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By Christian Recher, Mario Kieburg and Thomas Guhr

Fakultät für Physik Universität Duisburg-Essen

We calculate the marginal probability density of real and com-
plex Wishart correlation matrices. For deep mathematical reasons,
no explicit expression could be obtained for the real case so far. We
circumvent these problems by using a supersymmetry approach. This
allows us to derive an exact expression for the marginal probability
density of real Wishart correlation matrices in terms of twofold in-
tegrals. Within this approach the result for the marginal probability
density of complex Wishart correlation matrices is rederived as a test
case.

1. Introduction. Complex systems in a rich variety of fields are in the
focus of modern research [1, 2, 3, 4]. Correlation matrices obtained from
data sampling are a key tool for studying such systems [5, 6]. Multivariate
statistics allows one to model correlation matrices by using random matrix
theory (RMT) [7]. In the framework of RMT, we calculate the marginal
probability density function (p.d.f.) for real and complex correlation matri-
ces. For the case of complex correlation matrices, an explicit expression is
known [8]. Real correlation matrices are more frequently encountered, but
unfortunately, their marginal p.d.f. and related quantities are up to now not
known in closed. This is so, because a certain integral over the orthogonal
group is not available in closed form. Sophisticated power series techniques
have been developed in order to tackle this problem [7]. However, the re-
sulting expressions suffer from the disadvantage that a resummation of the
infinite series has not been possible so far. For large dimension of the cor-
relation matrices, asymptotic results were derived [9]. Recently some new
results for the marginal p.d.f. and the two-point correlation function in the
asymptotic regime have been found [10].

Here we provide exact results for the marginal p.d.f. of real and com-
plex correlation matrices. We use an alternative approach which circumvents
the problems mentioned above. The approach relies on the supersymmetry
method [11] which is nowadays an indispensable tool for RMT applications
in physics [12]. We derive an exact expression for the marginal p.d.f. of
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real Wishart correlation matrices in terms of a twofold integral. As a test
case, we rederive the result for the marginal p.d.f. of complex Wishart cor-
relation matrices. For a physics audience, we published our main results in
Ref. [13]. Here, we present the material for an audience of mathematicians
and statisticians. In doing so, we review the salient, necessary features of
Supersymmetry.

The article is organized as follows: We introduce our notation and some
basic quantities in Sec. 2. In Sec. 3, we map the problem onto superspace. We
explicitly evaluate the expression for the marginal p.d.f. in Sec. 4. In Sec. 5
we numerically integrate the results and compare them with a Monte-Carlo
simulation of the marginal p.d.f. We summarize and conclude in Sec. 6.

2. Formulating the Problem. We define the proper ensemble of ran-
dom matrices in Sec. 2.1. In Sec. 2.2, we introduce a generating function
for the marginal p.d.f. which serves as starting point for the supersymmetry
approach.

2.1. Ensemble of Wishart correlation matrices and marginal p.d.f. We
briefly sketch the RMT approach to correlation matrices as set up in Ref. [7].
We consider real and complex Wishart correlation matrices. The building
block for those are rectangular p×nmatrices which we denote byW = [Wjk],
with j = 1, . . . , p, k = 1, . . . , n. We always assume that p ≤ n. For the case
p > n the p× p matrix WW † has p−n generic zero eigenvalues. The entries
of W are either real or complex random variables. These cases are labeled by
the Dyson index β which takes the values β = 1 for real entries, i.e. Wjk ∈ R,
and β = 2 for complex entries, i.e. Wjk ∈ C. For the joint probability
distribution of the entries of W we consider a multivariate Gaussian weight

(2.1) Pβ(W,C) = Dβ exp

(

−β

2
TrW †C−1W

)

,

where C is the correlation matrix. The full measure is then Pβ(W,C)d[W ]
where

(2.2) d[W ] =























p
∏

j=1

n
∏

k=1

dWjk , for β = 1 ,

p
∏

j=1

n
∏

k=1

dReWjkdImWjk , for β = 2 ,

is the corresponding volume element. This measure fulfills the invariance
condition

(2.3) Pβ(W,C)d[W ] = Pβ(UW,UCU †)d[UW ]
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for an arbitrary orthogonal (β = 1) and unitary (β = 2) p × p matrix U .
Since the domain of W (Rp×n for β = 1, Cp×n for β = 2) is invariant under
rotations, we may replace C by the diagonal matrix of its eigenvalues if
invariant quantities such as the marginal p.d.f. are to be studied. Hence we
use C = U †ΛU where Λ = diag(Λ1, . . . ,Λp) is a positive diagonal p × p
matrix, i.e. Λj > 0. The constant Dβ in Eq. (2.1) ensures the normalisation
of Pβ(W,C)d[W ] to unity and is given by

Dβ =

[(

2π

β

)p

detΛ

]−βn/2

.(2.4)

The set of random matrices WW † with entries of W distributed according
to Eq. (2.1) is referred to as the ensemble of Wishart correlation matrices
(sometimes also as correlated Wishart ensemble). We notice that for the
choice Λ = 11p, where 11p denotes the p×p unit matrix, the ensemble defined
by Eq. (2.1) is equivalent to the Gaussian chiral random matrix ensemble.
This ensemble is employed to study generic features in the theory of Quan-
tum Chromo dynamics (QCD) [14].

The ensemble averaged marginal p.d.f. for the eigenvalues of the matrix
WW † can be expressed in terms of the resolvent and reads

Sβ(x) = − 1

pπ
lim
ε→0

Im

∫

d[W ]Pβ(W,Λ)Tr
114/β

x+114/β −WW †
.(2.5)

The limit ε → 0 is a weak one which means that we have to integrate first
and then take the limit. With the notation x+ we indicate that x carries
a small positive imaginary increment, i.e. x+ = x + ıε with ε > 0. Due to
the definition in Eq. (2.5) the marginal p.d.f. is a function of the p + 1 pa-
rameters x,Λ1, . . . ,Λp. We drop the dependence on Λ by writing Sβ(x). The
integration in Eq. (2.5) extends over the whole domain of W , respectively.

2.2. Generating function. The starting point for the supersymmetry ap-
proach is the generating function

(2.6) Zβ(J) =

∫

d[W ]Pβ(W,Λ)
det(x+11p + J11p −WW †)

det(x+11p −WW †)
,

where J is a source variable. The marginal marginal p.d.f. is given as deriva-
tive

(2.7) Sβ(x) = − 1

πp
lim
ε→0

Im
∂Zβ(J)

∂J

∣

∣

∣

∣

∣

J=0
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of the generating function at J = 0. By construction, the generating function
is normalized to unity at J = 0, i.e. Zβ(0) = 1. In the following we derive
a compact representation for the generating function by mapping it onto
superspace.

3. Map onto superspace. In Sec. 3.1, we write the ratio of deter-
minants in the generating function as a Gaussian integral over a supervec-
tor. Then we carry out the ensemble average. To the reader not experi-
enced with anticommuting variables, we recommend the introductory parts
of Refs. [15, 11, 16]. In Sec. 3.2, we use a duality between ordinary and su-
permatrices to express the result of the ensemble average as a supermatrix
integral. Afterwards we integrate over the supervector in Sec. 3.3. We take
the derivative with respect to the source variable and evaluate the resulting
expression in Sec. 3.4.

3.1. Ensemble average. The determinant in the denominator of Eq. (2.6)
can be expressed as a Gaussian integral over a vector comprising ordinary
commuting variables. The determinant in the numerator can be expressed
as a Gaussian integral over a vector with anticommuting entries [15, 11].
Combining both expressions we obtain a representation for the ratio of de-
terminants in Eq. (2.6) in terms of a Gaussian integral over a supervector
Ψ

det
(

(x+ + J)11p −WW †
)

det (x+11p −WW †)
=

=

∫

d[Ψ] exp

{

ıβ

2
Ψ†

(

11p ⊗ (x+114/β + Jγ)−WW † ⊗ 114/β

)

Ψ

}

,(3.1)

where we have introduced the matrix

γ =

[

02/β 02/β
02/β 112/β

]

(3.2)

and the supervector

Ψ =
[

u1, . . . , up, v1, . . . , vp, ζ1, . . . , ζp, ζ∗1 , . . . , ζ
∗
p

]T
, forβ = 1,(3.3)

Ψ =
[

z1, . . . , zp, ζ1, . . . , ζp
]T

, forβ = 2.

The symbol 02/β denotes the 2/β × 2/β zero matrix. Here, uj , vj ∈ R and
zj ∈ C are ordinary real or complex variables while ζj , ζ

∗
j are anticommuting

variables, also referred to as Grassmann variables, which by definition satisfy

(3.4) ζjζi = −ζiζj , ζ∗j ζ
∗
i = −ζ∗i ζ

∗
j , ζjζ

∗
i = −ζ∗i ζj .
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These relations imply that the Grassmann variables are nilpotent. Hence,
each function depending on them can be represented as a finite power series
in these variables. Grassmann variables can be multiplied and added. Thus,
they build an algebra G referred to as Grassmann algebra. The complex
conjugation “∗” is extended to the Grassmann algebra by the three relations

(3.5) (ζj)
∗ = ζ∗j ,

(

ζ∗j
)∗

= −ζj , (χ1χ2)
∗ = χ∗

1χ
∗
2 ,

where χ1, χ2 ∈ G, i.e. they can be linear combinations of the Grassmann
variables. This definition is referred to as conjugation of the second kind
[15]. In Eq. (3.1), d[Ψ] denotes the product of all differentials of elements
comprised in the supervector Ψ, i.e.

(3.6) d[Ψ] =















p
∏

j=1
dujdvjdζjdζ

∗
j , for β = 1 ,

p
∏

j=1
dRezjdImzjdζjdζ

∗
j , for β = 2 .

For the integration over Grassmann variables we employ the same conven-
tions as in Ref. [15],

(3.7)

∫

ζnj dζj =

∫

(

ζ∗j
)n

dζ∗j =
δn1√
2π

, n ∈ {0, 1} .

The differentials dζj and dζ∗j anticommute with each other and with ζj and
ζ∗j , too.

We introduce the p-component vectors

u =
[

u1, . . . , up
]T

, z =
[

z1, . . . , zp
]T

,(3.8)

v =
[

v1, . . . , vp
]T

, ζ =
[

ζ1, . . . , ζp
]T

.

Plugging the representation (3.1) into the generating function (2.6) and
changing the order of integrations we find

Zβ(J) =

∫

d[Ψ] exp

{

ıβ

2
Ψ†

(

11p ⊗ (x+114/β + Jγ)
)

Ψ

}

(3.9)

×Dβ

∫

d[W ] exp

{

−β

2

(

TrW †Λ−1W + ıΨ†(WW † ⊗ 114/β)Ψ
)

}

.

We write the last term in the second exponential as

Ψ†(WW † ⊗ 114/β)Ψ = TrKWW †,(3.10)
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where the matrix K has a dyadic structure. It contains the elements of the
supervector and reads

K = uuT + vvT −
(

ζζ† − ζ∗ζT
)

, for β = 1,(3.11)

K = zz† − ζζ† , for β = 2.

We notice that the matrix K reflects the symmetry of the matrix ensemble,
i.e. K = K∗ = KT is real symmetric for β = 1 and K = K† is Hermitian
for β = 2. We also notice that K is a p × p matrix in ordinary space, even
though it contains Grassmann variables. They only appear in combinations
such as ζjζk which obviously are commuting objects. In Eq. (3.9) the matrix
W appears quadratically in the exponent. Hence the integral over W has a
Gaussian form. Using the notations (3.10) and (3.11) we readily obtain

Dβ

∫

d[W ] exp

{

−β

2
Tr

(

Λ−1 + ıK
)

WW †

}

=(3.12)

= det−nβ/2
(

11p + ıΛ1/2KΛ1/2
)

as the result for the ensemble average.

3.2. Duality between ordinary and superspace. We now rewrite the result
(3.12) in terms of a superdeterminant. This is possible due to a duality
relation between ordinary dyadic matrices and dyadic supermatrices [17, 18].
We introduce the rectangular supermatrices

A =
[

u v ζ −ζ∗
]

, for β = 1 ,(3.13)

A =
[

z ζ
]

, for β = 2

and the corresponding adjoint matrices A†. The operator “†” differs for
supermatrices from the one for ordinary matrices. The adjoint of a (a+ b)×
(c+ d) supermatrix

(3.14) Σ =

[

Σ11 Σ12

Σ21 Σ22

]

is

(3.15) Σ† =

[

Σ†
11 Σ†

21

−Σ†
12 Σ†

22

]

.

The a× c block Σ11 and b× d block Σ22 consist of commuting variables and
are referred to as Boson-Boson and Fermion-Fermion block, respectively,
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whereas the a× d block Σ12 and the b× c block Σ21 comprise anticommut-
ing variables and are known as Boson-Fermion and Fermion-Boson block.
This terminology stems from high energy physics where, in contrast to our
context, the “Bosons” and “ Fermions” represent physical particles.

With the supermatrix A we may write

K = AA†.(3.16)

The duality is born out in the relation [19, 18]

det
(

11p + ıΛ1/2AA†Λ1/2
)

= sdet
(

114/β + ıA†ΛA
)

.(3.17)

Here “sdet” denotes the analog of the determinant for supermatrices. For
this and other quantities to appear later on we employ the same definitions
and conventions as in Ref. [15]. For a = c and b = d the superdeterminant
of the supermatrix in Eq. (3.14) is defined as

sdetΣ =
det(Σ11 − Σ12Σ

−1
22 Σ21)

detΣ22
.(3.18)

In particular we have sdetΣΣ′ = sdetΣ sdetΣ′ for two supermatrices. The
superdeterminant in Eq. (3.18) is only well defined if Σ22 is invertible. The
supertrace is defined by

strΣ = TrΣ11 −TrΣ22.(3.19)

This ensures the cyclic invariance strΣΣ′ = strΣ′Σ of the supertrace for two
matrices of the form (3.14) with a = c and b = d.

The matrix

B ≡ A†ΛA(3.20)

on the right hand side of Eq. (3.17) is the dyadic supermatrix dual to K.
In contrast to the p × p matrix K the matrix B has dimension 4 × 4 and
2 × 2 for β = 1 and β = 2, respectively. This dimensional reduction is the
crucial advantage of the supersymmetry method. It originates from the fact
that the entries of B are bilinear forms. Importantly, the symmetries of B
carry over to the representation of the generating function in superspace.
We have B = B† for β = 1, 2. In the complex case, B has no further
symmetries. However in the real case B has an additional symmetry which
can be expressed by

B∗ = Y BY T , with Y =









1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0









for β = 1,(3.21)



8 C. RECHER ET AL.

reflecting the fact that the dual matrix K is real.
We proceed by expressing the superdeterminant on the right hand side of

Eq. (3.17) as a supermatrix integral. There are several ways to do this. For
our purpose an appropriate Dirac-distribution is most convenient. Symboli-
cally, we write

sdet−nβ/2(114/β + ıB) =

∫

d[σ]sdet−nβ/2(114/β + ıσ)δ(σ −B).(3.22)

For this integral representation to be consistent, the supermatrix σ on the
right hand side has to have the same symmetries as B. Hence σ is a Her-
mitian supermatrix with dimension 4×4 for β = 1 and 2×2 for β = 2. We
write the supermatrix σ as

σ =

[

σ1 η
−η† ıσ2

]

,(3.23)

where the entries are ordinary block matrices with dimension 2/β. The diag-
onal blocks σ1 and σ2 are the Boson-Boson and the Fermion-Fermion block,
respectively. The off-diagonal blocks η and η† contain all anticommuting
variables of σ. For β = 2 the diagonal blocks σ1 and σ2 are simply real
numbers whereas η and η† = η∗ are two Grassmann variables. For β = 1 the
diagonal blocks σ1 and σ2 are real symmetric 2× 2 matrices. The additional
symmetry (3.21) in the real case enforces that σ2 is proportional to the unit
matrix. The factor ı in front of the entry σ2 is due to the Wick-rotation
and ensures the convergence of the integral (3.22). To be mathematically
consistent it has to be ignored in all algebraic manipulations [20, 15]. The
off-diagonal block matrices η have for β = 1 the following structure

η =

[

χ χ∗

ξ ξ∗

]

, η† =

[

χ∗ ξ∗

−χ −ξ

]

,(3.24)

where χ and ξ denote Grassmann variables.
The measure of the supermatrix σ in Eq. (3.22) is flat and reads explicitly

d[σ] =

{

dσ111dσ121dσ221dσ2dχdχ
∗dξdξ∗ , for β = 1,

dσ1dσ2dηdη
∗ , for β = 2,

(3.25)

where σ111 and σ221 are the diagonal elements and σ121 is the off-diagonal
element of the real symmetric matrix σ1 in the real case.

To render the expression (3.22) meaningful, we have to define the Dirac-
distribution for supermatrices in Eq. (3.22). We use the analog of the Fourier
representation for the Dirac-distribution [21]

(3.26) δ(σ −B) =
β2

4

∫

d[̺] exp(ıstr(σ −B)̺),
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where the integration extends over another supermatrix ̺ which has the
same structure as σ. The measure d[̺] is similar to the one of σ, see Eq. (3.25).
Using the definition (3.26) in Eq. (3.22) yields the ensemble average (3.12)
in terms of a supermatrix integral

det−nβ/2
(

11p + ıΛ1/2KΛ1/2
)

=(3.27)

=
β2

4

∫

d[σ]

∫

d[̺]sdet−nβ/2(114/β + ıσ) exp
(

ıstr(σ −B)̺
)

.

Obviously, the integral over σ does neither contain the elements of the su-
pervector nor the eigenvalues Λj. Hence it is a function of ̺ only. It is the
supersymmetric version of the Ingham-Siegel integral [17, 18]

Iβ(̺) =

∫

d[σ]sdet−nβ/2(114/β + ıσ) exp(ıstrσ̺).(3.28)

In Appendix A we evaluate it explicitly for the case of a diagonal superma-
trix ̺. Since the Ingham-Siegel integral as defined in Eq. (3.28) is apparently
not convergent, one has to understand the integral as a distribution. The ̺
integral over the Ingham-Siegel integral with a sufficiently integrable func-
tion has to exist. Later on we will see that this is indeed the case for our
calculations.

Changing the order of integration in Eq. (3.27) and using the notation
(3.28), we cast the ensemble average into the form

det−nβ/2
(

11p + ıΛ1/2KΛ1/2
)

=
β2

4

∫

d[̺]Iβ(̺) exp(−ıstrB̺)(3.29)

and obtain

Zβ(J) =
β2

4

∫

d[̺]Iβ(̺)(3.30)

×
∫

d[Ψ] exp

{

ıβ

2
Ψ†

(

11p ⊗ (x+114/β + Jγ)
)

Ψ− ıstr̺B

}

for the generating function in Eq. (3.9).

3.3. Integrating over the supervector. We rewrite the second term in the
exponent of Eq. (3.30) containing B. Since the entries are bilinear forms we
can express B as a sum of dyadic matrices

(3.31) B =

p
∑

j=1

ΛjΨ
†
jΨj,
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where we have introduced the supervectors

Ψj =
[

uj , vj , −ζ∗j , ζj
]T

, for β = 1,(3.32)

Ψj =
[

z∗j , −ζ∗j
]T

, for β = 2

with j = 1, . . . , p. For β = 1, 2, Ψ is four- and two component, respectively.
Hence we can write

str̺B =

p
∑

j=1

ΛjstrΨjΨ
†
j̺ =

p
∑

j=1

ΛjΨ
†
j̺Ψj.(3.33)

The first term in the exponent of the integrand in Eq. (3.30) can be reex-
pressed in a similar form

Ψ†
(

11p ⊗ (x+114/β + Jγ)
)

Ψ =

p
∑

j=1

Ψ†
j(x

+114/β + Jγ)Ψj .(3.34)

Using Eqs. (3.33) and (3.34), the integral over the supervector Ψ factorizes
into a p-fold product of Gaussian integrals extending over the supervectors
Ψj . Similarly to Refs. [15, 11], we find

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j

(

β

2
(x+114/β + Jγ)− Λj̺

)

Ψj



 =(3.35)

=

p
∏

j=1

∫

d[Ψj ] exp

(

ıΨ†
j

(

β

2
(x+114/β + Jγ)− Λj̺

)

Ψj

)

=

p
∏

j=1

sdet−β/2

(

β

2
(x+114/β + Jγ)− Λj̺

)

.

Plugging the result into the expression (3.30), we obtain the desired repre-
sentation of the generating function in superspace

Zβ(J) =
β2

4

∫

d[̺]Iβ(̺)

p
∏

j=1

sdet−β/2

(

β

2
(x+114/β + Jγ)− Λj̺

)

.(3.36)

Originally the generating function was an integral over ordinary p × n ma-
trices. The representation (3.36) is an integral over supermatrices with
dimension 4×4 for β = 1 and 2 × 2 for β = 2. This drastically reduces
the number of degrees of freedom, that is, the number of integrals to be
evaluated.
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3.4. Representation of the marginal p.d.f. as eigenvalue integral. To ob-
tain from the generating function the marginal p.d.f. we use the relation (2.7).
The source variable J appears in the generating function (3.36) only in the
product of superdeterminants. We find

∂

∂J

p
∏

j=1

sdet−β/2

(

β

2
(x+114/β + Jγ)− Λj̺

)

∣

∣

∣

∣

∣

J=0

=(3.37)

= −
(

β

2

)2 p
∑

k=1

str
114/β

βx+114/β/2− Λk̺
γ

×
p
∏

j=1

sdet−β/2

(

β

2
x+114/β − Λj̺

)

.

Thus, we arrive at the expression

Sβ(x) =
β4

16πp

p
∑

k=1

lim
ε→0

Im

∫

d[̺]Iβ(̺)str
114/β

βx+114/β/2− Λk̺
γ

×
p
∏

j=1

sdet−β/2

(

β

2
x+114/β − Λj̺

)

(3.38)

for the marginal p.d.f. The natural way to proceed from Eq. (3.38) is to
diagonalise the supermatrix ̺. For the real case ̺ is diagonalised by the
supergroup UOSp(2/2). In the complex case, the diagonalising supergroup
is U(1/1). The diagonalisation reads [22]

̺ = u−1Ru, R =

{

diag(r1, r2, ıR2, ıR2) , for β = 1,

diag(r1, ıR2) , for β = 2,
(3.39)

where the matrix u is in the corresponding supergroup. Here r1, r2, R2 ∈ R

and r1, R2 ∈ R are the eigenvalues of ̺ for β = 1 and β = 2 respectively.
With R1 = diag(r1, r2) and R1 = r1, we denote the Boson-Boson blocks
of the diagonal supermatrix R. We notice that, for β = 1 the third and
the fourth eigenvalue R2 are degenerated in accordance with the discussion
following Eq. (3.23).

The measure transforms as

d[̺] = d[R]dµ(u)Berβ(R),(3.40)

see also Ref. [22]. Here dµ(u) denotes the Haar-measure of the supergroup
corresponding to the metric str dudu†. The Jacobian of the diagonalisation,
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also referred to as Berezinian, reads [15, 20]

Berβ(R) =











|r1 − r2|
(r1 − ıR2)2(r2 − ıR2)2

, for β = 1,

1

(r1 − ıR2)2
, for β = 2.

.(3.41)

The Ingham-Siegel integral (3.28) is invariant under the diagonalisation of
̺, i.e. Iβ(̺) = Iβ(R). Moreover, the superdeterminants in Eq. (3.38) remain
unaffected by the diagonalisation. The supertrace of the resolvent contains
the symmetry breaking matrix γ and, therefore, the unitary supermatrices
u do not drop out. Rather, they appear in the form

str
114/β

βx+114/β/2− Λk̺
γ = str

114/β

βx+114/β/2− ΛkR
uγu−1.(3.42)

Collecting everything the diagonalisation of ̺ yields

Sβ(x) =
β4

16πp

p
∑

k=1

lim
ε→0

Im

∫

d[R]

p
∏

j=1

sdet−β/2

(

β

2
x+114/β − ΛjR

)

(3.43)

×Berβ(R)Iβ(R)

∫

dµ(U)str
1

βx+114/β/2− ΛkR
uγu−1 + B.T.

There is an additional term which we denote by B.T. In physics it is known
as Efetov-Wegner term [20], in mathematics as Rothstein contribution [23].
It arises due to the definition (3.7) of the integration for Grassmann vari-
ables which is intimately related to differential operators. An integration in
superspace can be viewed as derivation which mixes commuting and anti-
commuting variables under a change of coordinates. Hence B.T. can be con-
sidered as boundary terms arising by partial integrations [24] and thus has
no counterpart in ordinary analysis. Here a crucial difference between the
real and the complex case emerges. In the complex case this additional con-
tribution causes no problem because we can evaluate it explicitly, in the real
case this is not so.

Lemma 3.1. The Efetov-Wegner term arising from the diagonalisation
of the marginal p.d.f. (3.38) is for the complex case (β = 2) given by the
Dirac-distribution

B.T. = δ(x).(3.44)

We proof this in Appendix B. In the real case there appear terms in a
addition to the Dirac-distribution which are much more involved. Due to
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their complicated structure the method of calculating the marginal p.d.f.
via a diagonalisation of ̺ is inconvenient. Apart from the boundary terms,
the structures which appear for the real and the complex case are analog. To
show that, we proceed with the diagonalisation for both cases. The knowl-
edge of the integral over the supergroup in Eq. (3.43) is essential.

Lemma 3.2. Let τ and λ be Hermitian supermatrices diagonalised by
the supergroups U(N/N) or UOSp(2N/2N). Let further u ∈ U(N/N) or
u ∈ UOSp(2N/2N) be an unitary supermatrix and let dµ(u) be the Haar-
measure of the corresponding supergroup. Then we have

∫

dµ(u)Str τuλu−1 ∝ Str τ Strλ.(3.45)

The proof is given in Appendix C. With the appropriate choice for τ and
λ and with N = 1 we apply Lemma 3.2 to the group integral in Eq. (3.43).
We notice that there is an ambiguity for the choice of the over all constant
in Eq. (3.45) arising from the ambiguity for the normalisation of the Haar-
measure for the supergroups U(N/N) and UOSp(2N/2N). In our context,
no problem arises, because the normalisation of Sβ(x) to unity fixes the
constant. For N = 1 it is −1/(2π) in both cases.

Applying Lemma (3.2) to Eq. (3.43) we have

Sβ(x) = − β3

16π2p

p
∑

k=1

lim
ε→0

Im

∫

d[R]

p
∏

j=1

sdet−β/2

(

β

2
x+114/β − ΛjR

)

×Berβ(R)Iβ(R)str
114/β

βx+114/β/2− ΛkR
+ B.T.(3.46)

Removing the summation in Eq. (3.46) over k with help of the following
relation

∂

∂x

p
∏

j=1

sdet−β/2

(

β

2
x+114/β − ΛjR

)

=(3.47)

= −β2

4

p
∑

k=1

str
114/β

βx+114/β/2− ΛkR

p
∏

j=1

sdet−β/2

(

β

2
x+114/β − ΛjR

)

,

and scaling R according to R → βxR/2 yield

Sβ(x) = − β

4π2p
lim
ε→0

Im
∂

∂x

∫

d[R]

p
∏

j=1

sdet−β/2
(

R− − Λ−1
j 114/β

)

×Berβ(R)Iβ

(

βxR

2

)

+ B.T. ,(3.48)



14 C. RECHER ET AL.

where we define R− = R − ıε114/β . We employ the normalisation of the
marginal p.d.f.

1 =

∞
∫

0

dxSβ(x).(3.49)

Inserting Eq. (3.48) into Eq. (3.49) the integration over x becomes trivial.
The upper boundary yields no contribution since Iβ(βxR/2) is identically
zero for x → +∞. From the lower boundary we obtain the identity.

1 =
β

4π2p
lim
ε→0

lim
x→0+

Im

∫

d[R]

p
∏

j=1

sdet−β/2
(

R− − Λ−1
j 114/β

)

(3.50)

×Berβ(R)Iβ

(

βxR

2

)

.

The above mentioned ambiguity for the normalisation of the Haar-measure
is removed by using Eq. (3.50).

We now clarify how the derivative with respect to x in Eq. (3.48) has
to be understood. We note that, in Eq. (3.48), x is only contained in the
Ingham-Siegel integral. Using the explicit form of Iβ (see Appendix A) we
notice that the integral is of the following type

Y =
∂

∂x

∫

d[R]G(R)Θ(xR) exp(−xstrR),(3.51)

where G(R) is independent of x. The Heaviside-distribution for a matrix R
is defined by

Θ(R) =

{

1 , if R is a positive definit matrix,

0 , else.
.(3.52)

In Eq. (3.51) we write it as

Θ(xR) = Θ(x)Θ(R) + Θ(−x)Θ(−R).(3.53)

According to the definition of the marginal p.d.f. we always have x > 0. The
derivative with respect to x is the differentiation from the right at x = 0.
Hence we can omit the second term in Eq. (3.53) and obtain for Eq. (3.51)

Y = δ(x) lim
x→0+

∫

d[R]Θ(R)G(R) exp(−xstrR)(3.54)

−
∫

d[R]Θ(R)G(R) exp(−xstrR)strR.
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Applying the discussion above to Eq. (3.48) we obtain for the marginal p.d.f.

Sβ(x) =
β2

8π2p
lim
ε→0

Im

∫

d[R]Berβ(R)Iβ

(

βxR

2

)

×
p
∏

j=1

sdet−β/2
(

R− − Λ−1
j 114/β

)

strR

−δ(x)
β

4π2p
lim
ε→0

lim
x→0+

Im

∫

d[R]Berβ(R)Iβ

(

βxR

2

)

×
p
∏

j=1

sdet−β/2
(

R− − Λ−1
j 114/β

)

+B.T. .(3.55)

The relation (3.50) determines the integral in the second line of Eq. (3.55)
and reveals that this contribution is given by −δ(x). We obtain

Sβ(x) =
β2

8π2p
lim
ε→0

Im

∫

d[R]Berβ(R)Iβ

(

βxR

2

)

×
p
∏

j=1

sdet−β/2
(

R− − Λ−1
j 114/β

)

strR+ B.T.− δ(x).(3.56)

Due to Lemma 3.1 the last two terms cancel each other for the complex
case. For the real case this is not true and the cumbersome structure of the
boundary terms severely limit the usefulness of the formulae above.

However in Eq. (3.56) the marginal p.d.f. is expressed in terms of an
eigenvalue integral over the supermatrix R with dimension 4 × 4 and 2× 2
for β = 1 and β = 2, respectively. This means the problem of calculating
the marginal p.d.f. is reduced to a double and a threefold integral for the
complex and the real case, respectively.

4. Evaluation of the marginal p.d.f. We consider in Sec. 4.1 the
complex case (β = 2) and rederive the result found in Ref. [8]. In Sec. 4.2 we
study the real case and derive an expression in terms of a twofold integral.

4.1. Complex case. For β = 2 the supermatrix R = diag(r1, ıR2) has
dimension 2× 2. The Ingham-Siegel integral then reads

I2(xR) =
2π

Γ(n)
Θ(x)Θ(r1)r

n
1

× exp[−x(r1 + ıR2)]

(

− ∂

∂ıR2

)n−1

δ(R2),(4.1)
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see Appendix A. Using that strR = 1/
√

Ber2(R), we obtain

S2(x) =
Θ(x)

2π2p
lim
ε→0

Im

∫

d[R]
I2(xR)

r1 − ıR2

p
∏

j=1

ıR−
2 − Λ−1

j

r−1 − Λ−1
j

.(4.2)

Theorem 4.1. In the complex case the marginal p.d.f. has the form

S2(x) =
(−1)p(p−1)/2Θ(x)

p∆p(Λ−1)
(4.3)

det











0

[

exp (−x/Λi)

Λn
i

]

i=1,...,p
[

xn−j

(n− j)!

]

j=1,...,p

[

Λ−j+1
i

]

i,j=1,...,p











which is equivalent to the result found in Ref. [8]

S2(x) =

p
∑

i=1

p
∑

j=1
D(i, j)xn−p+j−1 exp (−x/Λi)

p

(

p
∏

l=1

(n− l)!

)

detn Λ∆p(Λ−1)

Θ(x),(4.4)

where the D(i, j) denotes the cofactor of the matrix with entries

Dst = (n− p+ s− 1)!Λn−p+s
t , s, t = 1, . . . , p.(4.5)

The Vandermonde determinant is defined by

∆p(Λ
−1) =

p
∏

i<j

(

1

Λj
− 1

Λi

)

.(4.6)

The proof is given in Appendix D.

4.2. Real case. Due to the complicated boundary terms the representa-
tion of the marginal p.d.f. in Eq. (3.56) as eigenvalue integral is not use-
ful for an explicit calculation. Hence we take the generating function in
Eq. (3.36) as our starting point and proceed with the evaluation of the
Ingham-Siegel integral in Eq. (3.28). Afterwards we carry out the integra-
tion over the Grassmann variables and differentiate with respect to J . As we
do not make changes of variables involving the anticommuting ones, Efetov-
Wegner boundary terms can a priori not occur [23].
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We parametrise the matrices σ and ̺ in the form

σ =

[

σ1 η
−η† ıσ2112

]

, ̺ =

[

̺1 Ω
−Ω† ı̺2112

]

,(4.7)

where each entry corresponds to a 2× 2 block. In Appendix A we evaluate
the Ingham-Siegel integral for a diagonal supermatrix ̺. The transfer to the
case of non-diagonal ̺ is straight forward due to the rotation invariance. We
find

I1(̺) =
(−2)n+1π

(n− 2)!
det(n−1)/2̺1 exp (−str̺)Θ(̺1)(4.8)

(

∂

2ı∂̺2

)n−2

δ(2̺2 − ıTr̺−1
1 ΩΩ†).

It is easy to check that the generating function remains invariant under a
diagonalisation of the Boson-Boson block ̺1 if we transform simultaneously
Ω according to Ω → vΩ. Here v is the orthogonal matrix which diagonalises
̺1. The diagonalisation reads

̺1 = vTR1v, R1 = diag(r1, r2), v ∈ O(2)(4.9)

and the measure transforms according to

d[̺1] = d[R1]dµ(v)|∆2(R1)|, |∆2(R1)| = |r1 − r2|.(4.10)

Hence we may replace in the generating function (3.36) the matrix ̺1 by the
diagonal matrix R1. The matrix Ω in Eq. (4.8) appears in the argument of
the Dirac-distribtuion and contains anticommuting variables. To interpret
this distribtuion in a meaningful way [22, 16], we have to formally expand
it in the anticommuting variables. We write

Ω =

[

α α∗

β β∗

]

, Ω† =

[

α∗ β∗

−α −β

]

.(4.11)

The expansion yields

I1(̺) =
4π(−1)n

(n− 2)!
det(n−1)/2R1 exp (−str̺)Θ(R1)

{

(

∂

ı∂̺2

)n−2

(4.12)

−
(

αα∗

r1
+

ββ∗

r2

)(

∂

ı∂̺2

)n−1

+
αα∗ββ∗

r1r2

(

∂

ı∂̺2

)n
}

δ(̺2).
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Expanding the product of superdeterminants in the generating function
(3.36) with respect to α,α∗, β, β∗ we find

p
∏

j=1

sdet−1/2
(

x+114 + Jγ − 2Λj̺
)

=

p
∏

l=1

(x+ + J − 2Λlı̺2)

det1/2(x+ − 2Λlr1)

×







1−
p

∑

j=1

(2Λj)
2

(x+ + J − 2Λjı̺2)

(

αα∗

(x+ − 2Λjr1)
+

ββ∗

(x+ − 2Λjr2)

)

+

p
∑

j 6=k

(2Λj)
2

(x+ − 2Λjr1)(x+ + J − 2Λjı̺2)

× (2Λk)
2

(x+ − 2Λkr2)(x+ + J − 2Λkı̺2)
αα∗ββ∗

}

.(4.13)

Combining the expressions (4.12) and (4.13) the integration over the anti-
commuting variables α,α∗, β, β∗ yields

Z1(J) =
(−1)n

4(n − 2)!

∫

d[R1]

∫

d̺2|∆2(R1)|det(n−1)/2R1Θ(R1)(4.14)

exp
(

− (r1 + r2 − 2ı̺2)
)

p
∏

l=1

(x+ + J − 2Λlı̺2)

det1/2(x+ − 2ΛlR1)






det−1R1

(

∂

ı∂̺2

)n

+

p
∑

j=1

(2Λj)
2

(x+ + J − 2Λjı̺2)

(

1

(x+ − 2Λjr1)r2

+
1

(x+ − 2Λjr2)r1

)(

∂

ı∂̺2

)n−1

+

p
∑

j 6=k

(

(2Λj)
2

(x+ + J − 2Λjı̺2)(x+ − 2Λjr1)
×

(2Λk)
2

(x+ + J − 2Λkı̺2)(x+ − 2Λkr2)

(

∂

ı∂̺2

)n−2
)}

δ(̺2)

To obtain from Eq. (4.14) the marginal p.d.f. we employ the relation (2.7).
We expand the product in the numerator in terms of elementary symmetric
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function of the variable Qj = x+−2ıΛj̺2. The following three relations hold

∂

∂J

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−1(Q)

∂

∂J

1

J +Qj

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−2;j(Q)(4.15)

∂

∂J

1

J +Qj

1

J +Qk

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−3;j,k(Q),

where En;j,k(Q) denotes the elementary symmetric polynomial of order n in
the variables Ql, l = 1, . . . , p 6= j, k, with Qj and Qk omitted,

En;j,k(Q) =
∑

1≤i1<...<in≤p
6=i6=k

(

x+ − 2ıΛi1̺2
)

. . .
(

x+ − 2ıΛin̺2
)

,(4.16)

and En;j(Q) and En(Q) are analogously defined. Employing the relations
(4.15) we find

S1(x) =
(−1)n+1

4πp(n− 2)!
lim
ε→0

Im

∫

d[R1]

∫

d̺2
|∆2(R1)|det(n−1)/2R1Θ(R1)
∏p

l=1 det
1/2(x+ − 2ΛlR1)

exp
(

− (r1 + r2 − 2ı̺2)
)

{

det−1R1Ep−1(Q)

(

∂

ı∂̺2

)n

+

+

p
∑

j=1

(2Λj)
2

(

1

(x+ − 2Λjr2)r1
+

1

(x+ − 2Λjr1)r2

)

Ep−2;j(Q)

(

∂

ı∂̺2

)n−1

+

p
∑

j 6=k

(2Λj)
2(2Λk)

2

(x+ − 2Λjr1)(x+ − 2Λkr2)
Ep−3;j,k(Q)

(

∂

ı∂̺2

)n−2






δ(̺2)

(4.17)

for the marginal p.d.f. Since the integral over the fermionic variable ̺2 con-
tains the derivative of the Dirac-distribution, there are no problems of con-
vergence in the fermionic part. The problem of calculating the marginal
p.d.f. is thus essentially reduced to a sum of twofold integrals.

5. Numerical treatment of the marginal p.d.f. On the hand, the
square roots in the bosonic integrals (4.17) seem to be insurmountable ob-
stacles for analytic calculations. On the other hand, the singularities at
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κj = x/2Λj , j = 1, . . . , p, are numerical obstacles but they are treatable.
We show how to carry out such a numerical evaluation of Eq. (4.17).

We perform the integration over ρ2. Then the integrals in Eq. (4.17) over
the variables r1 and r2 can be cast in one of the following three forms

I1 = lim
ε→0

Im

∞
∫

0

∞
∫

0

f(r1, r2)dr1dr2
p
∏

j=1

√

(r−1 − κj)
√

(r−2 − κj)

,

(5.1)

Il2 = lim
ε→0

Im

∞
∫

0

∞
∫

0

f(r1, r2)dr1dr2
p
∏

j 6=l

√

(r−1 − κj)
√

(r−2 − κj)

× 1

(r−1 − κl)3/2
√

(r−2 − κl)
,

(5.2)

Ilm3 = lim
ε→0

Im

∞
∫

0

∞
∫

0

f(r1, r2)dr1dr2
p
∏

j 6=l,m

√

(r−1 − κj)
√

(r−2 − κj)

× 1

(r−1 − κl)3/2
√

(r−2 − κl)
√

(r−1 − κm)(r−2 − κm)3/2
,

(5.3)

where f(r1, r2) denotes a function that does not have further singularities
and is real at ε = 0. We remark that the choice for the square root of the
determinants in Eq. (4.17) as products of the eigenvalues is the correct one
since they result from Gaussian integrals, see. Eq. (3.12).

The eigenvalues Λj can always be ordered according to

0 < Λ1 < Λ2 < . . . < Λp < ∞.(5.4)

The variables κj inherit this order

κp+1 = 0 < κp < κp−1 < . . . < κ1 < ∞ = κ0.(5.5)

We divide the positive real axis into p+ 1 disjoint intervals,

[0,∞[=

p
⋃

j=0

[κj+1, κj [.(5.6)
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In each of these intervals the following observation holds

r1 ∈ [κi+1, κi[⇒ (−1)i
p
∏

j=1

(r1 − κj) > 0,(5.7)

r2 ∈ [κk+1, κk[⇒ (−1)k
p
∏

j=1

(r2 − κj) > 0.(5.8)

Combining Eq. (5.7) with Eq. (5.8) we have

(−1)i+k
p
∏

j=1

(r1 − Λ−1
j )(r2 − Λ−1

j ) > 0.(5.9)

The product in Eq. (5.9) is always negative if i + k is odd. The imaginary
part of the integral (5.1) yields a sum over all pairs of intervals such that
Eq. (5.9) is fulfilled. Integrations over other domains do not contribute when
taking the imaginary part. Collecting everything we arrive at

(5.10) I1 =
∑

0≤i,j≤p
(i+j)∈2N+1

(−1)(i+j+1)/2

κi
∫

κi+1

κj
∫

κj+1

f(r1, r2)dr1dr2
√

p
∏

k=1

∣

∣(r1 − Λ−1
k )(r2 − Λ−1

k )
∣

∣

.

Hence the integrals over r1 and r2 extend over two disjoint intervals. The
square root singularities in Eq. (5.1) are integrable.

The singularities to the power 3/2 in the integrals (5.2) and (5.3) make a
discussion similar to the one for Eq. (5.1) more involved. The integrations
over 3/2-singularities have to be understood as principal value integrals. We
apply the identity

(κl+κl−1)/2
∫

(κl+κl+1)/2

g(y)dy

(y − ıε− κl)3/2
(5.11)

= 2

(κl+κl−1)/2
∫

(κl+κl+1)/2

∂yg(y)dy

(y − ıε− κl)1/2
− 2

[

g(y)

(y − ıε− κl)1/2

](κl+κl−1)/2

(κl+κl+1)/2

to the integrals around the 3/2-singularities. The function g has to be suffi-
ciently integrable and differentiable. This is fulfilled in our case. With help
of Eq. (5.11) we get expressions to which the former discussions also apply.
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Using the commercial software Mathematica R© [25] we now can numer-
ically calculate the integrals in Eq. (4.17) . In Figs. 1 and 2 we show an
example for p = 10 and n = 200. We compare our analytical result (solid
line) with a Monte-Carlo simulation (histogram) of the same ensemble con-
sisting of 105 random matrices. The agreement between the Monte-Carlo

0 100 200
x

0

0.02

0.04

0.06

0.08

S1HxL

Fig 1. Marginal p.d.f. for the values p = 10 and n = 200. The set of {Λj}, j = 1, . . . , 10,
is {1, 0.49, 0.4225, 0.36, 0.25, 0.09, 0.729, 0.0529, 0.04, 0.0225} The solid line corresponds to
the analytical result. The bin size of the Histogramm is 5.

0 10 20
x

0

0.02

0.04

0.06

0.08

S1HxL

Fig 2. Same as Fig. 1 zoomed into the interval x ∈ [0, 25]. The bin size of the Histogramm
is 0.5 .

simulation and the analytical result is perfect. This confirms that our for-
mula is correct.

6. Summary. We developed a supersymmetry approach which allowed
us to derive exact expressions for the marginal p.d.f. of real and complex
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Wishart correlation matrices. As far as the marginal p.d.f. is concerned,
the supersymmetry method circumvents the structural problems connected
with real Wishart correlation matrices. Its crucial advantage is the drastic
reduction of the numbers of integrals. For both cases we were able to express
the marginal p.d.f. in terms of integrals over eigenvalues of supermatrices.

For the complex case the supermatrix has dimension 2×2. We have shown
that the eigenvalue integral provides in this case a determinantal structure.
Moreover, we carried out the remaining integrals and rederived the result of
Ref. [8].

For the real case, the supermatrix over which the integration extends
has dimension 4 × 4. The crucial difference to the complex case is that
the Efetov-Wegner terms arising from the diagonalisation are much more
complicated. Therefore we integrated over the matrix without changing the
variables and ended up with integrals over the diagonal elements which are
threefold integrals. Due to the Dirac-distribution in the fermionic integral
we arrived at twofold integrals. This is a considerable progress compared
to previous approaches. The remaining twofold integral seems not suited
for further analytical calculations. However, we showed how to compute the
marginal p.d.f. numerically. The comparison of our results with a Monte-
Carlo simulation clearly verifies our formula for the marginal p.d.f.

We hope that we could demonstrate that the supersymmetry method is
a powerful tool to tackle problems in multivariate statistics.
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APPENDIX A: INGHAM-SIEGEL INTEGRAL

Although the integral in Eq. (3.28) has also been calculated in Refs. [18,
17] we sketch how to evaluate it. We aim at calculating the following super-
matrix integral

Iβ(R) =

∫

d[σ]sdetnβ/2(σ − ı114/β) exp(ıstrσR),(A.1)
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where the integral extends over a Hermitian supermatrix σ as given in
Eq. (3.23) and R denotes a diagonal supermatrix. The expression (A.1) is
the supersymmetric version of the ordinary Ingham-Siegel integral [26, 27]
which reads

Iβ(Q) =

∫

d[X]det−N (X − ıǫ11M ) exp(ıTrXQ)(A.2)

∝ detN−MQΘ(Q) exp(−ǫTrQ) with ǫ > 0 and N > M − 1.

In Eq. (A.2) X and Q denote ordinary Hermitian M ×M matrices. There is
an analogous expression for real symmetric matrices. To evaluate Iβ(R) we
explicitly write down the superdeterminant and the exponent in Eq. (A.1)

sdet(σ − ı114/β) =
det

(

σ1 − ı112/β + η(ıσ2 − ı112/β)
−1η†

)

det
(

ıσ2 − ı112/β

) ,(A.3)

strσR = Trσ1R1 +Trσ2R2.

Shifting σ1 according to σ1 → σ1+η(ıσ2−ı112/β)
−1η† we see that the integrals

over σ1 and σ2 factorise and (A.1) acquires the form

Iβ(R) = ın
∫

d[σ1]det
−nβ/2(σ1 − ı112/β) exp(ıTrσ1R1)(A.4)

×
∫

dσ2det
nβ/2(σ2 − 112/β) exp(ıTrσ2R2)

×
∫

d[η] exp(−TrR1η(σ2 − 112/β)
−1η†).

Obviously the integration over σ1 corresponds to the ordinary Ingham-Siegel
integral. Hence we apply the results in Refs. [26, 27]

∫

d[σ1]det
−nβ/2(σ1 − ı112/β) exp(ıTrσ1R1) =(A.5)

= kβΘ(R1)det
(n+1)β/2−2R1 exp(−TrR1),

where kβ is a constant

k1 =
√
π

(2π)2ın

Γ(n/2)Γ((n − 1)/2)
, k2 =

ın2π

Γ(n)
.(A.6)

Also the integral over η is easily done

∫

d[η] exp(−TrR1η(σ2 − 112/β)
−1η†) =

(2/β)2

(2π)2/β
detR1

det(σ2 − 112/β)
.(A.7)
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Employing Eqs. (A.5) and (A.7) we obtain

Iβ(R) = kβ
ın(2/β)2

(2π)2/β
Θ(R1)det

(n+1)β/2−1R1 exp(−TrR1)(A.8)

∫

dσ2det
nβ/2−1(σ2 − 112/β) exp(ıTrσ2R2).

We recall that σ2 and R2 are both proportional to the unit matrix. To do the
integral over σ2 we shift σ2 according to σ2 → σ2 + 112/β . This reveals that
the integral is basically the (n−2/β)-fold derivative of the Dirac-distribution

∫

d[σ2]det
nβ/2−1(σ2 − 112/β) exp(ıTrσ2R2) =(A.9)

= 2π(β/2)n−2/β+1 exp(ıTrR2)

(

∂

∂ıR2

)n−2/β

δ(R2).

Plugging Eq. (A.9) into Eq. (A.8) we obtain

Iβ(R) = KβΘ(R1)det
(n+1)β/2−1R1 exp(−strR)

×
(

− ∂

∂ıR2

)n−2/β

δ(R2),(A.10)

with

K1 =
√
π

2π

2n−3Γ(n/2)Γ((n − 1)/2)
, K2 = − 2π

Γ(n)
(A.11)

as the constants.

APPENDIX B: PROOF OF LEMMA 3.1

As starting point we use the representation of the generating function
in superspace and calculate the corresponding Efetov-Wegner term. The
Efetov-Wegner term for the marginal p.d.f. is then obtained by using the
relation (2.7). The generating function reads for β = 2

Z2(J) =

∫

d[̺]I2(̺)

p
∏

j=1

sdet−1
(

x+112 + Jγ − Λj̺
)

.(B.1)

We recall that the Ingham-Siegel integral is rotation invariant. Hence it
remains the same when diagonalising ̺. We express the superdeterminant
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in Eq. (B.1) as a Gaussian integral over the p supervectors Ψj, j = 1, . . . , p,

p
∏

j=1

sdet−1
(

x+112 + Jγ − Λj̺
)

=(B.2)

= ı−p

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj + ıstr̺B



 .

The supermatrix B and the supervectors Ψj are defined as in Eqs. (3.31)
and (3.32). Then, we have

Z2(J) = ı−p

∫

d[̺]I2(̺)

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj + ıstr̺B





= ı−p

∫

d[σ]

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj



 δ(σ −B)

×
∫

d[̺]I2(̺) exp(ıstr̺σ).(B.3)

In the second line we have replaced the supermatrix B by a Hermitian
supermatrix σ because B cannot be diagonalised in the Fermion-Fermion
block. This is an immediate consequence of statement 4.1 in Ref. [18]. The
matrix σ however has generic eigenvalues and hence there are no problems
connected with a diagonalisation of σ.

We are interested in the diagonalisation of ̺ and consider

J(σ) =

∫

d[̺]I2(̺) exp(ıstr̺σ).(B.4)

This expression remains invariant under a diagonalisation of σ. Hence we
write σ as σ = USU †. However we still consider the eigenvalues of σ as
functions of the original cartesian coordinates. This means the diagonalisa-
tion of σ is a book keeping device which do not change the measure d[σ] in
Eq. (B.3). We have

J(σ) =

∫

d[̺]I2(̺) exp(ıstr̺S).(B.5)

The diagonalisation of ̺ = V RV † yields

J(σ) =

∫

d[R]I2(R)ϕ(R,S) + ı(B.6)
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see also Ref. [24]. Here

ϕ(R,S) =

∫

dµ(V ) exp
(

ıstrV RV †S
)

(B.7)

denotes the supermatrix Bessel function [28]. With dµ(U) we denote the
Haar-measure of the supergroup diagonalising ̺, i.e. U(1/1). The additional
term −ı is the Efetov-Wegner term arising from the diagonalisation of ̺ in
Eq. (B.5).

The supermatrix Bessel function is rotation invariant under U(1/1). There-
fore, we are allowed to replace the diagonal matrix S by the full supermatrix
σ. Inserting the resulting expression for J(σ) into the generating function
(B.4) we find

Z2(J) = ı−p

∫

d[σ]

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj



 δ(σ −B)(B.8)

×
∫

d[R]I2(R)

∫

dµ(V ) exp(ıstrV RV †σ)

−ı−(p+1)

∫

d[σ]

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj



 δ(σ −B).

We integrate over σ and Ψj in the first term and obtain

Z2(J) =

∫

d[R]I2(R)

∫

dµ(V )

p
∏

j=1

sdet−1
(

x+112 + Jγ − ΛjV RV †
)

− ı−(p+1)

∫

d[σ]

∫

d[Ψ] exp



ı

p
∑

j=1

Ψ†
j(x

+112 + Jγ)Ψj



 δ(σ −B).(B.9)

The first line in the expression above is exactly of the form what a diago-
nalisation of Eq. (B.1) would yield if the integral extends over an ordinary
matrix. The additional term in Eq. (B.8) is a contribution which has no
analog in ordinary analysis. It is the Efetov-Wegner term we are looking for.
The integration over σ and Ψj yields

Z2(J) =

∫

d[R]I2(R)

p
∏

j=1

sdet−1
(

x+112 − Jγ − ΛjR
)

+ sdet−p(x+ + Jγ)(B.10)
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We use the relation (2.7) between the generating function and the marginal
p.d.f. and get

B.T. = − 1

pπ
lim
ε→0

Im
∂

∂J
sdet−p(x+112 + Jγ)

∣

∣

∣

∣

∣

J=0

= δ(x)(B.11)

for the Efetov-Wegner term which is the desired result.

APPENDIX C: PROOF OF LEMMA 3.2

We aim at calculating the group integral

Kβ(τ, λ) =

∫

dµ(u)str(τuλu−1),(C.1)

where τ and λ are Hermitian supermatrices diagonalisable by the group of
unitary supermatrices. For β = 2 one can easily write down a parametri-
sation of U(1/1) and evaluate (C.1) by an explicit calculation. However for
the real case the diagonalising supermatrices u have dimension 4 × 4 and
therefore using an explicit parametrisation of UOSp(2/2) becomes tedious.
Thus a different line of reasoning is called for which actually applies inde-
pendently of the size of the matrices u to both cases β = 1 and β = 2 . As
we will see the symmetries of Kβ suffice to determine (C.1).

We observe four properties of Kβ :

1. Due to the cyclic invariance of the supertrace, Kβ(τ, λ) is symmetric
in τ and λ

Kβ(τ, λ) = Kβ(λ, τ).(C.2)

2. The rotation invariance of the Haar-measure implies that Kβ(τ, λ) can
only depend on invariants of the matrices τ and λ. This means the
property

Kβ(τ, λ) = Kβ(uτu
†, λ)(C.3)

holds ∀ u ∈ U(N/N) for β = 2 and ∀ u ∈ UOSp(2N/2N) for β = 1.
In combination with the first property the symmetry (C.2) is also true
for λ.

3. The linearity of the supertrace imposes that the superfunction Kβ is
bilinear, i.e. for three supermatrices τ , Σ and λ it is

Kβ(aτ + bΣ, λ) = aKβ(τ, λ) + bKβ(Σ, λ) , a, b ∈ C,(C.4)

and analogous for λ.
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4. The superfunction Kβ is a polynomial in the entries of supermatrices
τ and λ.

The three properties (C.2), (C.3) and (C.4) suffice to determine Kβ(τ, λ)
up to a constant. All polynomial invariants of the function Kβ(τ, λ) can
be expressed in terms of supertraces of τ and λ because of the second and
fourth property. We have

Kβ(τ, λ) = Kβ(strτ, strτ
2, . . . , strλ, strλ2, . . . ).(C.5)

The bilinearity of Kβ leads to Eq. (3.45).

APPENDIX D: PROOF OF THEOREM 4.1

The expression (4.2) for the marginal p.d.f. in the complex case has a
determinantal structure. To uncover it, we use the identity [29]

p+1
∏

l<k

(κk2 − κl2)

p+1
∏

k=1

(κ1 − κk2)

= (−1)p det













[

1

κ1 − κk2

]

k=1,...,(p+1)

[

κj−1
k2

]

k=1,...,(p+1)
j=1,...,p













.(D.1)

We need this formula to rearrange the term

∆p(Λ
−1)

p
∏

j=1
(ıR−

2 − Λ−1
j )

p
∏

j=1
(r−1 − Λ−1

j )

.(D.2)

Identifying κ1 = r−1 , κk2 = Λ−1
k for k = 1, . . . , p and κ(p+1)2 = ıR−

2 we
obtain for Eq. (4.2)

S2(x) =
(−1)p(p−1)/2Θ(x)

2π2p∆p(Λ−1)
(D.3)

× lim
ε→0

Im

∫

d[R]I2(xR) det









1

r1 − ıR2

[

1

r−1 − Λ−1
k

]

k=1,...,p
[

(ıR−
2 )

j−1
]

j=1,...,p

[

Λ−j+1
k

]

j,k=1,...,p









.

Since the Ingham-Siegel integral (4.1) factorizes in functions of r1 and ıR2,
we cast Eq. (D.3) expression into the form

S2(x) =
Θ(x)(−1)p(p−1)/2

p∆p(Λ−1)Γ(n)
det

[

L0 [L1k]k=1,...,p

[L2j ]j=1,...,p

[

Λ−j+1
k

]

j,k=1,...,p

]

.(D.4)
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with

L0 =
1

π
lim
ε→0

Im

∞
∫

0

dr1r
n
1 e

−xr1 ,(D.5)

×
+∞
∫

−∞

dR2
exp(ıxR2)

r1 − ıR2

(

− ∂

∂ıR2

)n−1

δ(R2) = 0

L1k =
1

π
lim
ε→0

Im

∞
∫

0

dr1r
n
1 exp(−xr1)

1

r−1 − Λ−1
k

=
exp(−x/Λk)

Λn
k

,(D.6)

L2j =

+∞
∫

−∞

dR2(ıR2)
j−1eıxR2

(

− ∂

∂ıR2

)n−1

δ(R2)(D.7)

= xn−j (n− 1)!

(n− j)!
.

The imaginary part of the integrals over the fermionic eigenvalue R2 is al-
ways of order ε and hence vanishes in the limit ε → 0. Thus we can ignore ε
here and restrict the regularisation to the integrals over the bosonic eigen-
value r1. However, ε does not appear in L0, see Eq. (D.5). Thus the integral
is real and its imaginary part is equal to zero. For the integral L1k the regu-
larisation yields a Dirac-distribution for r1 at Λ−1

k and hence the integration
is trivial. The integrals over R2, i.e. L2j , are simple as well due to the pres-
ence of the Dirac-distribution in Eq. (D.7). Inserting the results (D.5), (D.6)
and (D.7) we find for the marginal p.d.f. Eq. (4.3).

The second statement concerns the equivalence of Eq. (4.3) with the result
found in Ref. [8]. To prove it we expand the determinant (4.3) with respect
to the first row and the first column

D = det











0

[

exp(−x/Λi)

Λn
i

]

i=1,...,p
[

xn−j

(n− j)!

]

j=1,...,p

[

Λ−j+1
i

]

i,j=1,...,p











(D.8)

=

p
∑

i=1

p
∑

j=1

(−1)j+ix
n−j exp(−x/Λi)

(n− j)!Λn
i

det
[

Λ−t+1
s

]

s,t=1,...,p
s 6=i,t6=j

.

We reorder the summation over j by replacing this index according to j →
p− j + 1. Furthermore we write the factor Λn

i in the denominator as
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det−n Λ
∏p

l 6=i Λ
n
l and obtain for the right hand side of Eq. (D.8)

D =
1

detn Λ

p
∑

i=1

p
∑

j=1

(−1)i+l+p−1x
n−p+j−1 exp(−x/Λi)

(n− p− i− 1)!

× det
[

Λn−t+1
s

]

s,t=1,...,p
s 6=i,t6=p−j+1

.(D.9)

Now we transpose the matrix in the determinant of Eq. (D.9) and permute
the columns such that

det
[

Λn−t+1
s

]

s,t=1,...,p
s 6=i,t6=p−j+1

= (−1)(p−1)(p−2)/2 det
[

Λn−p+s
t

]

t,s=1,...,p
t6=j,s 6=i

.(D.10)

Multiplying the rows with (n − p + s − 1)! and using the relation (D.10)
yields for the determinant (D.8)

D = (−1)p(p−1)/2

p
∑

i=1

p
∑

j=1
xn−p+j−1 exp(−x/Λi)D(i, j)

(

p
∏

l=1

(n− l)!

)

detn Λ

,(D.11)

where

D(i, j) = (−1)i+j det[(n− p+ s− 1)!Λn−p+t
s ]s,t=1,...,p

s 6=i,t6=j
(D.12)

denotes the cofactor of the matrix (4.5). This shows that our result is equiv-
alent to the one in Ref. [8].
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