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Abstract

A general purpose variance reduction technique for Markov chain
Monte Carlo estimators based on the zero-variance principle intro-
duced in the physics literature by Assaraf and Caffarel (1999, 2003),
is proposed. Conditions for unbiasedness of the zero-variance estima-
tor are derived. A central limit theorem is also proved under regularity
conditions. The potential of the new idea is illustrated with real ap-
plications to Bayesian inference for probit, logit and GARCH models.

Keywords: Control variates; GARCH models; Logistic regression;
Metropolis-Hastings algorithm; Variance reduction.

1 General idea

The expected value of a function f with respect to a, possibly unnormal-
ized, probability distribution π

µf =

∫
f(x)π(x)dx∫
π(x)dx

(1)
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is to be evaluated. Markov chain Monte Carlo (MCMC) methods estimate
integrals using a large but finite set of points, xi, i = 1, · · · , N , collected
along the sample path of an ergodic Markov chain having π (normalized) as
its unique stationary and limiting distribution:

µ̂f =
1

N

N∑
i=1

f(xi).

In this paper a general method is suggested to reduce the MCMC error by
replacing f with a different function, f̃ , obtained by properly re-normalizing
f . The function f̃ is constructed so that its expectation, under π, equals µf ,
but its variance with respect to π is much smaller.

To this aim, a standard variance reduction technique introduced for Monte
Carlo (MC) simulation, known as control variates (Ripley (1987)), is ex-
ploited.

In the univariate setting, a control variate is a random variable, z, with
zero (or known) mean under π, and correlated with f(x): σ(f, z) 6= 0. By ex-
ploiting this correlation, a new unbiased estimator of µf , with lower variance,
can be built. Let a ∈ R and define f̃(x) = f(x) + az. By construction:

µf̃ := E
[
f̃(x)

]
= µf ,

σ2(f̃) = σ2(f) + a2σ2(z) + 2aσ(f, z).

Minimizing σ2(f̃) w.r.t. a gives the optimal choice of the parameter

a = −σ(f, z)

σ2(z)
, (2)

that reduces the variance of σ2(f̃) to (1− ρ2(f, z))σ2(f). Therefore

µ̂f̃ :=
1

N

N∑
i=1

f̃(xi)

is a new unbiased MC estimator of µf , with variance

σ2
(
µ̂f̃
)

=
1

N
σ2(f̃) =

1

N

(
1− ρ2(f, z)

)
σ2(f) ≤ 1

N
σ2(f) = σ2 (µ̂f ) .

This idea can be extended to more than one control variate.
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In the rest of this section we briefly explain the zero-variance (ZV) prin-
ciple introduced in Assaraf and Caffarel (1999) and Assaraf and Caffarel
(2003): an almost automatic method to construct control variates for Monte
Carlo simulation. To this end, an operator, H, and a trial function, ψ, are
introduced. H is required to be Hermitian (a self-adjoint operator, real in
all practical applications) and

H
√
π = 0. (3)

For H = H(x,y), the weaker condition∫
H(x,y)

√
π(y)dy = 0 (4)

is needed. The trial function ψ(x) is a rather arbitrary function, whose first
and second derivatives are required to be continuous. The re-normalized
function is defined to be

f̃(x) = f(x) +

∫
H(x,y)ψ(y)dy√

π(x)
. (5)

As a consequence of (1) and (4) µf = µf̃ , that is, both functions f and f̃
can be used to estimate the desired quantity via Monte Carlo or MCMC
simulation. However, the statistical error of the two estimators can be very
different. The optimal choice for (H,ψ), i.e. the one that leads to zero
variance, can be obtained by imposing that f̃ is constant and equal to its
average, f̃ = µf , which is equivalent to require that σ(f̃) = 0.

The latter, together with (5), leads to the fundamental equation:∫
H(x,y)ψ(y)dy = −

√
π(x)[f(x)− µf ]. (6)

In most practical applications equation (6) cannot be solved exactly, still, we
propose to find an approximate solution in the following way. First choose
H verifying (3). Second, parametrize ψ and derive the optimal parameters
by minimizing σ2(f̃). The optimal parameters are then estimated using a
first short MCMC simulation. Finally, a much longer MCMC simulation is
performed using µ̂f̃ instead of µ̂f as the estimator.

Previous research in the statistical literature aims at reducing the asymp-
totic variance of MCMC estimators by modifying the transition kernel of
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the Markov chain. These modifications have been achieved in many dif-
ferent ways, for example by trying to induce negative correlation along the
chain path (Barone and Frigessi (1989), Green and Han (1992), Craiu and
Meng (2005), So (2006), Craiu and Lemeieux (2007)); by trying to avoid ran-
dom walk behavior via successive over-relaxation (Adler (1981), Neal (1995),
Barone et al. (2001)); by hybrid Monte Carlo (Duane et al. (2010), Neal
(1994), Brewer et al. (1996), Fort et al. (2003), Ishwaran (1999)); by ex-
ploiting non reversible Markov chains (Diaconis et al. (2000), Mira and
Geyer (2000)), by delaying rejection in Metropolis-Hastings type algorithms
(Tierney and Mira (1999), Green and Mira (2001)), by data augmentation
(Van Dyk and Meng (2001); Green and Mira (2001)) and auxiliary variables
(Swendsen and Wang (1987), Higdon (1998), Mira et al. (2001), Mira and
Tierney (2002)). Up to our knowledge, the only other research line that uses
control variates in MCMC simulation follows the seminal paper by Henderson
(1997) and has its most recent developement in Dellaportas and Kontoyiannis
(2010).

In Henderson and Glynn (2002) it is observed that, for any real-valued
function g defined on the state space of a Markov chain {Xn}, the one-
step conditional expectation U(x) := g(x) − E[g(Xn+1)|Xn = x] has zero
mean with respect to the stationary distribution of the chain and can thus
be used as control variate. The Authors also note that the best choice for
the function g is the solution of the associated Poisson equation which can
rarely be obtained analytically but can be approximated in specific settings.
A related technical report by Dellaportas and Kontoyiannis (2010), further
explores the use of this type of control variates in the setting of reversible
Markov chains were a closed form expression for U is often available.

In Assaraf and Caffarel (1999) and Assaraf and Caffarel (2003) unbiased-
ness and existence of a CLT for the ZV estimator are not discussed. The
main contribution of this paper is to derive the rigorous conditions for un-
biasedness and CLT for the ZV estimators in MCMC simulation. We also
demonstrate that for some widely used models (probit, logit, and GARCH)
under very mild condition (existence of MLE), the necessary conditions for
unbiasedness and CLT are verified.

The paper is organized as follows. In Sections 2 and 3, different choices of
the operator H and the trial function ψ are presented. In Section 4, expres-
sions for the control variates are explicitely found, depending on the set of
trial functions considered. The optimal control variates, that is, the optimal
parameters which give maximal variance reduction for particular classes of
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ψ are discussed in Section 6. Sections 5 and 7 deal with the mathematical
conditions which ensure that the optimal ZV-MCMC estimators are unbi-
ased and obey a CLT. Sufficient conditions are given and verified, that will
be verified in the final examples discussed in Section 8: Probit, Logit and
Garch models in a Bayesian framework. The simulations show that, even
by considering a low-dimensional parametric class of trial functions, a huge
variance reduction can be achieved. Details about the mathematical proofs
can be found in the appendices.

2 Choice of H

In this section guidelines to choose the operator H, both for discrete and
continuos settings, are given.

In a discrete state space, denote with P (x,y) a transition matrix re-
versible with respect to π (a Markov chain will be identified with the corre-
sponding transition matrix or kernel):

π(x)P (x,y) = π(y)P (y,x), ∀x,y. (7)

The following choice of H

H(x,y) =

√
π(x)

π(y)
[P (x,y)− δ(x− y)] (8)

satisfies condition (4), where δ(x−y) is the Dirac delta function: δ(x−y) =
1 if x = y and zero otherwise. It should be noted that the reversibility
condition (7) is essential in order to have a symmetric operator H(x,y), as
required.

With this choice of H, letting ψ̃ = ψ√
π
, equation (5) becomes:

f̃(x) = f(x)−
∑
y

P (x,y)[ψ̃(x)− ψ̃(y)].

The same H can also be applied to continuous systems. In this case, P
is the kernel of the Markov chain and equations (7) and (8) can be trivially
extended to the continuous case. This choice of H is exploited in Dellaportas
and Kontoyiannis (2010), where the following fundamental equation is found
for the optimal ψ̃:

E[ψ̃(x1)|x0 = x] = µf − f(x).
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It is easy to prove that this equation coincides with our fundamental equation
(6), with the choice of H given in (8). The Authors observe that the optimal
trial function is given by

ψ̃(x) =
∞∑
n=0

[E[f̂(xn)|x0 = x]− µf ], (9)

that is, ψ̃ is the solution to the Poisson equation for f(x). However, an
explicit solution cannot be obtained in general.

Another operator is proposed in Assaraf and Caffarel (1999): if x ∈ Rd

consider the Schrödinger-type Hamiltonian operator:

H = −1

2

d∑
i=1

∂2

∂x2
i

+ V (x), (10)

where V (x) is constructed to fulfill equation (3):

V (x) =
1

2
√
π(x)

d∑
i=1

∂2
√
π(x)

∂x2
i

.

In this setting f̃(x) = f(x) + Hψ(x)√
π(x)

. These are the operator and the re-

normalized function that will be considered throughout this paper. Although
it can be applied only to continuous state spaces, this Schrödinger-type oper-
ator shows other advantages with respect to the operator (8). First of all, in
order to use (8) the conditional expectation appearing in (9) has to be avail-
able in closed form. Secondly, definition (10) does not require reversibility
of the chain. Moreover, this definition is independent of the kernel P (x,y)
and, therefore, also of the type of MCMC algorithm that is used in the sim-
ulation. On the other hand, it should be noted that our operator requires an
explicit formula for the target density and its derivatives, up to a normalizing
constant. This may unable us to consider the Schrödinger-type operator in
some settings where the operator described in (8) would still be available.
Finally, note that, for calculating f̃ both with the operator (10) and (8), the
normalizing constant of π is not needed.

3 Choice of ψ

The optimal choice of ψ is the exact solution of the fundamental equation
(6). In real applications, typically, only approximate solutions, obtained
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by minimizing σ2(f̃), are available. In other words, we select a functional
form for ψ, typically a polynomial, parameterized by some coefficients, and
optimize those coefficients by minimizing the fluctuations of the resulting f̃ .
The particular form of ψ is very dependent on the problem at hand, that is
on π, and on f . In the examples first, second and third order polynomials are
considered. As one would expect, the higher is the degree of the polynomial,
the higher is the number of control variates introduced and the higher is
the variance reduction of the estimators. It can be easily shown that in a d
dimensional space, using polynomials of order p, provides

(
d+p
d

)
− 1 control

variates.

4 Control Variates

In this section, general expressions for the control variates in the ZV method
are found. Using the Schrödinger-type Hamiltonian H as given in (10) and
trial function:

ψ(x) = P (x)
√
π(x),

the re-normalized function is:

f̃(x) = f(x)− 1

2
∆P (x) +∇P (x) · z, (11)

where:

z = −1

2
∇ ln π(x), (12)

∇ =
(

∂
∂x1
, ..., ∂

∂xd

)
denotes the gradient and ∆ =

∑d
i=1

∂2

∂x2i
is the Laplacian

operator of second derivatives.
Hereafter the function P is assumed to be a polynomial. Two special

cases, that will be used in the examples discussed in the second part of the
paper, are now considered. As a first case, for P (x) =

∑d
j=1 ajxj (1st degree

polynomial), one gets:

f̃(x) = f(x) +
Hψ(x)√
π(x)

= f(x) + aTz,
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where z = [z1, ..., zd]
T is the vector of control variates defined in (12). Sim-

ilarly for quadratic polynomials, P (x) = aTx + 1
2
xTBx. The re-normalized

f̃ is :

f̃(x) = f(x)− 1

2
tr(B) + (a +Bx)Tz

= f(x) + gTy,

where g and y are column vectors with 1
2
d(d + 3) elements defined in the

following way:

• g := [aT bT cT ]T where b := diag(B), and c is a column vector with
1
2
d(d− 1) elements; The element ij of the matrix B (for i ∈ {2, ..., d},

and j < i), is the element 1
2
(2d− j)(j − 1) + (i− j) of the vector c.

• y := [zT uT vT ]T where u := x ∗ z − 1
2
1 (where “∗” is the Hadamard

product, and 1 is a vector of ones), and v is a column vector with
1
2
d(d − 1) elements; xizj + xjzi (for i ∈ {2, ..., d}, and j < i), is the

element 1
2
(2d− j)(j − 1) + (i− j) of the vector v.

5 Unbiasedness

In this section general conditions on the target π are provided that guarantee
that the ZV-MCMC estimator is (asymptotically) unbiased. Details can be
found in Appendix D.

Let π be a d-dimensional density defined on a bounded open set Ω with
regular boundary ∂Ω. Then, using integration by parts in d dimensions, we
get 〈

Hψ√
π

〉
:= Eπ

[
Hψ√
π

]
=

1

2

∫
∂Ω

[ψ∇
√
π −
√
π∇ψ] · ndσ. (13)

From this equality, it can be proved that, if ψ = P
√
π, a sufficient condi-

tion to get an unbiased estimator is

π(x)
∂P (x)

∂xj
= 0, ∀x ∈ ∂Ω, j = 1, . . . , d.

When π has unbounded support, the formula of integration by parts cannot
be used directly. In this case, a sequence of bounded subsets (Br)r is to
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be constructed, so that Br ↗ Ω. In this case, a sufficient condition for
unbiasedness is

lim
r→+∞

∫
∂Br

π∇P · ndσ = 0.

By reducing all the previous computations for d = 1, a simple condition
can be derived in the univariate case. If Ω = [l, u], where u, l ∈ R := R∪±∞,
it is sufficient that

dP (x)

dx

∣∣∣∣
x=l

π(l) =
dP (x)

dx

∣∣∣∣
x=u

π(u), (14)

which is true, for example, if dP
dx
π annihilates at the border of the support.

These results mean that, in order to get unbiasedness, one should consider
trial functions ψ whose partial derivatives are zero on the set ∂Ω∗ := {x ∈
∂Ω : π(x) > 0}. For all the examples discussed in Section 8, the ZV-MCMC
estimators have been found to be unbiased for any choice of (polynomial) P .

In the seminal paper by Assaraf and Caffarel (1999) unbiasedness condi-
tions are not explored since, typically, the target distribution the physicists
are interested in, annihilate at the border of the domain with an exponential
rate.

The following example shows how crucial the choice of trial functions is
in order to have an unbiased estimator, even in trivial models.

Example 5.1 Let f(x) = x and π be exponential: π(x) = λe−λxI{x>0}. If
P (x) is a first order polynomial, condition (14) does not hold. Moreover, this
choice does not allow for a ZV-MCMC estimator, since the control variate
z = −1

2
d
dx

ln π(x) is constant and σ(x, z) = 0. However, to satisfy equation
(14) it is sufficient to consider second order polynomials. Indeed, if P (x) =
a0 +a1x+a2x

2 equation (14) is satisfied provided that a1 = 0. Therefore, the
minimization of the variance of f̃ can be carried out within this special class.
Note that higher order polynomials, whose derivative annihilate at zero, can
provide ZV-MCMC estimators with greater variance reduction.

6 Optimal coefficients

In this section variance reduction is discussed in the ZV context and the
optimal choice of ψ is found for some special cases. Note that, if at least one
of these hypotheses does not hold, σ2(f̃) may be infinite or undefined:
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A1 : σ2(f) <∞;

A2 : σ2(
Hψ√
π

) <∞.

Therefore, from now on, both A1 and A2 are supposed to hold. As al-
ready observed, the ideal Zero Variance ψ cannot be usually explicitly found.
Therefore, a particular subset of ψ is considered, which is typically a para-
metric class, and σ2(f̃) is minimized within this class. However, we need to
verify that this optimal solution still gives appreciable variance reduction. In
the following proposition a useful criterion is stated in order to have variance
reduction.

Proposition 6.1 Under conditions A1 and A2,

σ2(f̃) ≥ σ2(f)−

〈
f(x)Hψ√

π

〉2

〈(
Hψ√
π

)2
〉 . (15)

In particular, if ψ(x) = P (x)
√
π(x) and d = 1, equality holds if and only if∫

f(x)[P ′′π + P ′π′] =
1

2

∫
[(P ′′)2π +

(P ′)2(π′)2

π
+ 2P ′P ′′π′]. (16)

Proof: By definition of f̃ , it follows that

σ2(f̃) = σ2(f) +

〈(
Hψ√
π

)2
〉

+ 2σ(f,
Hψ√
π

). (17)

Fist of all, observe that we can always assume 〈(Hψ√
π

)2〉 > 0, since this

second moment is zero if and only if Hψ = 0, but in this case f̃ ≡ f . As a
consequence, (15) easily follows from (17) because, for any x, y with x 6= 0,

we have x+ 2y ≥ −y2/x. Taking x := 〈(Hψ√
π

)2〉 and y := σ(f,
Hψ√
π

) gives the

result. Moreover, equality in (15) holds if and only if x = −y. Now, when
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d = 1, observe that〈(
Hψ√
π

)2
〉

=
1

4

∫
[(P ′′)2π +

(P ′)2(π′)2

π
+ 2P ′P ′′π′],

σ(f,
Hψ√
π

) = −1

2

∫
f(x)[P ′′π + P ′π′].

Therefore, equality in (15) holds if and only if condition (16) is satisfied. �

Whenever condition (16) is satisfied, σ2(f̃) is certainly smaller than σ2(f).
Of course, this is true if ψ solves the fundamental equation and therefore f̃ is
constant and the ideal result of zero variance is achieved. However, a variance
reduction is guaranteed even if σ2(f̃) is minimized within a particular class
of functions ψ or, equivalently, class of polynomials P .

6.1 Special case: polynomial trial functions

In the sequel, the case of polynomial trial functions is discussed.

1. Univariate π. For the sake of simplicity, the target π is first supposed
to be univariate. Therefore, univariate polynomials are considered.
Constant polynomials P ∈ P := {P (x) ≡ c, c ∈ R} are not interesting,
since in this case Hψ ≡ 0, so that f̃ ≡ f . Consider the class of first
order polynomials P := {P := a0 + a1x, a0, a1 ∈ R}.
In this case, Equation (16) becomes∫

a1f(x)π′ =
1

2
a2

1I0,

where I0 :=
∫ (π′)2

π
is the Fisher information of π with respect to the

location parameter. I0 is supposed to be finite, otherwise, 〈(Hψ/
√
π)2〉

is infinite and A2 does not hold.

If one introduces the control variate z = −1
2
d log π
dx

, then

I0 = 4σ2(z) and

∫
f(x)π′ = −2σ(f, z),

so that

a1 = −σ(f, z)

σ2(z)
.
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This is just the solution (2), obtained by minimizing the variance of f̃
when only one control variate is considered. Moreover, observe that∫

f(x)π′ = |f(x)π|+∞−∞ −
∫
f ′π(x).

If f(x)π annihilates at infinity, then
∫
f(x)π′ = −〈f ′〉. In this case,

the solution a1 = −2〈f ′〉/I0, for arbitrary a0, is obtained. The solu-
tion a1 = 0 is meaningless, because it reduces to the case of constant
polynomials.

This example may be generalized for classes of higher-order polynomi-
als. However, although theoretically it is not difficult to minimize the
variance, stronger integrability conditions and computational problems
appear. These issues are due to the integral∫

(P ′)2(π′)2

π

appearing in the right side of Equation (16). When P is a polynomial
of order q, this integral involves, in turn, the computation of different
integrals of the kind

In :=

∫
xn

(π′)2

π
, n = 1, . . . , q

that are expected to be finite in order for 〈(Hψ/
√
π)2〉 to be finite.

2. Multivariate π, linear polynomials. Generalizing the previous setting
to d-dimensional target distributions, d control variates zi (1 ≤ i ≤ d)
are needed and f̃ is equal to

f̃(x) = f(x) + aTz,

where z = [z1, · · · , zd]T . The optimal choice of a, that minimizes the
variance of f̃(x), is:

a = −Σ−1
zz σ(z, f), where Σzz = E(zzT ), σ(z, f) = E(zf).

We anticipate that conditions under which the ZV-MCMC estimator
obeys a CLT (Section 7) guarantee that the optimal a is well defined.
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In ZV-MCMC, the optimal a is estimated in a first stage, through a
short MCMC simulation.

When higher-degree polynomials are considered, the same optimal for-
mula for the coefficients associated to the control variates is obtained,
provided that an explicit formula for the control variate vector z has
been found.

7 Central limit theorem

Necessary conditions for existence of a CLT for µ̂f are well known in the
literature (Tierney (1994)):

Theorem 7.1 Suppose an ergodic Markov chain {xn}, with stationary dis-
tribution π, and a real valued function f satisfy one of the following condi-
tions:

B1 : The chain is geometrically ergodic and f(x) ∈ L2+δ(π) for some
δ > 0.

B2 : The chain is uniformly ergodic and f(x) ∈ L2(π).

Then

s2
f = Eπ

[(
f(x0)− µf

)2
]

+ 2
+∞∑
k=1

Eπ
[(
f(xk − µf

) (
f(x0)− µf

)]
is well defined, non-negative and finite, and

√
N (µ̂f − µf )

L−→ N (0, s2
f ). (18)

Therefore, the ZV-MCMC estimator obeys a CLT provided that the re-
normalized function f̃ satisfies one of the integrability conditions required in
B1 and B2. By the definition of f̃ , this implies, in turn, that the control
variates zj = ∂ lnπ

∂xj
and the trial P (x) satisfy some integrability conditions,

which depend on the choice of P (x). More precisely, from (11), ∆P and
∇P · z should belong to the space L2+δ(π) when the chain is geometrically
ergodic.

In the following corollary, the case of linear and quadratic polynomials P
(used in the examples in Section 8) is considered.
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Corollary 7.2 Let ψ(x) = P (x)
√
π, where P (x) is a first or second degree

polynomial. Then, the ZV-MCMC estimator µ̂f̃ is a consistent estimator
of µf which satisfies the CLT equation (18), provided one of the following
conditions holds:

• If P is linear:

C1 : The chain is geometrically ergodic and zj ∈ L2+δ(π), for all
j ∈ {1, ..., d} and some δ > 0.

C2 : The chain is uniformly ergodic and zj ∈ L2(π), for all j ∈
{1, ..., d}.

• If P is quadratic:

D1 : The chain is geometrically ergodic and zj, xizj ∈ L2+δ(π), for all
i, j ∈ {1, ..., d} and some δ > 0.

D2 : The chain is uniformly ergodic and zj, xizj ∈ L2(π), for all
i, j ∈ {1, ..., d}.

It should be noted that, in the case of linear P , if f ∈ L2(π) and the
Markov chain is uniformly ergodic, then a sufficient condition to get a CLT
is

mj = Eπ

[(
∂

∂xj
ln(π(x))

)2
]
<∞, ∀j.

On the other hand, if the Markov chain is only geometrically ergodic, the
stronger condition

Eπ

[(
∂

∂xj
ln(π(x))

)2+δ
]
<∞,

for some δ > 0, is needed. The quantity mj is known in the literature
as Linnik functional (if considered as a function of the target distribution,
I(π)) since it was introduced by Linnik (1959) and is related to the Fisher
information and to the entropy. It has been shown in McKean (1966) that,
for univariate distributions, finiteness of I[π] implies finiteness of the entropy
of π.
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The Fisher information (in a frequentist setting with scalar parameter β) is:

I(β) = E

[(
∂

∂β
ln(π(x; β))

)2
]

=

∫
1

π(x; β)

(
∂

∂β
π(x; β)

)2

π(x; β)dx.

If β is the location parameter, i.e., if π(x; β) = h(x−β), the equality ∂
∂β
h(x−

β) = − ∂
∂x
h(x− β) implies∫

1

π(x; β)

(
∂

∂β
π(x; β)

)2

dx =

∫
1

π(x; β)

(
∂

∂x
π(x; β)

)2

dx.

Therefore, the quantity mj is interpretable as the Fisher information of a
location family in a frequentist setting. In the final appendices, it is proved
that all the estimators discussed in the examples in Section 8 obey a CLT.
A detailed proof is given for linear polynomials. The proof can be, however,
easily extended to the case of higher-degree polynomials.

In most cases, an explicit computation is the only way to discuss finiteness
of mj. However, for particular models, simpler conditions can be found. In
the following section, the case of the exponential family is discussed.

7.1 Exponential family

Let π belong to a d-dimensional exponential family:

π(x) ∝ exp(β ·T(x)−Kp(β))p(x), (19)

where β ∈ Rd is the vector of natural parameters, T = (T1, T2, . . . , Td) is
the sufficient statistic, Kp(β) is the cumulant generating function and p(x)
is a reference measure. The following theorem provides a sufficient condition
for a CLT for ZV-MCMC estimators when the target belongs to the expo-
nential family and a uniformly ergodic Markov Chain is considered. Similar
results can be achieved when the Markov Chain is geometrically ergodic, by
considering the 2 + δ moment.

Theorem 7.3 Let π belong to an exponential family as in (19), with p(x)

such that
∂ log p

∂xj
∈ L2(π), for j = 1, . . . , d. Then, the Linnik functional of π

is finite if and only if

∂Tk
∂xj
∈ L2(π), ∀i, ∀k = 1, 2, . . . , d.
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Proof
By a direct computation, we get

∂π

∂xj
= exp(β ·T−Kp(β))

[
∂p

∂xj
+ p(x)β · ∂T

∂xj

]
,

so that
∂ log π(x)

∂xj
=

1

π

∂π

∂xj
=

(
β · ∂T

∂xj
+

1

p

∂p

∂xj

)
.

The thesis follows immediately since, by hypothesis, ∂ log p
∂xj
∈ L2(π). �

Remark. In general, it can be hard to verify the hypothesis of Theorem 7.3
involving the reference measure p(x). However, in most well known expo-
nential models p(x) ≡ 1, so that this condition is trivially satisfied.

Example 7.1 The Gamma density Γ(α, θ) can be written as an exponential
family on (0,+∞):

π(x) = exp(β ·T(x)−Kp(β))p(x),

where p(x) ≡ 1, Kp(β) = −α log θ, and the vector of parameters and the
sufficient statistic are equal to:

• β = (θ, α− 1) and T(x) = (−x, log x) if α 6= 1;

• β = θ, T (x) = −x if α = 1.

Since p ≡ 1, hypotheses of Theorem 7.3 are satisfied. Therefore, it is
sufficient to study the gradient of the sufficient statistic. If α = 1, T (x) =
−x, whose derivative is constant and trivially belongs to L2(π). If α 6= 1, we
need to check wether 1/x ∈ L2(π). To this end, we should study the finiteness
of ∫ +∞

0

1

x2
π(x)dx ∝

∫ +∞

0

1

x2
xα−1 exp(−θx)dx =

∫ +∞

0

1

x3−α exp(−θx)dx,

which is finite if and only if α > 2.
Therefore, the Gamma density Γ(α, θ) has finite Linnik functional for any

θ and for any α ∈ {1} ∪ (2,+∞). Under these conditions, a CLT holds for
the ZV-MCMC estimator.

16



8 Examples

In the sequel standard statistical models are considered. For these models,
the ZV-MCMC estimators are found in a Bayesian context; from now on,
the target π = π(β|x) is the posterior distribution in a Bayesian framework.
Numerical simulations are provided, that confirm the effectiveness of vari-
ance reduction achieved, by minimizing the variance of f̃ among polynomial
functions. Moreover, conditions for both unbiasedness and CLT for f̃ are
verified for all the examples (for detailed proofs, we refer the reader to the
appendices).

8.1 Probit Model

Let yi be Bernoulli r.v.’s: yi|xi ∼ B(1, pi), pi = Φ(xTi β), where β ∈ Rd is the
vector of parameters of the model and Φ is the c.d.f. of a standard normal
distribution. The likelihood function is:

l(β|y,x) ∝
n∏
i=1

[
Φ(xTi β)

]yi [
1− Φ(xTi β)

]1−yi
.

As it can be seen by inspection, the likelihood function is invariant under the
transformation (xi, yi)→ (−xi, 1− yi). Therefore, for the sake of simplicity,
in the rest of the example we assume yi = 1 for any i, so that the likelihood
simplifies:

l(β|y,x) ∝
n∏
i=1

Φ(xTi β).

This formula shows that the contribution of xi = 0 is just a constant
Φ(xTi β) = Φ(0) = 1

2
, therefore, without loss of generality, we assume for

all i, xi 6= 0.
Using flat priors, the posterior of the model is proportional to the likeli-

hood,

π(β|y,x) ∝
n∏
i=1

Φ(xTi β)

and the Bayesian estimator of each parameter, βk, is the expected value of
fk(β) = βk under π (k = 1, 2, · · · , d).
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Using Schrödinger-type Hamiltonians, H, defined in (10), and ψk(β) =
Pk(β)

√
π(β), as the trial functions, where Pk(β) =

∑d
j=1 aj,kβj is a first

degree polynomial, one gets:

f̃k(β) = fk(β) +
Hψk(β)√
π(β|y,x)

= fk(β) +
d∑
j=1

aj,kzj,

where, for j = 1, 2, . . . , d,

zj = −1

2

∂ lnπ(β|y,x)

∂βj

=
n∑
i=1

yixidφ(xiβ)

Φ(xiβ)
− (1− yi)xidφ(xiβ)

1− Φ(xiβ)
,

which simplifies to

zj = −1

2

n∑
i=1

xijφ(xTi β)

Φ(xTi β)
,

because of the assumption yi = 1 for any i. A proof of unbiasedness and
existence of a CLT for the ZV-MCMC estimator for the Probit model is
reported in Appendix A.

To demonstrate the effectiveness of ZV in this setting, a simple example,
Douc et al. (2007), is presented. The bank dataset from Flury and Riedwyl
(1988) contains the measurements of four variables on 200 Swiss banknotes
(100 genuine and 100 counterfeit). The four measured variables xi (i =
1, 2, 3, 4), are the length of the bill, the width of the left and the right edge,
and the bottom margin width. These variables are used in a probabilistic
model as the regressors, and the type of the banknote yi, as the response
variable (0 for genuine and 1 for counterfeit). The model is the one outlined
at the beginning of this section. Now, for k = 1, . . . , d, the optimal (in
the sense of minimizing the asymptotic variance of the resulting MCMC
estimators) vector of parameters ak should be found. To this end, a short
MCMC simulation (of length 2000, after 1000 burn in steps) is run, and the
optimal coefficients are estimated:

âk = −Σ̂−1
zz σ̂(z, βk).
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The Albert-Chib sampler (Albert and Chib (1993)), that is a Gibbs sam-
pler for GLM, is used to run the Markov chain. Then, another MCMC
simulation (of length 2000, and independent of the first one) is run, along

which f̃d(β) is averaged. The MCMC traces have been depicted in the left
plot of Fig. 1. The blue curves are the trace of fk (ordinary MCMC), and the

red curves are the trace of f̃k (ZV-MCMC). It is clear from the figure that
the variances of the estimator have substantially decreased. Indeed the ratio
of the Sokal estimate of the asymptotic variances (Sokal (1996)) of the two
estimators (the ordinary MCMC and and ZV-MCMC estimates) are between
25 and 100.
Even better performance can be achieved by a using second degree polyno-
mial to define the trial function. In the right plot of Fig. 1 the traces of
ZV-MCMC with second order P (x) have been depicted along with the trace
of the ordinary MCMC. As it can be seen from the figure, the variances of
the ZV estimates are negligible. In this case the ratio of the Sokal variances
of two estimators are between 25, 000 and 90, 000.

8.2 Logit Model:

In the same setting as the probit model, let pi =
exp(xTi β)

1+exp(xTi β)
where β ∈ Rd is

the vector of parameters of the model. The likelihood function is:

l(β|y,x) ∝
n∏
i=1

(
exp(xTi β)

1 + exp(xTi β)

)yi ( 1

1 + exp(xTi β)

)1−yi
.

By inspection, it is easy to verify that the likelihood function is invariant
under the transformation:

(xi, yi)→ (−xi, 1− yi).

Therefore, for the sake of simplicity, in the sequel we assume yi = 0 for any
i, so that the likelihood simplifies as:

l(β|y,x) ∝
n∏
i=1

1

1 + exp(xTi β)
.

The contribution of xi = 0 to the likelihood is just a constant 1
1+exp(0)

= 1
2
,

therefore, without loss of generality, it is assumed that xi 6= 0 for all i.
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Figure 1: Traces of ordinary MCMC and ZV-MCMC, plotted in blue and
red respectively for different parameters (in the rows) and different degree
polynomials (in the columns).
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Using flat priors, the posterior distribution is:

π(β|y,x) ∝
n∏
i=1

1

1 + exp(xTi β)

and the Bayesian estimator of each parameter, βk, is the expected value of
fk(β) = βk under π (k = 1, 2, · · · , d).
Using the same pair of operator H and test function ψk as before, the control
variates are:

zj =
1

2

n∑
i=1

xij
exp(xTi β)

1 + exp(xTi β)
, for j = 1, 2, . . . , d.

A logit model is fitted to the same dataset of Swiss banknotes, that has been
introduced in the probit model example.
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Similar to the previous example, in the first stage a MCMC simulation is
run, and the optimal parameters of P (β) are estimated. Then, in the second
stage an independent simulation is run, and f̃d is averaged, using the optimal
trial function that has been estimated in the first stage.

As shown in Fig. 2 for linear polynomial, the ratio of the Sokal’s estimates
of the asymptotic variances of the two estimators (the ordinary MCMC and
and ZV-MCMC estimates) are between 10 and 40. Using the quadratic
polynomial, the ratio of the Sokal’s variances are between 2, 000 and 6, 000.

Figure 2: Traces of ordinary MCMC and ZV-MCMC plotted in blue and red
respectively: different parameters in the rows and different degree polynomi-
als in the columns.
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8.3 GARCH Model

Since the introduction of the autoregressive conditional heteroskedasticity
(ARCH) model by Engle (1982), and its extension to generalized autoregres-
sive conditional heteroskedasticity (GARCH) model by Bollerslev (1986),
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they have become one of the most important building blocks of models in
econometrics and financial econometrics. The widespread applications of
GARCH models, is due to its parameter parsimony and interpretability, and
to some extent to the analytical tractability of the model. Using few param-
eters, these kinds of models can mimic some of the most important stylized
features of financial time series, like volatility clustering, fat tails, and asym-
metric volatility. The classical method to estimate GARCH models, has been
maximum likelihood. Since the log-likelihood function is a nonlinear function
of the parameters, numerical optimization methods should be employed for
finding the maximum likelihood estimates. In order to force strict positiv-
ity of the volatility in the model, and to guarantee the stationarity of the
process, parameters should be restricted to satisfy some constraints. Usu-
ally incorporating these constraints makes the nonlinear optimization fairly
complicated. Bayesian estimation of GARCH models has been considered
as an alternative to the standard maximum likelihood approach. Although
the Bayesian estimation method may seem complicated and computationally
intensive, finding the maximum likelihood estimates in the presence of high
nonlinearity of the log-likelihood function, and numerous (possibly) nonlin-
ear constraints, could be equally, if not more, difficult. On the other hand
MCMC methods make the Bayesian estimation process almost automated.
Usually the GARCH models are used for forecasting purposes. Plugging in
the estimates in the prediction formulae, could lead to suboptimal estimates
of the forecasts of variables of interest. However the Bayesian approach will
provide a joint posterior distribution for the parameters, that can be used in
order to get optimal predictions, and credible regions.

In financial applications, GARCH models have been widely used to model
returns. Here it is shown how the ZV-MCMC principle can be exploited
to estimate the parameters of a univariate GARCH model applied to daily
returns of exchange rates in a Bayesian setting. Let S(t) be the exchange
rate at time t. The daily returns are defined as

r(t) :=
S(t)− S(t− 1)

S(t− 1)
≈ ln

(
S(t)

S(t− 1)

)
.

In a Normal-GARCH model, we assume the returns are conditionally Nor-
mally distributed,

r(t)|Ft ∼ N (0, ht),
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where ht is a predictable (Ft−1 measurable process):

ht = ω + βht−1 + αr2
t−1,

where ω > 0, α ≥ 0, and β ≥ 0. Let r = (r1, . . . , rT ) be the observed time
series. The likelihood function is equal to:

l (ω, α, β|r) ∝

(
T∏
t=1

ht

)− 1
2

exp

(
−1

2

T∑
t=1

r2
t

ht

)
and using independent truncated Normal priors for the parameters:

π(ω) ∝ exp

(
−1

2

ω2

σ2(ω)

)
Iω>0,

π(α) ∝ exp

(
−1

2

α2

σ2(α)

)
Iα>0,

π(β) ∝ exp

(
−1

2

β2

σ2(β)

)
Iβ>0,

the posterior is:

π (ω, α, β|r) ∝ π(ω)π(α)π(β)l (ω, α, β|r)

∝ exp

[
−1

2

(
ω2

σ2(ω)
+

α2

σ2(α)
+

β2

σ2(β)

)]( T∏
t=1

ht

)− 1
2

exp

(
−1

2

T∑
t=1

r2
t

ht

)
.

Therefore:

ln π (ω, α, β|r) = c− 1

2

(
ω2

σ2(ω)
+

α2

σ2(α)
+

β2

σ2(β)
+

T∑
t=1

lnht +
T∑
t=1

r2
t

ht

)
and the control variates (for the case of first degree polynomial in trial func-
tion) are:

∂ ln π

∂ω
= − ω

σ2(ω)
− 1

2

T∑
t=1

1

ht

∂ht
∂ω

+
1

2

T∑
t=1

r2
t

h2
t

∂ht
∂ω

,

∂ lnπ

∂α
= − α

σ2(α)
− 1

2

T∑
t=1

1

ht

∂ht
∂α

+
1

2

T∑
t=1

r2
t

h2
t

∂ht
∂α

,
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∂ lnπ

∂β
= − β

σ2(β)
− 1

2

T∑
t=1

1

ht

∂ht
∂β

+
1

2

T∑
t=1

r2
t

h2
t

∂ht
∂β

,

where:

∂ht
∂ω

=
1− βt−1

1− β
,

∂ht
∂α

=

{
0 t = 1

r2
t−1 + β ∂ht−1

∂α
t > 1

,

∂ht
∂β

=

{
0 t = 1

ht−1 + β ∂ht−1

∂β
t > 1

.

The proof of the CLT for the ZV-MCMC estimator for the Garch model
is reported in Appendix C.

As an example, a Normal-GARCH(1, 1) is fitted to the daily returns of the
Deutsche Mark vs British Pound (DEM/GBP) exchange rates from January
1985, to December 1987 (750 obs). In the first stage a short MCMC simu-
lation, as proposed in Ardia (2008), is used in order to estimate the optimal
parameters of the trial function. Then in the second stage an independent
simulation is run and f̃j(x) is averaged in order to efficiently estimate the
posterior mean of each parameter.

Estimates of Parameters:

Method ω̂ α̂ β̂
MLE 0.0445 0.2104 0.6541

MCMC 0.0568 0.2494 0.5873

First, second and third degree polynomials in the trial function are used.
As can be seen in Fig. 3 and Table 1, where the Sokal estimates of variance
are reported, the ZV strategy reduces the variance of the estimators up to
tens of thousands of times.

Table 1: Variance Reduction in GARCH Model Estimation:
Sokal estimate of variance of MC estimator /Sokal estimate of variance of ZV-MC estimator

ω̂ α̂ β̂
1st Degree P (x) 9 20 12

2nd Degree P (x) 2,070 12,785 11,097
3rd Degree P (x) 28,442 70,325 30,281
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Figure 3: Traces of ordinary MCMC and ZV-MCMC plotted in blue and red
respectively: different parameters in the rows and different degree polynomi-
als in the columns

9 Possible generalizations

Two are the main ingredients to construct ZV-MCMC estimators; namely
a trial function ψ and an operator H that are combined to define a re-
normalized function f̃ as in (5). In this section two possible generalizations
of the ZV principle, as illustrated so far, are proposed. The first one considers
a bigger class of trial functions, the second one allows the use of a wider class
of operators by defining a more general re-normalized function f̃ .

9.1 Extended trial functions

Throughout this paper, a re-normalized f̃ as defined in (5) has been consid-
ered, where the trial function has been parametrized as ψ(x) = P (x)

√
π(x).

This setting naturally leads to using the gradient of the log-target in the
control variate formulation.

In recent work by Girolami and Calderhead (2011), the dynamcics of
the classical Hamiltonian MCMC and of the MALA methods, in which first
derivatives of the log-target appear, are efficiently improved by considering
second and higher order derivatives of the same quantity. In a similar way, in
our setting a finer definition of f̃ may lead to work with higher-order deriva-
tives of the log-target. This can be easily achieved by considering a wider
class of trial functions: ψ(x) = P (x)q(x), where, as before, P (x) denotes a
parametric class of polynomials, and q(x) is an arbitrary (sufficiently regu-
lar) function. Then, by using the identity V = 1

2
√
π
∆
√
π = 1

2
∆ log π, the
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re-normalization term of f̃ in (3) becomes:

Hψ√
π

=
1

2

(
− q√

π
∆P − 2√

π
∇q · ∇P − P√

π
∆q +

P

2
√
π
q
∂2 log π

∂x2

)
.

Therefore, the second derivative of the log-target naturally arises due to the
particular choice of the potential V . The formula obtained, which is quite
involved, can be dramatically simplified for suitable q. For example, the
choice q ≡ 1 gives

Hψ√
π

= − 1

2
√
π

(
∆P +

P

2
∆ log π

)
.

However, it should be noted that, even in this simple case, unbiasedness
conditions are not verified in general. In order to get unbiased estimators,
one can use the following strategy: fix a certain number of parameters in
P, so that the unbiasednes conditions are verified; next, find the optimal
ZV-MCMC estimator by minimizing the variance of f̃ with respect to the
remaining free parameters. In the univariate case, unbiasedeness conditions
lead to fix two parameters, see (14), so we need to consider at least third de-
gree polynomials to have at least one free parameter to minimize the variance
of f̃ . In this, more general setting, also CLT conditions should be carefully
re-phrased.

9.2 Extended Hamiltonian operators

The Hamiltonian operator H = −1
2
∆ + V , where V = 1

2
√
π
∆
√
π, has been

considered so far. In this setting, V is uniquely determined, because of the
constrain (3), which is essetial to get unbiased estimators.

In the paper by Assaraf and Caffarel (2003), an alternative, more general
renormalized function f̃ is defined:

f̃ = f +
Hψ√
π
− ψ(H

√
π)

π
, (20)

where, again, H is an Hamiltonian operator and ψ a quite arbitrary trial
function. In this setting, if H = −1

2
∆ + V , under the same, mild conditions

discussed in Section 5, f̃ has the same expectation as f under π. This
is true without imposing condition (3), so that now V can be also chosen
aribtrarly. Therefore, the re-normalization (20) allows for a more general
class of Hamiltonians.
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10 Discussion

As noted in the introduction, cross-fertilizations between the physics and the
statistical literature have proved to be quite effective in the past, expecially
in the MCMC framework. The first paradigmatic example is the paper by
Hastings (1970) first and Gelfand and Smith (1990) later on, that brought to
the attention of mainstream statisticians the Hastings algorithm - Metropolis
et al. (1953) - that had been used to solve difficult problems in physics for
over forty years before statisticians realized its potential. The paper by
Gelfand e Smith has started very prolific new research lines in statistics
(mostly Bayesian but also frequentist) both in theory and application and
has sparked incredibly many interesting results that then become useful also
to physicists.

In this paper a general variance reduction strategy, first introduced by
the physicists Assaraf and Caffarel (1999) and Assaraf and Caffarel (2003) is
studied and applied to MCMC estimators in a Bayesian setting.

Besides translating into statistical terms the paper by Assaraf and Caf-
farel (1999), the main effort of our work has been the discussion of unbi-
asedness and convergence of the ZV-MCMC estimator. It should be noted
that the study of CLT leads to the condition of finiteness for Eπ[(∂ log π(x)

∂x
)2],

where π is the target distribution of interest. This quantity coincides with the
Fisher Information with respect to a location parameter. Fisher Information
has also been used in the recent paper by Girolami and Calderhead (2011)
as a metric tensor in order to improve efficiency in both Langevin diffusion
and Hamiltonian Monte Carlo methods. Their idea is to choose this metric
as an optimal, local tuning of the dynamic, which is able to take into account
the intrinsic anisotropy in the model considered. In our understanding, what
makes ZV (introduced here) and RMHMC and RMALA (introduced in Giro-
lami and Calderhead (2011)) extremely efficient is the common strategy of
exploiting information contained in the derivatives of the log-target. A com-
bination of the two strategies could be explored: once the derivatives of the
log-target are computed, they can be used both to boost the performance of
the Markov chain (as suggested by Girolami and Calderhead (2011)) and to
achieve variance reduction by using them to design control variates. Com-
bining ZV with clever samplers (as MMALA and RMHMC) is particularly
easy since control variates can be constructed by simply post-processing the
Markov chain and, thus, there is no need to re-run the simulation.

The second main contribution of this paper is the critical discussion of
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the selection of H and ψ. A particular choice of H is proved to provide the
same variance reduction framework exploited in Dellaportas and Kontoyian-
nis (2010). In their work, control variates are derived for reversible MCMC
and are related to the solution of the Poisson equation. In our context, their
hypothesis of reversibility is implied by the simmetry of the particular H
which is chosen. The solution to the Poisson equation depends on the transi-
tion kernel of the sampler and a closed analytical expression for the one-step
ahead conditional expectations along the chain is needed to construct control
variates in the setting of Dellaportas and Kontoyiannis (2010). Moreover, the
degree of variance reduction achieved depends on the MCMC implemented.

In this paper, the Schrödinger-type Hamiltonian H, introduced in the
original article of the physicists, has been considered. This operator can
be used only for continuous state spaces. However, it shows several advan-
tages relative to the operator chosen by Dellaportas and Kontoyiannis (2010).
First, its definition does not depend on the kernel of the chain, so that it is
simpler to evaluate. Moreover, the hypothesis of reversibility is not needed
in our setting.

Different choices of H and ψ could provide alternative efficient variance
reduction strategies as discussed in Section 9. In the present research we have
explored ψ based on first, second and thirs degree polynomials. Despite the
use of this fairly restrictive class of trial functions, the degree of variance re-
duction obtained in the examples in Section 8 and in other simulation studies
(not reported here) is impressive and of the order of tens of times (for first
degree polynomials) and thousands of times (for higher degree polynomials),
with practically no additional extra PCU time needed in the simulation.

Appendix A: Probit model

In the following, it is supposed that P is a linear polynomial. In the Probit
model, the ZV-MCMC estimators obey a CLT if zj have finite 2 + δ moment
under π, for some δ > 0:

Eπ
[
|zj|2+δ

]
= c1Eπ

∣∣∣∣∣
n∑
i=1

xijφ(xTi β)

Φ(xTi β)

∣∣∣∣∣
2+δ


= c1c2

∫
Rd

∣∣∣∣∣
n∑
i=1

xijφ(xTi β)

Φ(xTi β)

∣∣∣∣∣
2+δ n∏

i=1

Φ(xTi β)dβ <∞.
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where c1 = 2−2−δ, and c2 is the normalizing constant of π (the target poste-
rior). Define:

K1(β) =

∣∣∣∣∣
n∑
i=1

xijφ(xTi β)

Φ(xTi β)

∣∣∣∣∣
2+δ

,

K2(β) =
n∏
i=1

Φ(xTi β),

K(β) = K1(β)K2(β)

and therefore:

Eπ
[
|zj|2+δ

]
= c

∫
Rd
K1(β)K2(β)dβ.

where c = c1c2.
Before studying the convergence of this integral, the following property

of the likelihood for the probit model is needed.

Proposition 10.1 Existence of MLE implies that for any β0 ∈ Rd, there
exists i such that xTi β0 < 0.

Proof (by contradiction). Assume there exists some β0 ∈ Rd such that, for
any i, xTi β0 ≥ 0. Then β0 is a direction of recession for the negative log-
likelihood function −

∑n
i=1 ln Φ(xTi β) (that is a proper closed convex func-

tion). This implies that this function does not have non-empty bounded
minimum set Rockafellar (1970), which means that the MLE does not exist.�

Now, rewriting
∫
Rd K(β)dβ in hyper-spherical coordinates through the bijec-

tive transformation (ρ, θ1, . . . , θd−1) := F (β), where F−1 is defined as
β1 = ρ cos(θ1)

βl = ρ cos(θl)
∏l−1

m=1 sin(θm), for l = 2, ..., d− 1

βd = ρ
∏d−1

m=1 sin(θm),

(21)

one gets
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∫
Rd
K(β)dβ =

∫
[0,2π]d−1

∫ +∞

0

K(F−1(ρ, θ))ρd−1

d−2∏
j=2

sind−j(θj−1) dρdθ.

≤
∫

[0,2π]d−1

∫ +∞

0

K(F−1(ρ, θ))ρd−1 dρdθ

:=

∫
[0,2π]d−1

A(θ)dθ,

where

A(θ) =

∫ +∞

0

K1(F−1(ρ, θ))K2(F−1(ρ, θ))ρd−1 dρ.

The final aim is to prove that the function A(θ) is finite on the compact set
[0, 2π]d−1. Then, also its integral, on the same set, will be finite. To this end,
observe that the integrand K is well defined on the real line, so it is enough
to study its asymptotic behaviour when ρ goes to infinity, and θ belongs to
the interval [0, 2π]d−1.

First, analyze

K1(F−1(ρ, θ)) =

∣∣∣∣∣
n∑
i=1

xijφ(|xi|ρλi(θ)
Φ(|xi|ρλi(θ))

∣∣∣∣∣
2+δ

,

where, for any i, λi is a suitable function of the angles θ such that λi ∈
[−1, 1], which takes into account the sign of the scalar product in the original
coordinates system.

For any i, when ρ→∞

• if λi < 0,
xijφ(|xi|ρλi)

Φ(|xi|ρλi) ∈ O (ρ);

• if λi > 0,
xijφ(|xi|ρλi)

Φ(|xi|ρ)λi
∈ O (φ(λiρ));

• if λi = 0,
xijφ(|xi|ρλi)

Φ(|xi|ρλi) = xij

√
2
π
∈ O (1).

Therefore:

n∑
i=1

xijφ(|xi|ρλi)
Φ(|xi|ρλi)

∈ O (ρ)
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and, for any θ ∈ [0, 2π]d−1:

K1(F−1(ρ, θ)) ∈ O
(
ρ2+δ

)
.

Now, focus on K2(F−1(ρ, θ)) =
∏n

i=1 Φ(|xi|ρλi(θ)); existence of MLE for
the probit model implies that, for any θ ∈ [0, 2π]d−1, there exists some l
(1 ≤ l ≤ n), such that λl(θ) < 0, and therefore:

K2(F−1(ρ, θ)) < Φ(|xl|ρλl) ∈ O (φ(λlρ)) ρ→∞. (22)

Putting these results together leads to

K(F−1(ρ, θ)) = K1(F−1(ρ, θ))K2(F−1(ρ, θ)) ∈ O
(
ρ2+δφ(λl(θ)ρ)

)
so that, for any θ ∈ [0, 2π]d−1,

K(F−1(ρ, θ))ρd−1 ∈ O
(
ρ1+δ+dφ (λl(θ)ρ)

)
, ρ→ +∞.

Therefore, whenever the value θ ∈ [0, 2π]d−1, A(θ) is finite, since its integrand
converges to zero rapidly enough when ρ→ +∞. This concludes the proof.

Appendix B: Logit model

In the following, it is supposed that P is a linear polynomial. In the Logit
model, the ZV-MCMC estimators obey a CLT if the control variates zj have
finite 2 + δ moment under π, for some δ > 0 :

Eπ
[
z2+δ
j

]
= c1Eπ

( n∑
i=1

xij
exp(xTi β)

1 + exp(xTi β)

)2+δ


= c1c2

∫
Rd

(
n∑
i=1

xij
exp(xTi β)

1 + exp(xTi β)

)2+δ n∏
i=1

1

1 + exp(xTi β)
dβ.

where c1 = 2−2−δ, and c2 is the normalizing constant of π. Define:

K1(β) =

(
n∑
i=1

xij
exp(xTi β)

1 + exp(xTi β)

)2+δ

,

K2(β) =
n∏
i=1

1

1 + exp(xTi β)
,

K(β) = K1(β)K2(β)
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so that Eπ
[
z2+δ
j

]
= c

∫
Rd K1(β)K2(β)dβ, where c = c1c2. The same approach

as in the Probit Model is exploited. First, it is easy to prove that Proposition
10.1 holds for the Logit model: this property, again, is needed for the sequel.

By using the hyper-spherical change of variables in (21), the finiteness of
the integral

A(θ) =
1

22+δ

∫ +∞

0

K1(F−1(ρ, θ))K2(F−1(ρ, θ))ρd−1 dρ

has to be discussed. As for the Probit Model, it is necessary to prove that
A(θ) is finite on the compact set [0, 2π]d−1. Since the integrand K is well
defined on the real line, it is enough to study its asymptotic behaviour when
ρ goes to infinity, and θ belongs to the interval [0, 2π]d−1.

First, analyze

K1(F−1(ρ, θ)) =

(
n∑
i=1

xij
exp(|xi|ρλi(θ))

1 + exp(|xi|ρλi(θ))

)2+δ

,

where, for any i, λi is a suitable function of the angles θ such that λi ∈
[−1, 1], which takes into account the sign of the scalar product in the original
coordinate system.

For any i, when ρ→∞

• if λi(θ) < 0, xij
exp(|xi|ρλi)

1+exp(|xi|ρλi) ∈ O (exp(−λiρ));

• if λi(θ) > 0, xij
exp(|xi|ρλi)

1+exp(|xi|ρλ)
∈ O (1);

• if λi(θ) = 0, xij
exp(|xi|ρλi)

1+| exp(xi|ρλi) =
xij
2
∈ O (1).

Therefore, for any θ, K1(F−1(ρ, θ)) ∈ O (1). Now analyze K2(F−1(ρ, θ)); for
any θ, existence of MLE implies the existence of some l (1 ≤ l ≤ n), such
that λl(θ) > 0, and therefore:

K2(F−1(ρ, θ)) =
n∏
i=1

1

1 + exp(|xi|ρλi)

<
1

1 + exp(|xl|ρλl)
∈ O (exp(−λlk)) . (23)
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Putting these results together, it follows that for any θ ∈ [0, 2π]d−1:

K(F−1(ρ, θ))ρd−1 ∈ O
(
ρd−1 exp(−λlθρ

)
. (24)

Therefore, whenever the value θ ∈ [0, 2π]d−1, A(θ) is finite, since its integrand
converges to zero rapidly enough when ρ→ +∞. This concludes the proof.

Appendix C: GARCH model

In the following, it is supposed that P is a linear polynomial. In order to prove
the CLT for the ZV-MCMC estimator in the Garch model, it is necessary to
verify that

∂ lnπ

∂α
,
∂ ln π

∂β
,
∂ lnπ

∂ω
∈ L2+δ(π). (25)

To this end, ht and its partial derivatives should be expressed as a function
of h0 and r:

ht = ω(
t−1∑
k=1

1 + βk) + βth0 + α(
t−1∑
k=1

1 + βkr2
t−1−k),

∂ lnπ

∂ω
= 1−βt−1

1−β I{t>1},

∂ lnπ

∂α
=

(
r2
t−1 +

t−2∑
j=0

βt−1−jr2
j

)
I{t>1},

∂ lnπ

∂β
=

(
ht−1 +

t−2∑
j=0

βt−1−jhj

)
I{t>1}.

Next, moving to spherical coordinates, the integral (25) can be written
as ∫

[0,π/2]2

∫ ∞
0

Kj(ρ; θ, φ)dρdθdφ :=

∫
[0,π/2]2

Aj(θ, φ)dθdφ,
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where, for j = 1, 2, 3, Kj(·; θ, φ) = |Wj|2+δ ×W , with

W1 = − 1
σ2(ω)

ρ cos θ sinφ− 1

2

T∑
t=2

(
1

h̃t
− r2

t

h̃2
t

)
1− ρt−1 cost−1 φ

1− ρ cosφ
,

W2 = − 1
σ2(α)

ρ sin θ sinφ− 1

2

T∑
t=2

(
1

h̃t
− r2

t

h̃2
t

)(
r2
t−1 +

t−2∑
j=0

xt−1−j
3 r2

j

)
,

W3 = − 1
σ2(β)

ρ cosφ− 1

2

T∑
t=2

(
1

h̃t
− r2

t

h̃2
t

)(
h̃t−1 +

t−2∑
j=0

xt−1−j
3 h̃j

)
,

W = exp

(
−1

2
ρ2( 1

σ2(ω)
cos2 θ sin2 φ+ 1

σ2(α)
sin2 θ sin2 φ+ 1

σ2(β)
cos2 φ)− 1

2

T∑
t=1

r2
t

h̃2
t

)
×

×ρ2 sin θ

(
T∏
t=1

h̃t

)− 1
2

(26)
and

h̃t = −ρ cos θ sinφ
t−1∑
k=1

(1+ρk cosk φ)+h0ρ
t cost φ+ρ sin θ sinφ

t−1∑
k=1

(1+r2
t−1−kρ

k cosk φ).

The aim is to prove that, for any θ, φ ∈ [0, π/2] and for any j, Aj(θ, φ) is
finite. To this end, the convergence of Aj for any θ, φ should be discussed.

Let us study the proper domain of Kj(·; θ, φ). Observe that Kj(·; θ, φ) is
not defined whenever h̃t = 0 and, if j = 1 and φ 6= π/2, also for ρ = 1/ cosφ.
However, the discontinuity of K3 at this point is removable, so that the
domain of K3 can be extended by continuity also at ρ = 1/ cosφ.

Since h̃t = 0 if and only if ρ = 0, it can be concluded that, for any j and
for any θ, φ ∈ [0, π/2], the proper domain of Kj(·; θ, φ) is

domKj(·; θ, φ) = (0 +∞).

By fixing the value of θ and φ, let us study the limits of Kj when ρ → 0
and ρ → +∞. Observe that, whatever the values of θ and φ are, Wj’s are
rationale functions of ρ. Therefore, for any j, |Wj|2+δ cannot grow towards
infinity more than polynomially at the boundary of the domain. On the
other hand, W goes to zero with an exponential rate both when ρ → 0
and ρ → +∞, for any θ and φ. This is sufficient to conclude that, for any
θ, φ ∈ [0, π/2], the integral Aj is finite for j = 1, 2, 3 and, therefore, condition
(25) holds and the ZV estimators for the GARCH model obeys a CLT.
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Appendix D: unbiasedness

In this Appendix, explicit computations are presented, which were omitted in
Section 5. Moreover, it is proved that all the ZV-MCMC estimators discussed
in Section 8 are unbiased.

Following the same notations as in Section 5, equation (13) follows be-
cause〈
Hψ√
π

〉
:=

∫
Ω

Hψ
√
π

=

∫
Ω

(V ψ
√
π − 1

2
∆ψ
√
π)

=

∫
Ω

V
√
πψ − 1

2

∫
∂Ω

√
π∇ψ · ndσ +

1

2

∫
Ω

∇
√
π · ∇ψ

=

∫
Ω

V
√
πψ − 1

2

∫
∂Ω

√
π∇ψ · ndσ +

1

2

∫
∂Ω

ψ∇
√
π · ndσ − 1

2

∫
Ω

ψ∆
√
π

=

∫
Ω

(H
√
π)ψ +

1

2

∫
∂Ω

[ψ∇
√
π −
√
π∇ψ] · ndσ

=
1

2

∫
∂Ω

[ψ∇
√
π −
√
π∇ψ] · ndσ.

Therefore,

〈
Hψ√
π

〉
= 0 if ψ∇

√
π =

√
π∇ψ on ∂Ω. Now, let ψ = P

√
π.

Then,

∇ψ =
√
π∇P +

P

2
√
π
∇π,

so that

〈
Hψ√
π

〉
= 0 if

π(x)
∂P (x)

∂xj
= 0, ∀x ∈ ∂Ω, j = 1, . . . , d.

When π has unbounded support, following the previous computations on Br,
one gets 〈

Hψ√
π

〉
=

1

2
lim

r→+∞

∫
∂Br

π∇P · ndσ. (27)

Therefore, unbiasedness in the unbounded case is reached if the limit appear-
ing in the right-hand side of (27) is zero.
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Now, the unbiasedness of the ZV-MCMC estimators exploited in Section
8 is discussed. To this end, condition (27) should be verified. let Bρ be a
hyper-sphere of radius ρ and let n := 1

ρ
β be its normal versor. Then, for

linear P , (27) is true if, for any j = 1, . . . , d,

lim
ρ→+∞

1

ρ

∫
Bρ

π(β)βjdS = 0.

The Probit and Logit models are first considered. By using the same
notations as in Appendix A and B, this integral is proportional to

lim
ρ→+∞

1

ρ

∫
[0,2π]d−1

K2(F−1(ρ, θ))ρddθ.

By the continuity ofK2 and since the set of integration is compact, a sufficient
condition to get unbiasedness is

lim
ρ→+∞

K2(F−1(ρ, θ))ρd−1 = 0,

which is true, because of (22) for the Probit model, and (23) for the Logit
model.

A similar result can be found also for the GARCH model. In this case, Bρ

is the portion of a sphere of radius ρ defined on the positive orthant. Then,
the limit

lim
ρ→+∞

1

ρ

∫
[0,π/2]2

W (F−1(ρ, θ))ρddθ,

where W was defined in (26), should be discussed. Again, the continuity of
W and the compactness of the set of integration lead to the simpler condition

lim
ρ→+∞

W (F−1(ρ, θ))ρ2 = 0,

which is true, since W decades with an exponential rate.
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