
ar
X

iv
:1

01
2.

14
89

v1
  [

st
at

.M
E

] 
 7

 D
ec

 2
01

0

Statistical Science

2010, Vol. 25, No. 2, 170–171
DOI: 10.1214/10-STS308REJ
Main article DOI: 10.1214/09-STS308
c© Institute of Mathematical Statistics, 2010

Rejoinder: The Future of Indirect
Evidence
Bradley Efron

Our three discussants fit an “ideal statistican”
profile, combining deep theoretical understanding
with serious scientific interests. The three essays—
which are more than commentaries on my article—
reflect in a telling way their different applied in-
terests: Andrew Gelman in social sciences, Sander
Greenland in epidemiology, and Robert Kass in neu-
roscience. Readers who share my bad habit of turn-
ing to the discussions first will be well rewarded here,
but of course I hope you will eventually return to the
article itself. There the emphasis is less on specific
applications (though they serve as examples) and
more on the development of statistical inference.
Figure 1 concerns the physicist’s twins example

of Section 3. From the doctor’s prior distribution
and the fact that sexes differ randomly for fraternal
twins but not for identical ones, we can calculate
probabilities in the four cells of the table. The sono-
gram tells the physicist that she is in the left-hand
column, where there are equal odds on identical or
fraternal, just as Bayes rule says. In my terminology,
the doctor’s indirect evidence is filtered by Bayes
rule to reveal that portion applying directly to the
case at hand.
There is a leap of faith here, easy enough to make

in this case: that the doctor’s information is both rel-
evant and accurate. We would feel differently if the
doctor’s evidence turned out to be just three pre-
vious sets of twins, two of which were fraternal. A
standard Bayesian analysis might then start from a
beta(2,3) hyperprior distribution on the prior prob-
ability of identical. The calculation of posterior odds
would now be more entertaining than the actual one
in Figure 1, but the results less satisfying.
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Fig. 1. Probabilities relating to the physicist’s twins example

of Section 3.

How much respect is due to conclusions that begin
with priors, or hyperpriors, of mathematical conve-
nience? The discussants are divided here: Gelman,
judging from the examples in Chapter 5 of his excel-
lent book with Carlin, Stern and Rubin, is fully com-
mitted; Kass, as a follower of Jeffries, is mildly agree-
able but with strong reservations; while Greenland
seems dismissive (calling objective Bayes “please
don’t bother me with the science’ Bayes”).
Section 4’s empirical Bayes motivation for the

James–Stein rule implicitly endorses Gelman’s po-
sition, except that maximum likelihood estimation
of M and A in (1) finesses the use of a vague hy-
perprior for them. The same remark applies to the
discussion of false discovery rates in Section 6. By
Section 9, however, my qualms, along Greenland’s
lines, become evident: do the estimates µ̂i in Table
2 fully account for selection bias, as they would in
a genuine Bayesian analysis? Kass and I part com-
pany here. I believe we need, and might get, a more
complete theory of empirical Bayes inference while
he is satisfied with the present situation, at least as
far as applications go. Gelman is happy with both
theory and applications.
The ground is steadier under our feet for both

James–Stein and Benjamini–Hochberg thanks to
their frequentist justifications, Theorems 1 and 2.
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We do not really need those prior distributions (1)
and (7). The procedures have good consequences
guaranteed for any possible prior, which is another
way of stating the frequentist ideal. My “good work
rules” comment in Section 10 had in mind the emer-
gence of key ideas such as JS and BH from the fre-
quentist literature.
Gelman is certainly right: Bayesian statistics has

transformed itself over the past 30 years, riding a hi-
erarchical modeling/MCMC wave toward a stronger
connection with scientific data analysis. This does
not make it an infallible recipe. MCMC methodol-
ogy has encouraged the use of mathematically con-
venient distributions at the hyperprior level, per-
haps a dangerous trend. We could certainly use some
new theory either justifying the recipe or improving
upon it.
Maximum likelihood, the crown jewel of classical

statistics, is a theory of direct evidence: the MLE
is nearly optimal among nearly unbiased estimates,
while the Fisher information bound tells us how ac-
curate a direct estimate can be. The most striking
lesson of post-war statistical theory, exemplified by
the James–Stein estimator, is the failure of maxi-
mum likelihood estimation in high dimensions. That
failure was the original motivation for this talk and
article, and my (hopefully not futile) call for a more
principled theory of indirect evidence.
“Second-level maximum likelihood” (using I. J.

Good’s terminology), as in the empirical Bayes es-
timation of M and A for the baseball data, is a
tactic for breaking through the MLE dimensional
barrier. So are hierarchical Bayes, random effects
models, and regression techniques. There is no want
of methodology here, all of which can be useful in
bringing indirect information to bear, but I find it
difficult to know which methods are appropriate, let
alone optimal, in the analysis of large-scale prob-
lems.
The baseball data has outlived several of the play-

ers. It has the sterling virtue of including the “Truth”
so we can honestly compare prediction methods. On
the downside, nobody cares much about 40-year-
old batting averages. We can imagine the same ta-
ble except where the proportions refer to cure rates
for some horrible disease, obtained from 18 differ-
ent experimental drugs. In such a case, pulling the
Clemente of drugs down from 0.400 to 0.294 might
seem less desirable. Relying entirely on direct evi-
dence is an unaffordable luxury in large-scale data
analyses, but indirect evidence can be a dangerous

sword to wield. Some theoretical guidance would be
welcome here, perhaps a theory quantifying the rel-
evance of group data to individual estimates.
Kass and Gelman rather casually “dis” false dis-

covery rates, not on very good grounds as far as I
can see. Fdr methods have done what I would have
thought impossible 15 years ago: displaced Type 1
error control as the lead technology for large-scale
hypothesis testing. Fdr control is not classical signif-
icance testing. I consider it a premonitory example
of just the kind of new statistics this article (and
Greenland’s essay) hopes for, an amalgam of fre-
quentist and Bayesian thinking that nicely combines
direct and indirect multiple testing evidence.
I don’t mind humility, especially in others, but

Kass goes too far in minimizing his own consid-
erable accomplishments as a scientific collaborator,
and the general role of statistical scientists. Fdr does
not “bless the procedure psychologists were already
using.” The real trick in choosing from a long or-
dered list of p-values is to know when they stop be-
ing interesting. Psychologists (or anyone else) did
not know how to do this trick in 1995 and now they
do, thanks to progress in statistical inference.
Fdr methods can free Kathryn Roeder (as quoted

by Kass) from Type 1 error violators’ prison. She,
and the rest of us, can continue up the ordered list
of p-values as far as desired, at each step letting the
local false discovery rate tell her the ever-increasing
risk of misleading her collaborators.
I like Hal Stern’s distinction between modelers

and nonmodelers, invoked by Gelman. These days
there are three groups to consider,

data miners≪ frequentists≪Bayesians,

the inequality signs ≪ referring to the amount of
probabilistic modeling. Bayesian modeling is almost
always in addition to, rather than instead of, any fre-
quentist modeling of sampling densities. Data min-
ers are the atheists of the statistical world, not de-
voted to either major philosophy. In fact they of-
ten work directly with algorithms, skipping proba-
bilistic modeling entirely. Good data-analytic ideas
such as boosting and neural networks have come out
of the data-mining/machine learning world (which
Rob Kass has at least one foot in), along with a
welcome dose of raw energy. Magical properties are
sometimes attributed to new algorithms—“boosting
methods can never overfit”—before they are digested
and understood in frequentist/Bayesian terms.



REJOINDER 3

Methodology by itself is an ultimately frustrating
exercise. A little statistical philosophy goes a long
way but we have had very little in the public forum
these days, and I am genuinely grateful to our editor,
David Madigan, for organizing this discussion.
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