionally, we derived novel closed-form expressions for the moment

generating function (MGF) of both Gamma shadowed GNM fadingand its special cases. Some selected

simulations have been carried out for different scenarios of fading environment in order to verify the

accuracy of the presented framework. Numerical and simulation results are in perfect agreement.
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APPENDIX A

PROOF FORTHEOREM 1

Note that, forq ∈ {1, 2} (i.e., q = 1 for MRC combining, andq = 2 for EGC combining), using the

derivation equality∂ log (1 + yXq) /∂y = Rq/(1 + yRq), we can readily show that

1

X
log (1 +Xq) =

∫ 1

0

1

u

[
Xq−1

1
u
+Xq

]

du (A.1)

for n ∈ R+. Using the equality
∫∞
0

zβ−1 exp (−sz)Eα,β (−yzα) dz = sα−β/(sα + y) [20, Eq. (5.2.3)],

whereEα,β (·) is the Mittag-Leffler function [21, Eq. (1)], we get

1

X
log (1 +Xq) =

∫ ∞

0

exp (−sX)

[∫ 1

0

1

u
Eq,1

(

−sq

u

)

du

]

ds. (A.2)
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Upon substituting∂
∂s

exp (−sX) = −X exp (−sX) into (A.3), and then applying the well-known Leibnitz

rule [11], it is easily shown thatlog (1 +Xq) can be expressed as

log (1 +Xq) = −
∫ ∞

0

[
∂

∂s
exp (−sX)

] [∫ 1

0

1

u
Eq,1

(

−sq

u

)

du

]

ds. (A.3)

After substituting the Mellin-Barnes representation of the Mittag-Leffler function, i.e.,Eα,β (z) =
1
2πi

∮

C Γ (p) Γ (1− p

[21, Eq. (3)] and performing algebraic manipulations, (A.3) can immediately be expressed as

log (1 +Xq) = −
∫ ∞

0

[
∂

∂s
exp (−sX)

]

H1,2
3,2

[
1

sq

∣
∣
∣
∣

(1, 1), (1, 1), (1, q)

(1, 1), (0, 1)

]

ds, (A.4)

by favor of the Mellin-Barnes representation of Fox’s H function [7, Eq. (1.1.1)]. Eventually, substituting

(A.4) into (5) and using some algebraic manipulations, the average capacity of linear diversity receivers

(EGC and MRC) can be readily given as in (6), which proves Theorem 1.

APPENDIX B

PROOF FORCOROLLARY 2

Note that, by means of [7, Eq. (1.1.1)], the auxiliary function Cq (s) given in (7) can be represented in

terms of Mellin-Barnes integral as

Cq (s) = − 1

2πi

∮

C

Γ (1 + z) Γ (−z) Γ (−z)

Γ (1− z) Γ (1 + qz)
sqzdz, (B.1)

with the convergence regionℜ{C} ∈ (−1, 0), wherei is the imaginary number (i.e.,i =
√
−1). Then,

substituting Gauss’ multiplication formulaΓ (nz) = (2π)
1
2
(1−n)nnz−

1
2

∏n
k=1 Γ

(
z + k−1

n

)
[11, Eq. (6.1.20)]

into (B.1) and using some algebraic manipulations, we get

Cq (s) =
−1

√

q(2π)1−q







1

2πi

∮

C

Γ (1 + z) Γ (−z) Γ (−z)

Γ (1− z)
∏q

k=1 Γ
(
k
q
+ z
)

(
qq

sq

)−z
dz






. (B.2)

Finally, applying [7, Eq. (2.9.1)] on the parenthesis part of (B.2), the auxiliary functionCq (s) can be

derived as in (12), which proves Corollary 2.
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Fig. 1. Average capacity versus the average power for different number of branches over Gamma-shadowed GNM fading channels
(∀ℓ ∈ {1, 2, . . . , L}, mℓ = 2, ξℓ = 2, msℓ = 3 andΩsℓ = 1). The number of samples for the simulation is chosen asN = 10000.
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Fig. 2. Average capacity versus the channel fading figure fordifferent number of branches over Gamma-shadowed GNM fading channels
(∀ℓ ∈ {1, 2, . . . , L}, ξℓ = 2,msℓ = 3 andΩsℓ = 1). The number of samples for the simulation is chosen asN = 10000.
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Fig. 3. Average capacity versus the shaping factor for different number of branches over Gamma-shadowed GNM fading channels (∀ℓ ∈
{1, 2, . . . , L}, mℓ = 2, msℓ = 3 andΩsℓ = 1). The number of samples for the simulation is chosen asN = 10000.
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Fig. 4. Average capacity versus the shadowing factor for different number of branches over Gamma-shadowed GNM fading channels
(∀ℓ ∈ {1, 2, . . . , L}, mℓ = 2, ξℓ = 2, msℓ = 3 andΩsℓ = 1). The number of samples for the simulation is chosen asN = 10000.
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TABLE I

UNIFIED MGFS OF SOMEWELL -KNOWN FADING CHANNEL MODELS

Envelope Distribution, i.e., pRℓ
(r) Unified MGF MR

p

ℓ
(s) and its derivative

∂

∂s
MR

p

ℓ
(s), where the exponentp ∈ {1, 2}

One-Sided Gaussian[1, Sec. 2.2.1.4]

pRℓ
(r) =

√

2

πΩℓ
exp

(

− r2

2Ωℓ

)

defined overr ∈ R+, and whereΩℓ is the average power
(i.e.,Ωℓ ≥ 0). Note that one-sided Gaussian fading coincides
with the worst-case fading or equivalently, the largest amount
of fading (AoF) for all Gaussian-based fading distributions.

MR
p

ℓ
(s) =

2√
π
H1,1

1,1

[
1

s2

(
1

2Ωℓ p

)p ∣
∣
∣
∣

(1, 2)

(12 , p)

]

=
2

√

(2π)
p+1

Gp,22,p




4

s2

(
1

2Ωℓ p

)p

∣
∣
∣
∣
∣
∣

1
2 , 1

Ξ
( 1
2
)

(p)



,

∂

∂s
MR

p

ℓ
(s) =

4√
πs

H2,1
2,2

[
1

s2

(
1

2Ωℓ p

)p ∣
∣
∣
∣

(1, 2), (0, 1)

(12 , p), (1, 1)

]

=
4

√

(2π)
p+1

s
Gp+1,2

3,p+1




4

s2

(
1

2Ωℓ p

)p

∣
∣
∣
∣
∣
∣

1, 1
2 , 0

Ξ
( 1
2 )

(p) , 1



,

whereGm,n
p,q [·] andHm,n

p,q [·] represent the Meijer’s G function [9, Eq. (8.2.1/1)] and Fox’s H function [9, Eq. (8.3.1/1)], respectively. In

addition, the the coefficientΞ(x)
(n)

of the Meijer’s G function is a set of coefficients such that itis defined asΞ(x)
(n)

≡ x
n
, x+1

n
, . . . , x+n−1

n
with x ∈ C andn ∈ N.

Rayleigh [1, Eq. (2.6)]

pRℓ
(r) =

2r

Ωℓ
exp

(

− r2

Ωℓ

)

defined overr ∈ R+, and whereΩℓ is the average power
(i.e.,Ωℓ ≥ 0). Note that Rayleigh fading distribution has unit
AoF (that is,AoF = 1).

MR
p

ℓ
(s) = 2H1,1

1,1

[
1

s2Ωpℓ

∣
∣
∣
∣

(1, 2)

(1, p)

]
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1
2 , 1
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(p)
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,

∂

∂s
MR
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ℓ
(s) =

4

s
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2,2

[
1

s2(Ωℓp)
p
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∣
∣
∣

(1, 2), (0, 1)

(1, p), (1, 1)

]

=

√

8p

(2π)
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1

s
Gp+1,2

3,p+1

[
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s2

(
1

2Ωℓ p

)p
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∣
∣
∣
∣

1, 1
2 , 0

Ξ
(1)
(p), 1

]

,

Rayleigh distribution typically agrees very well with experimental data for mobile systems where no line-of-sight (LOS) path exists between
the transmitter and receiver antennas [1, Sec. 2.2.1.1].

Nakagami-m [1, Eq. (2.20)]

pRℓ
(r) =

2

Γ(mℓ)

(
mℓ

Ωℓ

)mℓ

r2mℓ−1 exp

(

−mℓr
2

Ωℓ

)

defined overr ∈ R+, whereΩℓ is the average power, and
wheremℓ (0.5 ≤ mℓ) denotes the fading figure. Moreover,
Γ(·) is the Gamma function [6, Sec. 8.31].

MR
p
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(m

ℓ
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(p) , 1

]

,

Note that the Nakagami-m distribution spans via them parameter the widest range of amount of fading (AoF) among all the multipath
distributions [1]. As such, Nakagami-q (Hoyt) and Nakagami-n (Rice) can also be closely approximated by Nakagami-m distribution [1,
Eq. (2.25)], [1, Eq. (2.26)].

Weibull [1, Eq. (2.27)]

pRℓ
(r) = 2ξℓ

(
ωℓ
Ωℓ

)ξℓ

r2ξℓ−1 exp

(

−
(
ωℓ

Ω
ℓ

)ξℓ
r2ξℓ

)

defined overr ∈ R+, whereωℓ = Γ(1 + 1/ξℓ) and where
ξℓ (0 < ξℓ) denotes the fading shaping factor. Moreover,Ωℓ
is the average power.
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Ξ
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(pl), 1



,

where the Meijer’s G representations are given for the rational value of the fading shaping factorξsℓ (that is, we letξsℓ = k/l, wherek,
and l are arbitrary positive integers.) through the medium of algebraic manipulations utilizing [9, Eq. (8.3.2.22)]. In addition, note that if
Rℓ is a sample of a Weibull distribution with the fading shapingfactor ξℓ, thenRα

ℓ is also a sample of a Weibull distribution with the
fading shaping factorξℓ/α.
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TABLE II

UNIFIED MGFS OF SOMEWELL -KNOWN FADING CHANNEL MODELS

Envelope Distribution, i.e., pRℓ
(r) Unified MGF MR

p

ℓ
(s) and its derivative

∂

∂s
MR

p

ℓ
(s), where the exponentp ∈ {1, 2}

Hyper Nakagami-m [22, Eq. (1)]

pRℓ
(r) =

K∑

k=1

2ξℓk
Γ (mℓk)

(
mℓk

Ωℓk

)mℓk

r2mℓk−1 exp

(

−mℓk

Ωℓk
r2
)

defined overr ∈ R+, wheremℓk (0.5 ≤ mℓk) is the fading
figure, Ωℓk (0 < Ωℓk) is the average power, andξℓk (0 <
ξℓk) is the accruing factor, of thekth fading environment.

MR
p

ℓ
(s) =

K∑

k=1

2ξℓk
Γ(mℓk)

H1,1
1,1

[(

mℓk

s
2
pΩℓk

)p ∣
∣
∣
∣
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(mℓk, p)

]

=
K∑
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√

2p2mℓ
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√

(2π)
p
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Gp,22,p

[(

2
2
pmℓk

s
2
pΩℓkp

)p ∣
∣
∣
∣
∣

1
2 , 1

Ξ
(m

ℓk
)

(p)

]

,

∂

∂s
MR

p

ℓ
(s) =

K∑

k=1

4ξℓk/s

Γ(mℓk)
H2,1

2,2

[(

mℓk

s
2
pΩℓk

)p ∣
∣
∣
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(1, 2), (0, 1)

(mℓk, p), (1, 1)

]

=

K∑
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8p2mℓk
−1ξℓk

√
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p
Γ(mℓk)s
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[(

2
2
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s
2
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∣
∣
∣
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2 , 0

Ξ
(m

ℓk
)

(p) , 1

]

,

whereΓ(·) is the Gamma function [11, Eq. (6.1.1)]. In addition, It may be useful to notice that the sum of the accruing probabilitiesξℓk,
k ∈ {1, 2, . . . ,K} of K possible fading environments is unit such that

∑K
k=1 ξℓk = 1.

Nakagami-q (Hoyt) [1, Eq. (2.10)]

pRℓ
(r) =

(1 + q2ℓ )r

qℓΩℓ
exp

(

− (1 + q2ℓ )
2
r2

4q2ℓΩℓ

)

I0

(
1− q4ℓ
4q2ℓΩℓ

r2
)

defined overr ∈ R+, where qℓ (0 < qℓ < 1) is the
Nakagami-q fading parameter (that is, it is defined as ratio of
the powers of the received signal’s in-phase and quadrature
with different standard deviations), and whereΩℓ (0 < Ωℓ)
is the average power. In addition,I0 (·) is the zeroth order
modified Bessel function of the first kind [11, Eq. (9.6.20)].

MR
p
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(s) =

1 + q2ℓ
qℓΦℓ

∞∑
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1
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,

∂
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,

whereΦℓ is defined asΦℓ = 0.25
(

1 + q2
)2
/q2, andΨk is given byΨk (q) =

(2k)!

(k!)222k

(

(1− q2)/(1 + q2)
)2k, wherek ∈ N. It may

be useful to notice that the series expression of the unified MGF for the Nakagami-q (Hoyt) is converging very fast such that10 summation
terms is generally enough.

Nakagami-n (Rice) [1, Eq. (2.15)]
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(r) =
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ℓ)e

−n2
ℓ r
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e
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Ωℓ
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)

defined overr ∈ R+, wherenℓ (0 < nℓ) andΩℓ (0 < Ωℓ)
are the LOS figure and average power, respectively.
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,
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,

whereZℓk = η2k exp
(

−n2
ℓ

)

/k! and the coefficientθp =
√
2p/

√

(2π)p. In addition, the LOS figure i.e.nℓ is related to the RicianKℓ

factor byKℓ = n2
ℓ which corresponds to the ratio of the power of the LOS (specular) component to the average power of the scattered

component.

K-Distribution [1, Eq. (2.15)]

pRℓ
(r) =

4
(
msℓ

Ω
sℓ

)m
sℓ

+1

2

Γ(msℓ)
rmsℓKm

sℓ
−1

(

2

√

msℓ r
2

Ωsℓ

)

defined overr ∈ R+, wheremsℓ ( 1
2

≤ msℓ) denotes
the shadowing severity, andΩsℓ (0 < Ωsℓ) represents the
average power. Moreover,Kn (·) is thenth order modified
Bessel function of the second kind [11, Eq. (9.6.24)].
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p
Γ(msℓ)

Gp,22,p

[

4

s2

(
msℓ

Ωsℓp
2

)p
∣
∣
∣
∣
∣

1, 1
2

Ξ
(m

sℓ
)

(p) ,Ξ
(1)
(p)

]

,

∂

∂s
MR

p

ℓ
(s) =

2

Γ(msℓ)
H2,1

1,2

[
1

s2

(
msℓ

Ωsℓ

)p ∣
∣
∣
∣

(1, 2)

(1, p), (msℓ, p)

]

=
2
√
πpmsℓ

(2π)
p
Γ(msℓ)

Gp,22,p

[

4

s2

(
msℓ

Ωsℓp
2

)p
∣
∣
∣
∣
∣

1, 12

Ξ
(m

sℓ
)

(p) ,Ξ
(1)
(p)

]

,

It may be useful to notice that the shadowing effect in the channel disappears whenmsℓ approaches to infinity (msℓ → ∞) such that the
worst shadowing occurs whenmsℓ = 1

2
.
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TABLE III

UNIFIED MGFS OF SOMEWELL -KNOWN FADING CHANNEL MODELS

Envelope Distribution, i.e., pRℓ
(r) Unified MGF MR

p

ℓ
(s) and its derivative

∂

∂s
MR

p

ℓ
(s), where the exponentp ∈ {1, 2}

Generalized-K [23, Eq. (5)]

pRℓ
(r) =

4
(
msℓmℓ

Ω
sℓ

)φℓ
2

Γ(msℓ)
rφℓ−1Kψℓ

(

2

√

msℓmℓ r
2

Ωsℓ

)

defined overr ∈ R+, whereφℓ = msℓ + mℓ and ψℓ =
msℓ−mℓ. Moreover,mℓ (0.5 ≤ mℓ) andmsℓ (0.5 ≤ msℓ)
represent the fading figure (diversity severity / order) andthe
shadowing severity, respectively.Ωsℓ (0 < Ωsℓ) represents
the average power.

MR
p

ℓ
(s) =

2

Gℓ
H2,1

1,2

[
1

s2

(
msℓmℓ

Ωsℓ

)p ∣
∣
∣
∣

(1, 2)

(mℓ, p), (msℓ, p)

]

=

√
2 pmsℓ+mℓ−1

√

(2π)2p−1Gℓ
G2p,2

2,2p

[

4

s2

(
msℓmℓ

Ωsℓp
2

)p
∣
∣
∣
∣
∣

1, 1
2

Ξ
(m

sℓ
)

(p) ,Ξ
(m

ℓ
)

(p)

]

,

∂

∂s
MR

p

ℓ
(s) =

4

Gℓ s
H3,1

2,3

[
1

s2

(
msℓmℓ

Ωsℓ

)p ∣
∣
∣
∣

(1, 2), (0, 1)

(mℓ, p), (msℓ, p), (1, 1)

]

=

2
√
2 pmsℓ+mℓ−1

√

(2π)
2p−1Gℓ s

G2p+1,2
3,2p+1

[

4

s2

(
msℓmℓ

Ωsℓp
2

)p
∣
∣
∣
∣
∣

1, 1
2 , 0

Ξ
(m

sℓ
)

(p) ,Ξ
(m

ℓ
)

(p) , 1

]

,

whereGℓ = Γ(msℓ)Γ(mℓ). It may be useful to notice that the shadowing effect in the channel disappears and generalized-K distribution
turns into Nakagami-m whenmsℓ approaches to infinity (msℓ → ∞) such that the worst shadowing occurs whenmsℓ = 1

2
.

Composite Nakagami / Lognormal[1, Eq. (2.57)]

pRℓ
(r) =

2r2mℓ−1

Γ(mℓ)

∞∫

−∞

(
mℓ

Gℓ(u)

)mℓ

e
−
(
mℓr

2

Gℓ(u)
+ u2

)

du

defined overr ∈ R+, whereGℓ(u) = 10(
√

2σℓ u+µℓ)/10,
and whereµℓ(dB) andσℓ(dB) are the mean and the standard
deviation of channel shadowing. Moreover,mℓ (0.5 ≤ mℓ)
is the fading figure (diversity order), andΩℓ (0 < Ωℓ)
represents the average power.

MR
p

ℓ
(s) =

1

π

Np∑

n=1

Hxn

Γ(mℓ)
H1,2

2,1

[
4

s2

(
mℓ

Gℓ(xn)

)p ∣
∣
∣
∣

(1, 1), (12 , 1)

(m, p)

]

=
2pmℓ−

1
2

(2π)
p+1
2

Np∑

n=1

Hxn

Γ(mℓ)
Gp,22,p

[

4

s2

(
mℓ

Gℓ(xn) p

)p
∣
∣
∣
∣
∣

1, 12

Ξ
(m

ℓ
)

(p)

]

,

∂

∂s
MR

p

ℓ
(s) =

1

πs

Np∑

n=1

Hxn

Γ(mℓ)
H2,2

3,2

[
4

s2

(
mℓ

Gℓ(xn)

)p ∣
∣
∣
∣

(1, 1), (12 , 1), (0, 1)

(m, p), (1, 1)

]

=

2pmℓ−
1
2

s (2π)
p+1
2

Np∑

n=1

Hxn

Γ(mℓ)
Gp+1,2

3,p+1

[

4

s2

(
mℓ

Gℓ(xn) p

)p
∣
∣
∣
∣
∣

1, 1
2 , 0

Ξ
(m

ℓ
)

(p) , 1

]

,

where, forn ∈ {1, 2, . . . , Np}, {Hxn} and {xn} are the weight factors and the zeros (abscissas) of theNp-order Hermite polynomial
[11, Table 25.10].

Composite Nakagami / Weibull [24, Eq. (4)]

pRℓ
(r) =

2

Γ(msℓ)r
H2,0

0,2

[

msℓ ωℓ
Ωℓ

r2

∣
∣
∣
∣
∣

−−−
(msℓ), (1,

1
ξ
ℓ

)

]

defined overr ∈ R+, whereΩℓ (0 < Ωℓ) is the average
power andξℓ (0 < ξℓ) denotes the Weibull (fading shaping)
factor chosen to yield a best fit to measurement results. In
addition, ωℓ = Γ(1 + 1/ξℓ) andmsℓ (0.5 ≤ msℓ) is the
shadowing severity.

MR
p

ℓ
(s) =

2

Γ(msℓ)
H2,1

1,2

[

1

s2

(
msℓ ωℓ
Ωℓ

)p
∣
∣
∣
∣
∣

(1, 2)

(msℓ, p), (1,
p
ξ
ℓ

)

]

,

∂

∂s
MR

p

ℓ
(s) =

4

sΓ(msℓ)
H3,1

2,3

[

1

s2

(
msℓ ωℓ
Ωsℓ

)p
∣
∣
∣
∣
∣

(1, 2), (0, 1)

(msℓ, p), (1,
p
ξ
ℓ

), (1, 1)

]

,

Note that Composite Nakagami / Lognormal distribution is the special case of Gamma-shadowed GNM distribution so the Meijer’s G
representation of the composite Nakagami / Lognormal distribution can be readily obtained by means of substitutingmℓ = 1 andΩsℓ = Ωℓ
into both (26) and (28).

Fox’s H distribution [25, Eq. (3.1)], [26]

pRℓ
(r) = KℓHm,np,q

[

Gℓ r
∣
∣
∣
∣

(a1, α1), (a2, α2), . . . , (an, αn)

(b1, β1), (b2, β2), . . . , (bm, βm)

]

defined overr ∈ R+, and whereKℓ ∈ R and Gℓ ∈ R are
such two numbers that

∫∞
0 pRℓ

(r) dr = 1.

MR
p

ℓ
(s) =

Kℓ
ps

1
p

Hm,n+1
p+1,q

[

Gℓ
s

1
p

∣
∣
∣
∣
∣

(1 − 1
p
, 1
p
), (a1, α1), (a2, α2), . . . , (an, αn)

(b1, β1), (b2, β2), . . . , (bm, βm)

]

,

∂

∂s
MR

p

ℓ
(s) = − Kℓ

p s
p+1
p

Hm,n+1
p+1,q

[

Gℓ
s

1
p

∣
∣
∣
∣
∣

(− 1
p
, 1
p
), (a1, α1), (a2, α2), . . . , (an, αn)

(b1, β1), (b2, β2), . . . , (bm, βm)

]

,


