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We present a new preprocessing method, PeakSelect, to improve the accuracy and efficiency of

TandemMass-Spec peptide (protein) identification. The fundamental difference between noise and

fragment ions in spectra is that ions have isotopes but noise does not. We propose a new and

important concept of an Isotope Pattern Vector (IPV) which characterizes the isotope cluster of

fragment ions. Then the noise and real peaks can be distinguished by the quantitative IPV values.

PeakSelect first uses a new method of the Gaussian Mixture Model and Expectation-Maximization

(EM) algorithm to find the base intensity level (baseline) in a spectrum. Then PeakSelect selects

features based on the IPV and baseline, and constructs a decision tree to automatically classify the

peaks into different categories such as noise, single ion peaks, and overlapping peaks. Experiments

show that PeakSelect can help to reduce the Mascot searching time and increase the reliability of

peptide identifications. In particular, PeakSelect performs well on complex spectra with a large

number of peaks from large peptides, and supports more sequence identification than other well-

known systems. Copyright # 2008 John Wiley & Sons, Ltd.
Mass spectrometric analysis and database search has been a

well-known tool for peptide and protein identification.1,2

During experiments, the peptides separated by liquid

chromatography are fragmented and ionized by collisio-

n-induced dissociation (CID)3 and the ions are measured by

mass spectrometry for mass/charge ratios (m/z). Con-

sequently, the peptides are identified (or sequenced) by these

m/z values of ions in the tandem mass spectrum with a

sequence database search.

Generally, a good quadrupole time-of-flight (Q-TOF)4

spectrum of a peptide has 1000 to 5000 or more peaks, but

only 1–5% of these peaks are ’real peaks’ while the others are

peaks corresponding to noise or the isotopes of fragment

ions. Here, ’real peaks’ are the monoisotopic peaks

corresponding to the fragment ions in tandem mass spectra,

such as the b-, y-, and a-types of fragment ions.5–8 The

numerous noise and isotopic peaks in tandem mass spectra

can lead to a heavy computational cost in database search.

Furthermore, the noise can cause either false negative or false

positive peptide identifications since they may match with

the theoretical ions of an irrelevant peptide sequence. To

increase the accuracy of peptide identification and decrease
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the computation complexity, a preprocessing of tandem

mass spectra should be introduced to distinguish the real

peaks from noise and isotopic peaks in the spectrum before

database searching.

The preprocessing has two major purposes: denoising and

deconvolution of isotopic peaks (or deisotoping). The

difficulties in the preprocessing include: (1) the quality of

spectra is totally different. For example, the distributions of

noise peaks in spectra are significantly different; (2) the

intensity of many important ions (e.g., b-series and y-series

ions) is very low, which is confounding with the noise peaks

in intensity; (3) the convolution of isotopic peaks is complex,

which makes it more difficult to distinguish the individual

monoisotopic ions.

To date several methods have been proposed for the

preprocessing of tandem mass data, including threshold

filtering, deisotoping and denoise transforming. The

threshold filtering is the most straightforward approach.

As peaks with very small abundance values are unlikely to

be real peaks, threshold filtering methods select peaks

above a given threshold,9 a specific number of the most

intensive peaks in the specified m/z intervals,10 or peaks

above a computed intensity baseline.11 However, as the

abundance is not the fundamental attribute of real

peaks, the filtering method cannot thoroughly remove

the noise just depending on thresholds. The deisotoping

methods12–16 first calculate the theoretical isotopic

pattern of an assumed elemental composition such as

n�(C6H5NO)13 or n�(C4.9384H7.7583N1.3577O1.4773S0.0417),
15

and then the deviation from the actual data and the

theoretical data will yield a hidden peak. Although these
Copyright # 2008 John Wiley & Sons, Ltd.
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methods can identify some isotope peaks and overlapping

cases, the assumed elemental composition used to collapse

the isotope pattern is too coarse to identify the complex

convolution of isotopes. Consequently, this method would

inevitably lead to loss of some important fragment ions. In

the denoising mechanism, some well-known procedures

such as wavelet transformation have been utilized to

denoise the raw tandem mass spectrum.12,17 However, the

parameters such as the wavelet base functions, order,

and level of decomposition would impact the potential

spectra distortion. Nowadays, the preprocessing is still a

challenging problem. Some commercial software such as

ProteinLynxTM Global Server 18 also supplies preprocess-

ing functionalities. Later, we will show that PeakSelect

coupled with Mascot 19 performs better than ProteinLynx

coupled with Mascot.

Real peaks in spectra differ from noise peaks in many

aspects. At first, the fundamental difference is that ions have

isotopes but noise does not. The theoretical isotope pattern of

an ion is decided by its atomic component.20,21 Thus, we can

search a real peak by scanning its neighboring peaks and

checking whether potential isotopic peaks exist and whether

the experimental isotope pattern matches with the corre-

sponding theoretical one. Secondly, most of the noise peaks

are randomly produced by the mass spectrometer during

CID and, as a result, the noise intensity roughly follows

the normal distribution. Hence, real peaks can be distin-

guished from noise peaks by calculating the distribution

of noise peaks. Finally, the features of the different

convolutions should be analyzed to identify the peaks of

individual monoisotopic ions involving convolutions of

isotopic peaks.

Based on the above discussion, we present a new solution,

PeakSelect, in this paper for mass spectra produced by

quadrupole time-of-flight hybrid mass spectrometers, such

as the QSTAR1 XL Hybrid LC/MS/MS system22 and the

Q-Tof Ultima Global.23 In contrast to the threshold filtering

and denoise transforming, we use the Gaussian Mixture

Model (GMM) to estimate the base intensity level of noise

peaks (or baseline) and treat the baseline as one feature to

distinguish noise and real peaks. Instead of the method of

assumed elemental composition, we propose a key concept

of an Isotope Pattern Vector (IPV) to characterize the

isotope cluster of a fragment ion universally. In addition,

we investigate the cases of overlapping isotope peaks before

deisotoping. Then, we study the difference between noise,

single fragment ions and overlapping ions to construct a

decision tree to distinguish the peaks.

We apply PeakSelect on different datasets. The experimen-

tal results show that PeakSelect helps to reduce the Mascot

searching time and increase the number of interpreted

peptides and proteins at the same time. In addition,

PeakSelect outperforms the preprocessing of ProteinLynxTM

Global Server (version 2.0.5) by improving the sensitivity of

Mascot searches.

The rest of this paper is organized as follows. In the

following section we explain our algorithm in more detail.

Then, in the next section we describe the datasets and

demonstrate the experimental investigations. Finally, in the

Conclusions, we discuss further developments.
Copyright # 2008 John Wiley & Sons, Ltd.
METHOD

Our solution has three new contributions. At first, a key

concept of an Isotope Pattern Vector (IPV) is proposed to

digitally characterize the isotope cluster of a fragment ion

universally. Thus the noise and real peaks can be distin-

guished by the quantitative IPV value. Secondly, a new

method based on the Gaussian Mixture Model (GMM) and

an Expectation-Maximization (EM) algorithm is used to find

the base intensity level of noise peaks in spectra. Finally, after

selecting the possible features based on the IPV and

investigating the complex overlapping of isotope peaks, a

decision tree is constructed to classify the peaks into different

categories such as noise, single ion peaks and overlapping

peaks. Therefore, all the potential monoisotopic masses of

ions can be calculated.

Isotope pattern vector
As we know, each fragment ion has theoretical isotopes

while noise does not. Hence, the concept of the isotope

pattern vector (denoted as IPV) can not only distinguish the

noise and real peaks, but can also describe the profile of the

isotopes of an ion. Suppose that the monoisotopic mass of a

fragment ion P (with molecular formula Cn1Hn2Nn3On4Sn5) is

M, and its first four isotopes (i.e., with one, two, three and

four extra neutrons, respectively) are P1, P2, P3 and P4. We

define the isotope pattern vector of P as IPV¼ (M, T1, T2, T3,

T4, Dm1, Dm2, Dm3, Dm4), where Tk is the relative abundance

of Pk with respect to P, and Dmk are the mass differencees

between Pk and P, for k¼ 1–4, respectively.

The theoretical IPV (denoted as tIPV) of a fragment ion can

be deduced from its elemental component and the prob-

ability of the isotopes of each element. For simplicity, we just

show T1, T2, Dm1, Dm2 of tIPV for a given

formula Cn1Hn2Nn3On4Sn5 as follows:

M ¼ ð12; 1:0078; 14:0030; 15; 9972; 31; 9721Þ

� ðn1; n2; n3; n4; n5ÞT (1)

T1 ¼ n1qC þ n2qH þ n3qN þ n4qO1 þ n5qS1; (2)

T2 ¼ n4qO2 þ n5qS2 þ
1

2
T2
1

� 1

2
ðn1q2C þ n2q

2
H þ n3q

2
N þ n4q

2
O1 þ n5q

2
S1Þ; (3)

Dm1 ¼ ðn1qCDCþ n2qHDH þ n3qNDN þ n4qO1DO1

þ n5qS1DS1Þ=T1 (4)

Dm2 ¼n4qO2DO2 þ n5qS2DS2 þ
1

2
ðn1qCDCþ n2qHDH

þ n3qNDN þ n4qO1DO1 þ n5qS1DS1Þ2

� 1

2
ðn1q2CDCþ n2q

2
HDH þ n3q

2
NDN þ n4q

2
O1DO1

þ n5q
2
S1DS1Þ=T2

(5)

where qC, qH, qN are relative abundances of 13C to 12C, D to

H, and 15N to 14N, and qO1, qO2 (qS1, qS2) are the ratios of
17O to

16O, 18O to 16O (33S to 32S, 34S to 32S), respectively.DC,DH,DN,

DO1, DO2, DS1, DS2 are the corresponding mass differences

between the monoisotope and isotopes.
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PeakSelect for preprocessing tandem mass spectra 1205
The experimental isotope pattern (denoted as eIPV) of a

fragment ion P can be calculated if the isotope ions are

detected by a mass spectrometer. We characterize a peak in a

mass spectrum in terms of (m/z, intensity), where intensity is

the relative height of the peak. For a cluster of peaks (p0, p1,

p2, p3, p4) with the (m/z, intensity) pairs (Mzk Ik), k¼ 0–4, the

charge z can be calculated from the interval between Mzk.

For k> 1, the value of (Mzk Ik) will be substituted by zero

if pk does not exist. After normalizing z¼ 1, the (m/z, intensity)

pairs are converted into (Mk, Ik), where Mk¼Mzk
�z�

(z� 1)�1.0078, k¼ 0–4, respectively. Then eIPV can be

obtained by:

eIPV ¼ðM0;R1;R2;R3;R4;Dm1;Dm2;Dm3;Dm4Þ

¼ðM0;
I1
I0
;
I2
I0
;
I3
I0
;
I4
I0
;M1 �M0;M2

�M0;M3 �M0;M4 �M0Þ

(6)

Considering the measure error of the mass spectrometer,

the isotope peaks of a fragment ion should be observed and

the experimental isotope pattern should match its theoretical

isotope pattern.

Baseline identification
Most noise peaks are randomly produced by the mass

spectrometer during CID. Generally, each mass spectrum

exhibits a base intensity level of noise peaks (baseline) which

varies across the m/z axis with different fractions. For

example, the spectra of two peptides FTQKIFGGQNNSK

and KSLLLSQILHK are shown in Figs. 1(a) and 1(b),

respectively. It can be seen that the baseline in Fig. 1(a) is

much higher than that in Fig. 1(b).

Intensity is one important factor to distinguish noise and

real peaks. However, due to the variety of the baselines in

different spectra and if there are very low b- and y-series ions

in the spectra, the threshold filtering strategy cannot remove

the noise without losing important real peaks. Here, we

propose a more accurate method to identify the baseline. In

fact, we can divide peaks into three classes: (a) low noise, in

which peaks are almost noise and distribute uniformly

around the m/z axis, (b) high real peaks, and (c) a mixture of

high noise and low real peaks. Therefore, we utilize two

baselines to divide these three classes of peaks: One is global

baseline which depicts the up-bound of low noise, and the

other is local baseline which is the low-bound of high real

peaks.
Figure 1. Tandem spectra of the peptides FTQKIFGGQNNSK (a

than that in (b).

Copyright # 2008 John Wiley & Sons, Ltd.
Practically, we apply a Gaussian mixture model (GMM) in

which the components represent the above three classes of

peaks. We use the mean and standard deviation to

characterize the base level of intensity, and calculate two

kinds of baselines of global baseline and local baseline, noted

as Ibaseline¼ (GImean, GIdeviation, LImean, LIdeviation). The value

of Ibaseline is obtained by an Expectation-Maximization (EM)

algorithm to estimate the parameters of the GMM. Note that

we use the relative intensities of peaks in the spectrum. For

example, Fig. 2 shows the total low peaks and two classes of

low peaks in the spectra of FTQKIFGGQNNSK and

KSLLLSQILHK, respectively. The calculated results of

Ibaseline are (1.458, 0.5903, 3.738, 0.986) and (0.611, 0.398,

2.397, 0.478), respectively, which are consistent with the

observation of the noise in the spectrum.

Overlapping cases
Normally, an important ion, such as b-, y-, a-ions with high

intensity in spectra, always has more than one isotope peak

with a (1/z) u interval inm/z value (z¼ 1–4) if no overlapping

ions exist in its vicinity. In this case, the corresponding eIPV

matches perfectly with the tIPV. Due to the complex

overlapping of isotope peaks, it is difficult to distinguish

the individual monoisotopes of ions. However, the overlap-

ping ions cannot only be distinguished from noise peaks, but

can also be split by thematch score of eIPV and tIPV.We have

investigated the isotope profiles in spectra and summarized

some predominant types of overlapping patterns.

The most important overlapping is that the isotopic peaks

of two ions with 1 u mass interval and with same charge

overlap each other. The two ions are always the water-loss

and ammonia-loss ions of an important ion. This overlapping

pattern is shown in Fig. 3(a). In this case, the value ofR1 in the

eIPV¼ (Me, R1, R2. . .) calculated from (p0, p1, p2, p3. . .) is far

greater than the value of T1 in the corresponding tIPV¼ (M,

T1, T2, . . .). Similarly, some simple but important overlapping

is that isotopic peaks of two ions with 3 u mass interval

overlap each other and the pattern is shown in Fig. 3(b). In

this case, the values of R1 and R2 in the eIPV calculated from

(p0, p1, p2, p3. . ...) can match well with the values of T1 and T2

in tIPV while R3 is far larger than T3.

The most complex pattern involves different charge states

and noise peaks. Because of different noise baselines and

different m/z values of peaks, the same profile of peaks will

correspond to different ion overlapping cases. For example,

in Fig. 4(a), there is a singly charged Ion1 that overlaps with
) and KSLLLSQILHK (b). The baseline in (a) is much higher

Rapid Commun. Mass Spectrom. 2008; 22: 1203–1212
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Figure 3. Profiles of the overlapping cases in which there are two ions with same charges and with 1 u and 3 u

intervals in mass, shown in (a) and (b), respectively.

Figure 2. The low peaks in the spectrum of peptide FTQKIFGGQNNSK (1) and KSLLLSQILHK (2), in which (a) depicts the

total peaks while (b) shows some real peaks such as bþþ
9 , yþþ

10 and yþ8 which confused with high noise peaks and (c) shows

the low noise peaks.

Figure 4. The same profile of peaks in intensity corresponds to three different ion overlapping cases. In (a), a singly charged

Ion1 overlaps with another Ion2. In (b), it is not overlapping but two singly charged ions have a mass interval of 0.5 u. In (c),

there is only a singly charged ion with some noise peaks.

1206 J. Zhang et al.
another Ion2 and the charge of Ion2 can be identified by its

following peaks. Here, a eIPV¼ (Me, R1, R2. . .) is calculated

from (p0, p1, p2,. . .) and the corresponding tIPV¼ (M, T1, T2,

. . .), where R1 matches well with T1 but R2 is far greater than

T2; in Fig. 4(b), no overlapping is found but two singly

charged ions have 0.5 u mass interval as two perfect matches
Copyright # 2008 John Wiley & Sons, Ltd.
exist: one is between the eIPV and tIPV of (p0, p2, p4) and the

other is between the eIPV and tIPV of (p1, p3,. . .). In Fig. 4(c),

there is only a singly charged ion (p0, p2, p4) with some noise

peaks because p1 and p3 are under the global baseline.

Although p4 is under the global baseline too, it can still be

identified as the second isotope of p0 from the value of eIPV.
Rapid Commun. Mass Spectrom. 2008; 22: 1203–1212
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Therefore, we use the above overlapping cases and try to find

the rules from the point of view of the IPV to identify the

monoisotopes of individual ions.

Feature selection
In this section, we investigate the difference between noise

and fragment ions based on some selected features. The
FRes ¼
sign½ðResM � Res1Þ � ðResM � Res2Þ� �minfjResM � Res1j; jResM � Res2jg

jRes2 � Res1j
(9)
purpose is to construct a decision tree to classify the peaks

based on the value of these features.

Distance between the peak’s intensity and baseline
As mentioned in the section entitled ’Baseline identification’

above, the intensity (represents the relative abundance) is an

important factor to distinguish noise and real peaks. Peaks

above Local Baseline are likely to be real peaks while

peaks under Global Baseline are most likely to be noise and

the peaks between Local and Global Baseline may be either

noise or real peaks. We do not intend to exactly filter noise

peaks by the baseline thresholds but to utilize the distance

between a peak’s intensity and baseline as one important

feature to decide whether the peak is noise. Consider a peak

with intensity Ipeak and the global baseline and local baseline

of Ibaseline¼ (GImean,GIdeviation, LImean, LIdeviation), the value of

FRA1 and FRA2 are treated as the first kind of feature and are

calculated as follows:

FRA1 ¼ ðIpeak � GImeanÞ=GIdeviation (7)

FRA2 ¼ ðIpeak � LImeanÞ=LIdeviation (8)

Mass residue
There is a mass residue between the weight and nominal

mass of an atom. For example, the nominalmasses of C, H,N,

O, S are (12, 1, 14, 16, 32) and the mass residues are

(0, 0.007825, 0.00307,�0.00509,�0.02793), respectively. Since

peptides are composed of C, H, N, O, S atoms, the mass

residue of a peptide is subjected to its nominal mass. For each

nominal mass, the range of its residue can be obtained by

calculating all the theoretical fragment ions produced by

trypic peptides from proteins of SWISS-PROT.

For a given ion with mass of M, the nominal mass NomiM
should be IntegM, e.g., the integral part of M, or IntegM� 1,

and the mass residue ResM will be M� IntegM or
FP1 ¼
sign½ðR1 � T1minÞ � ðR1 � T1maxÞ� �minfjR1 � T1minj; jR1 � T1maxjg

T1mean
; (10)

FP2 ¼
sign½ðR2 � T2minÞ � ðR2 � T2maxÞ� �minfjR2 � T2minj; jR2 � T2maxjg

T2mean
(11)
M� IntegMþ 1. According to the statistical results from

proteins of SWISS-PROT, we obtain the residue range of

[Res1, Res2] for each integer. Since ions with one to five

charges co-exist in a spectrum, the charge state of ions has to
Copyright # 2008 John Wiley & Sons, Ltd.
be recognized to determine the monoisotopic mass. For a

peakwith anm/z value ofMz,we calculate the corresponding

NomiM and ResM supposing that it corresponds to an ionwith

z charges (z¼ 1–5). If the calculated ResM is far from the

theoretical residue range of NomiM, then the peak cannot

correspond to a z-charged ion. Therefore, we use the

following feature FRes:
which characterizes the distance between ResM and the

theoretical residue mass range [Res1, Res2] of NomiM, where

sign(x)¼ 1 if x> 0 else sign(x)¼ 0.

Distance between eIPV and tIPV
As discussed in the section entitled ’Isotope pattern vector’

above, the isotope peaks of a fragment ion should be

observed and the experimental isotope pattern should match

its theoretical isotope pattern. In other words, for a given

peak p0, we can find its isotopic peaks and calculate the

distance between its eIPV and tIPV. Then, these values of IPV

are treated as another important kind of feature.

The elemental component of a fragment ion is unknown

during the preprocessing and the exact value of tIPV cannot

be calculated. However, the theoretical tIPV of an ion can be

estimated by the expected (or mean) value.20 For example,

Fig. 5 shows the IPV values corresponding to some peaks.

More detailed, for a group of peaks (646.2718, 647.2669,

648.2671), the minimal, mean and maximal values of T1 in

tIPV are (T1min, T1mean, T1max)¼ (0.3473, 0.3644, 0.3833) and

the corresponding values of T2 are (T2min, T2mean,

T2max)¼ (0.0807, 0.0854, 0.1756), respectively.

The practical values (R1,R2) of eIPV are (0.4163, 0.2490) and

they are coincident with the tIPV. Therefore, it can be

accepted as a valid isotope group. However, another

potential isotopic group of peaks starting from 646.2718 is

(646.2718, 646.7721, 647.2669, 647.7984), and the calculated

theoretical values of T1 are (0.7002, 0.7283, 0.7594) and values

of T2 are (0.2794, 0.2967, 0.4013), but the (R1, R2) of eIPV are

(0.1392, 0.2490), which are far from the theoretical

range. Therefore, it can be considered as invalid. The same

cases are for the other two groups starting from peak

648.7895.

In PeakSelect, we calculate the values of FP1 and FP2 as

follows to characterize the distance between the practical and

theoretical relative abundance in IPV, and treat them as

important features to select valid peaks.
Other features
Some other characters such as the assigned charge to peaks of

a potential ion, the number of isotope peaks in the potential
Rapid Commun. Mass Spectrom. 2008; 22: 1203–1212
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Figure 5. Potential isotopic peaks with different charges (z¼ 1 or 2). The numbers within the pane are the calculated values

of eIPV and tIPV. The real peaks with correct charge state can be distinguished by the distance between the values of eIPV

and tIPV.

1208 J. Zhang et al.
isotope cluster, and the distance between the theoretical Dms

of the isotopes and the measured Dms in IPV, etc., are also

important to judge the validation and overlapping of peaks.

For example, when the charge state of an ion is 2 or 3, there

are always more than two isotope peaks of the ion existing in

the spectrum while less than three isotope peaks exist when

the charge state of an ion is 1. We use Fcharge, FIsoNum, FMerr1,

FMerr2 to represent these characters.

Classification and decision tree
We select some peaks corresponding to noise, a single ion

and overlapped ions as training samples to verify the

difference of the selected feature values, as described in the

section entitled ’Feature selection’ above. Specifically, in

order to select training samples, we at first judge whether a

peak is noise, or corresponds to an ion, or involves

overlapped ions when the peptide sequence corresponding

to the spectrum is known. Then, we investigate the difference

in the feature values, and learn the rules from the training

samples. Finally, we construct a decision tree (learnt by

WEKA C4.5 toolbox) to classify the peaks into three classes:

class 1, noise; class 2, real peaks corresponding to a single ion;

and class 3, real peaks involving overlapping which includes

five overlapping cases described in the section entitled

’Overlapping cases’ above.

According to the rules of the decision tree, all of the peaks

in a spectrum can be classified by the calculated values of

features. Note that each peak will be classified into one and

only one class. Since there would be different potential

isotope clusters under a different charge z, a given peak p0 is

judged as noise if all of the potential isotope clusters are

classified into class 1. For a given peak p0 (with m/z value as

Mz), if the potential isotope cluster under charge z is

classified into class 2, then the monoisotopic mass

M¼Mz�z–(z� 1)�1.0078 is selected to present a potential

fragment ion. Furthermore, if peak p0 is classified into class 3,

there may be two monoisotopic masses obtained according
Copyright # 2008 John Wiley & Sons, Ltd.
to the overlapping cases. Finally, the masses corresponding

to peakswhich have been classified into class 2 and class 3 are

selected prior to the database searching.
EXPERIMENTAL INVESTIGATIONS

In this section, we evaluate PeakSelect with the metrics of

identification accuracy and search speed ofMascot search on

the data after the process of PeakSelect. At first, we compare

the performance of PeakSelect with the existing software

ProteinLynxTM Global Server version 2.0.5 (denoted as

ProteinLynx for simplicity). Then we evaluate the perform-

ance of PeakSelect by applying it in a large-scale analysis of a

yeast whole-cell lysate.

Comparing PeakSelect with ProteinLynx
In this section, we compare PeakSelect with ProteinLynx by

their ability to improve the identification accuracy. The

dataset includes spectra produced by a Q-Tof Ultima Global

mass spectrometer from a tryptic digestion of peptides of

eight proteins. They are myoglobin (horse skeletal muscle),

BSA (bovine serum albumin), fetuin (fetal calf serum type

III), lysozyme (eggwhite), alpha-lactoalbumin (bovine), BCA

(bovine milk), phosvitin (egg yolk), and ribonuclease B

(bovine pancreas), respectively.

At first, all data were converted from raw instrument

output into the .dta format using software ProteinLynx

without noise reduction and deisotoping. We denote these as

raw .dta data. Secondly, the raw .dta data were preprocessed

by PeakSelect and ProteinLynx. We used two groups of

processing parameters in ProteinLynx, one is the default

value and the other is selected manually so that the number

of selected peaks by ProteinLynx is close to that selected by

PeakSelect. The better search result from the two groups of

parameters is selected as the comparing candidate of

ProteinLynx.
Rapid Commun. Mass Spectrom. 2008; 22: 1203–1212
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Figure 6. TheMascot search results of eight proteins on three kinds of spectra data:

preprocessed by ProteinLynx, raw, and preprocessed by PeakSelect, respectively.

PeakSelect for preprocessing tandem mass spectra 1209
The on-line Mascot is chosen as the search engine to

interpret these spectra, in which all cysteine residues were

searched as carboxamidomethyl-cysteine and methionine

residues were allowed to be oxidized. Up to 1 internal

cleavage site was allowed for tryptic searches in the

SWISS-PROT database. Parameters set for searches include

use of monoisotopic atomic masses and a tolerance of

100 ppm for precursor and 0.2Da for fragment ions. Here,

one spectrum is treated as interpreted byMascot if theMascot

score is no less than 20 and the expectation value less than

0.05.

As we know, the more the interpreted spectra, the higher

the reliability of the identification. Therefore, we use the

number of interpreted spectra to evaluate the performance.

The search results are shown in Fig. 6. There are a total of 80,

117 and 100 interpreted peptides of the eight proteins from

the three datasets: preprocessed by ProteinLynx, PeakSelect

and raw .dta data, respectively. In other words, there is an

average of 46% and 17% increased interpreted spectra in data

preprocessed by PeakSelect than those by ProteinLynx. In fact,

the searches on the data preprocessed by PeakSelect are more

reliable since the quality of the score and expectation value

(data have not shown here) is better than that on data of raw

and preprocessed by ProteinLynx.
Table 1. Numbers of interpreted tandem spectra identified by Ma

Raw .dta

Selecteda FPab TPab Precision

Sample 1 3,167 24 3,142 99.24%
Sample 2 3,011 32 2,979 98.93%
Sample 3 2,798 52 2,746 98.14%
Mean 2,992 36 2,956 98.80%

aTo be selected, PSMs had to receive scores greater than or equal to thos
bFP, estimated false positive identifications, and calculated by doubling th
Precision, TP/(TPþFP).

Copyright # 2008 John Wiley & Sons, Ltd.
Performance of PeakSelect on large-scale yeast
whole-cell lysate data
In this section, we investigate the performance of PeakSelect

on large-scale data. The dataset can be downloaded from the

Internet,24 which includes 46195 .dta files produced after

analyzing five trypsin-digested gel regions representative of

the yeast proteome in triplicate by nanoscale microcapillary

LC/MS/MS using QSTAR mass spectrometers.25 Mascot

version 2.1.02 is selected to interpret the downloaded data

(we denote it as raw data in the rest of the paper) and the

preprocessed data by PeakSelect.

According to themethods described by Elias et al.,25 we use

searches against a composite target-decoy database contain-

ing all yeast protein sequences in both forward and reverse

orientations to estimate the false positive rate of peptide-

spectral matches (or say PSMs). All of the search parameters

are same as that in Elias et al.25 In addition, we choose the

same score filter criteria as described in Supplementary

Table 1 in Elias et al.25 to achieve around 99% precision or 1%

false positive rate.

TheMascot searching time is decreased to 1/2 to 1/4 on the

three samples after the preprocessing of PeakSelect. Tables 1

and 2 depict the number of interpreted tandemmass spectra,

peptides and proteins from the raw and preprocessed data.
scot from the raw and preprocessed data

Preprocessed .dta by PeakSelect

ab Selecteda FPab TPab Precisionab

3,557 44 3,513 98.32%
3,373 42 3,331 98.75%
3,000 52 2,948 98.27%
3,310 46 3,264 98.61%

e indicated in Supplementary Table 1 in Elias et al.25

e number of decoy hits; TP, estimated true positive identifications;
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Table 2. Numbers of peptides and proteins identified from the raw and preprocessed data

Peptidesa Proteinsa

Raw-data Preprocessed Overlapped Unionb Raw-data Preprocessed Overlapped Unionb

Sample 1 2777 3140 2469 3448 461 503 423 541
Sample 2 2597 2950 2304 3243 456 491 409 538
Sample 3 2446 2640 2083 3003 453 468 402 519
Mean 2607 2910 2285 3232 457 487 411 533

aThe interpreted peptides and proteins are selected from the target hits but not from the decoy hits.
bThe number of identified peptides and proteins combined from the raw and preprocessed data.
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From the data in the columns ’Selected’ and ’Precision’ in

Table 1, we can see that under the similar around 1% false

positive threshold, there are 12.31%, 12.02% and 7.22%

increased numbers of the interpreted spectra in three

samples in the preprocessed data. Consequently, both

protein and proteome coverage is improved after applying

PeakSelect. For example, from the data in the columns ’Raw

data’ and ’Preprocessed’ in Table 2, we can calculate that

there are an average 11.64% and 6.56% increased numbers of

interpreted peptides and proteins (selected from the target

hits) after applying PeakSelect. The results show the great

improvement of PeakSelect over the raw data.

On average, 2597 tandem spectra were confidently

assigned by Mascot from both the raw and preprocessed

data. However, Mascot scores on the preprocessed data are

better than those on raw data. Of the 2792, 2634, and 2365

confidently co-assigned (or overlapped) spectra from three

samples, the Mascot score on the preprocessed spectra are

increased by 15.85% (i.e., (41.45� 35.78)/35.78), 16.89% (i.e.,

(41.24� 35.28)/35.28), and 13.04% (i.e., (38.98� 34.89)/34.89)

than those on the raw data. This shows the benefit of

preprocessing. The detailed distribution of Mascot scores is

depicted in Fig. 7.

There are 375, 377, and 433 interpreted spectra only from

raw data of three samples, in which there are 1161

identifications from the target database while there are

765, 739, and 635 interpreted spectra only from the
Figure 7. Distribution of Mascot scores on the spectra which ar

three samples are depicted in (a), (b) and (c), respectively. The cur

The mean scores of the preprocessed data are increased 15.73

data in the three samples, respectively.

Copyright # 2008 John Wiley & Sons, Ltd.
preprocessed data and 2085 identification. We note these

as unoverlapped identifications. The distribution of Mascot

scores on the 1161 and 2085 identification are similar. For

example, the mean score and standard deviation are (25.30,

8.56) and (25.98, 8.93), respectively (see data in Fig. 8(a)).

However, the number of peaks in spectra, the length of

identified peptides and the mass of precursors are different.

Figure 8(b) depicts the difference in length of identified

peptides. Both themean peptide lengths are 13. However, the

number of peptides larger than 13 residues in the

preprocessed data is greater than those in raw data (1330

vs. 657). Since the mass of the precursor ([MþH]) is in

proportion to peptide length, the difference in the mass of

precursors is similar to that in peptide length. In fact, there

are a total of 772 precursors with mass larger than 2100 u that

are interpreted in which 276 are interpreted after the

PeakSelect process. In other words, there are more than

35% larger peptides that cannot be interpreted without

preprocessing. Therefore, PeakSelect can help to identify

longer and larger peptides.

Figure 8(c) shows the distribution of peak number in

spectra. For co-interpreted spectra, the mean number in raw

data is 530. For the unoverlapped interpreted spectra in raw

data, the mean peak number is 364. However, for the

unoverlapped interpreted spectra in preprocessed data, the

mean number is 623. This implies that a lot of spectra with a

larger number of peaks cannot be interpreted without
e identified in both raw (�) and preprocessed (þ) data from

ves represent the score distributionwith interval of score of 5.

%, 16.89% and 13.04% over that of the corresponding raw
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Figure 8. Information of the unoverlapped identifications. (a)

Depiction of the distribution of the Mascot score in raw data

and preprocessed data. (b) Length of the interpreted peptide

on two datasets. There are 673 more identifications with more

than 13 residues interpreted by the preprocessed spectra

than those by the raw data. (c) Distribution of the spectra

according to the number of peaks in them. The mean peak

number of the preprocessed spectra, 623, is far larger than

364 the mean number of the raw data.

Figure 9. Error bars to show the maximum and minimum

identifications for pairwise analyses, including searches on

raw data and searches combining preprocessed data by

PeakSelect. It seems very effective to combine PeakSelect

to increase the identified information.

Figure 10. The interpreted and uninterpreted spectra which

have more than 500 peaks. Many of the uninterpreted spectra

have large [MþH] values. Since themass error is almost linear

to the mass of ions in TOF spectrometers, maybe the mass

error is beyond the search parameter of 0.2 u in the unin-

terpreted spectra.
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preprocessing because they have rich isotopic information

and noise. However, PeakSelect can help to interpret these

spectra.

If we introduce the process of PeakSelect and combine the

Mascot search results, the average number of yielded

peptides is 3232 and there is 11.07% increase compared to

the number of 2910 just interpreted by raw spectra. For

proteins, the number of combined yields is 537, with 10.27%

increase compared to the number of 487 without PeakSelect.

As discussed in Elias et al.,25 the replicate analyses will

increase the number of interpreted peptides and proteins.
Copyright # 2008 John Wiley & Sons, Ltd.
The error bars in Fig. 9 indicate the maximum and minimum

identifications for pairwise replicate analyses under raw data

and combining the preprocessed data. It seems very effective

to combine PeakSelect to increase the identified information.

Although it can increase the identified peptides and

proteins by combining the preprocessing of PeakSelect, there

are still a large number of spectra uninterpreted. For

example, Fig. 10 shows the interpreted and uninterpreted

spectra which have more than 500 peaks. The data in Fig. 10

shows that many of the uninterpreted spectra have a large

[MþH] value of precursor. They cannot be interpreted by
Rapid Commun. Mass Spectrom. 2008; 22: 1203–1212
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Mascot; besides the reason of post-translation modification,

another important reason is that the measurement error of

mass in the spectra is larger than the search parameters of

0.2 u. We will focus on recalibration of mass errors in spectra

to improve the search results on the spectra with large

precursors in the future.
CONCLUSIONS

We present a preprocessing method PeakSelect for mass

spectra produced by a QqTOF-configured type of tandem

mass spectrometer to increase the accuracy and reliability of

database searching for peptide (protein) identification. Based

on a new method of baseline identification and the natural

isotopic information inherent in tandem mass spectra, we

construct a decision tree to classify the noise and ion peaks in

spectra. We present a comparison between PeakSelect and the

preprocessing of ProteinLynxTMGlobal Server (version 2.0.5).

The experimental results show that PeakSelect performs

much better than ProteinLynx by increasing the number of

interpreted spectra and keeping higher Mascot scores and

lower Mascot expectation values. In a large-scale analysis of

yeast whole-cell lysate with QSTAR mass spectrometers,

both peptide and protein coverages have been dramatically

improved with the PeakSelect process.
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