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Abstract: We consider the problem of learning the structure of graphical models by estimating the
inverse covariance matrix with sparsity regularization. We develop a novel first order method based on
split Bregman to solve the sparse inverse covariance estimation problem. We show that our method is
significantly faster than the widely used glasso method, which is based on blockwise coordinate descent.
In addition, our method is easy to implement and can be applied to a general class of regularization
terms.
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1. Introduction

Graphical model is an efficient tool for modeling the relationship between a set of objects (or variables) in
many application domains such as internet, social network, and biological networks [1, 2, 3]. Learning the
structure of graphical models is, however, often very challenging due to the large number of nodes commonly
seen in real applications and the enormous number of possible structures that these nodes can form. However,
it has been noted that graphical models arising from many real-world applications are often sparse, which led
to the idea of reformulating the structural learning problem as a covariance selection problem as first proposed
by Dempster in [4]. The main observation is that nonzero entries of the inverse covariance matrix (also known
as concentration matrix or precision matrix) correspond to nonzero partial correlations. If we assume the
observations have a multivariate Gaussian distribution with mean µ and covariance matrix Σ, then nonzero
entries of the concentration matrix Σ−1 will imply conditional dependency between corresponding variable
pairs conditional on the rest of the variables [5, 6].

Regularization terms that encourage sparsity are increasingly being used for sparse graphical models.
Based on the observation that the ij element of concentration matrix Σ−1 is, up to a positive scalar, the
regression coefficient of variable j in the multiple regression of variable i on the rest, and vice versa [7, 6],
Meinshausen and Bühlmann [8] estimate a sparse graphical model by fitting a collection of lasso regression
models, using in turn each variable as the response, and the others as predictors. The component Σ̂−1

ij is then
estimated to be non-zero if either the estimated coefficient of variable i on j or the estimated coefficient of
variable j on i is nonzero (alternatively, they use an AND rule). It is a computationally attractive method
for covariance selection that can be used for very large Gaussian graphs. They showed that their method is
consistent for sparse high-dimensional graphs. Despite of its efficiency and consistency, it does not take into
account the intrinsic symmetry of the problem, which could result in contradictory neighborhoods and non-
positive concentration matrix. Furthermore, if the same penalty parameter is used for all lasso regressions,
as suggested by their article, more or less equal effort is placed on building each neighborhood, which is not
so efficient for networks with skewed degree distributions. To overcome the asymmetry of Meinshausen and
Bühlmann [8], Peng et al. [6] take a symmetric regression approach, called “SPACE”, which performs well
in both nonzero partial correlation selection and the identification of hub variables. However, the derived
contradictory matrix could still be non-positive.

Another popular approach for covariance selection is to use regularized maximum likelihood with ℓ1
penalty on the off-diagonal elements of the concentration matrix, as proposed by Yuan and Lin [2]. More
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specifically, suppose we are given n samples independently drawn from a p-variate Gaussian distribution:
x1, . . . ,xn ∼ N (µ,Σ). Let S be the empirical covariance matrix:

S :=
1

n

n∑

k=1

(xi − µ)(xi − µ)T .

Denote Θ = Σ−1, the problem is to minimize

− log detΘ + tr(SΘ) + λ
∑

i6=j

|Θij | (1)

over nonnegative definite matrices Θ. Here, tr denotes the trace and Θij is ij-th entry of Θ. Due to the ℓ1
penalty and explicit positive definite constraint, the method lead to a sparse and shrinkage estimator of the
concentration matrix that is positive definite. The simpler approach of Meinshausen and Bühlmann [8] can
be viewed as an approximation to this exact problem [9].

The loss function in (1) is strictly convex, so a global optimal solution is guaranteed to exist. However,
finding the optimal solution is computationally challenging due to complex log-likelihood function and the
nondifferentiability of ‖Θ‖1. To solve (1), Yuan and Lin [2] propose to use interior-point optimization methods
for the “maxdet” problem, which are prohibitive for problems with more than tens of nodes due to its memory
requirements and complexity. Banerjee et al. [9] develop blockwise coordinate descent for the optimization,
which is a totally different framework. Following that, Friedman et al. [10] propose the “graphical lasso”
procedure, an efficient implementation of blockwise coordinate descent, to solve the optimization problem.
It is by far the most efficient algorithm for solving (1). However, graphical lasso cannot be extended to other
penalties in a natural manner since it tied to the lasso formulation and block coordinate descent.

In this paper, we propose a new algorithm based on split Bregman method to solve regularized maximum
likelihood graphical model with different penalties, including ℓ1 penalty on the off-diagonal elements of the
concentration matrix for edge sparsity problems [2]. Although the Bregman iteration was an old technique
proposed in the sixties [11, 12], it gained significant interest only recently after Osher and his coauthors
demonstrated its high efficiency for image restoration [13, 14, 15]. Most recently, it has also been shown to
be an efficient tool for compressed sensing [16, 17, 18], matrix completion [19], low rank matrix recovery [20]
and general fused lasso problem [21]. In the following, we will show that the general regularized maximum
likelihood for sparse graphical model can be reformulated so that split Bregman method can be readily
applied. The derived algorithm consists of three steps for each iteration. We noticed that the first update is
the main time consuming step and proposed an iterative Newton method to solve it. The contribution is vital
and makes the derived algorithm from split Bregman method very easy to implement and quite efficient.
According to our numerical experiments using time trial, our proposed algorithm for solving the problem
(1) saves more than 30% computational time from graphical lasso for large scale problems.

The rest of the paper is organized as follows. In Section 2, we proposed SBGM based on split Bregman
method to solve the general regularized maximum likelihood graphical model. We present the general regu-
larized maximum likelihood graphical model as well as its reformulation in subsection 2.1. The framework
of SBGM for solving the general regularized maximum likelihood graphical model is proposed in subsection
2.2. In subsection 2.3, we give the explicit formula for each update and propose an efficient Newton method
to solve the first update. The convergence property of this algorithm is also given. Section 3 gives an explicit
implementation of algorithm SBGM for the special case proposed by Yuan and Lin [2]. We call this algorithm
SBGLasso for simplicity. Numerical experiments to show the performance of our proposed algorithms are
given in Section 4.

2. Split Bregman method for general regularized maximum likelihood graphical model
(SBGM)

Split Bregman method was first proposed by S. Osher and his coauthors for solving total variation based
image restoration problems [14]. It is later found to be equivalent or closely related to many other algorithms,
such as Douglas-Rachford splitting [22], alternating direction method of multipliers [23, 24] [14] and the
method of multipliers [25]. It is becoming an efficient algorithm to solve many large-scale problems [20, 15, 21].
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In this section, we will propose an efficient algorithm based on split Bregman method to solve regularized
maximum likelihood graphical model with different penalties. It is very efficient and applicable for large-scale
data. For the special case with ℓ1 penalty (1), it saves more than 30% computational time from graphical
lasso for large scale problems.

2.1. General Problem and its reformulation

We first describe our algorithm in a more general setting than the one described in (1). Instead of using ℓ1
norm penalty, we would use a combination of an ℓ2 penalty and a general non-smooth penalty φ(Θ) which
is convex and satisfying φ(Θ) = φ(ΘT ). More specifically, we find Θ∗ by solving the following unconstrained
optimization problem

min
Θ≻0

− log detΘ + tr(SΘ) + λ1φ(Θ) +
λ2

2
‖Θ‖2F , (2)

where Θ ≻ 0 denotes Θ is positive semi-definite, λ1, λ2 ∈ R+ are two regularization parameters and ‖Θ‖F is
the Frobenius norm of Θ. If we choose φ(Θ) =

∑
i6=j |Θij | and λ2 = 0, the problem is exactly the minimization

problem (1).
In order to use split Bregman method, we reformulate (2) into an equivalent constraint problem

min− log detΘ + tr(SΘ) + λ1φ(A) +
λ2

2
‖Θ‖2F

s.t. A = Θ

Θ ≻ 0. (3)

Note that the introduction of the new variable of A is very important and will make the subproblems
derived by split Bregman method very easy to solve.

2.2. Framework of split Bregman method for the problem (3)

Although split Bregman method originates from Bregman iterations [26, 15, 27], it has been demonstrated
to be equivalent to alternating direction method of multipliers (ADMM) [23, 24, 28, 29]. For convenience,
here we derive the split Bregman method from augmented lagrangian method [30, 25].

Ignoring the constraint Θ ≻ 0, the augmented Lagrangian function of (3) is

L(Θ, A,M) = − log detΘ + tr(SΘ) + λ1φ(A) +
λ2

2
‖Θ‖2F + tr(MT (Θ −A)) +

µ

2
‖Θ−A‖2F , (4)

where matrix M is a dual variable corresponding to the linear constraint Θ = A and µ > 0 is a prameter.
Compared with standard Lagrangian function, we have the extra term µ

2 ‖Θ−A‖2F , which is used to penalize
the violation of the linear constraint Θ = A.

It is easy to see that solving (3) can be transferred to finding a solution on its dual problem

max
M

E(M), with E(M) = min
Θ≻0,A

L(Θ, A,M). (5)

Note that the gradient ∇E(M) can be calculated by the following [31]

∇E(M) = Θ(M)−A(M), with (Θ(M), A(M)) = arg min
Θ≻0,A

L(Θ, A,M). (6)

Applying gradient ascent on the dual problem (5) and using equation (6), we get the method of multipliers
[25] to solve (3) {

(Θk+1, Ak+1) = argminΘ≻0,A L(Θ, A,Mk),

Mk+1 = Mk + µ(Θk+1 −Ak+1).
(7)

Here we have used µ as the step size of gradient ascent. It is easy to see that the efficiency of the iterative
algorithm (7) largely lies on whether the first equation of (7) can be solved quickly. Note that the augmented
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Lagrangian function L(Θ, A,Mk) still contains nondifferentiable term φ(A). But different from the original
objective function (2), the function φ induced nondifferentiable terms has now been transferred from terms
involving Θ to terms involving A. Thus we can solve the first equation of (7) by alternating minimization of
Θ and A,

{
Θk+1 = argminΘ≻0 − log detΘ + tr(SΘ) + λ2

2 ‖Θ‖2F + tr((Mk)T (Θ −Ak)) + µ
2 ‖Θ−Ak‖2F ,

Ak+1 = argminλ1φ(A) + tr((Mk)T (Θk+1 −A)) + µ
2 ‖Θk+1 −A‖2F ,

(8)

For the method of multipliers, we need to run the alternate minimization multiple times until converge. Note
that the first equation of (7) is only one step of the overall iterative algorithm, we don’t need to solve it
completely. It is called alternating direction method of multipliers [23] or split Bregman method if we use
one alternation. That is, we use the following iterations to solve (3)






Θk+1 = argminΘ≻0 − log detΘ + tr(SΘ) + λ2

2 ‖Θ‖2F + tr((Mk)T (Θ−Ak)) + µ
2 ‖Θ−Ak‖2F ,

Ak+1 = argminλ1φ(A) + tr((Mk)T (Θk+1 −A)) + µ
2 ‖Θk+1 −A‖2F ,

Mk+1 = Mk + µ(Θk+1 −Ak+1).

(9)

2.3. Algorithm

2.3.1. Explicit formulas for the iterations (9)

For the second equation of (9), it is easy to get the explicit solution if we know the proximal operator of φ.
More specifically, denote the proximal operator with respect to φ as

proxφ(Y ) = arg min
Z∈Rp×p

(
φ(Z) +

1

2
‖Y − Z‖2F

)
.

Note that we have φ(Z) = φ(ZT ), proxφ(Y ) is a symmetric matrix if Y is symmetric. In addition, we
introduce proxφλ

to be

proxφλ
(Y ) = arg min

Z∈Rp×p

(
φ(Z) +

λ

2
‖Y − Z‖2F

)
.

Then the optimal solution of A in the second equation of (9) is

Ak+1 = proxφλ1

µ

(Θk+1 + µ−1Mk). (10)

If we can get the update Ak+1 very quickly, this is always the case for many applications, the efficiency of
the iterative algorithm (9) lies greatly on whether the first equation of (9) can be solved quickly.

Now we focus on the first equation of (9). Taking the derivative of its objective function and setting it to
be zero, we get

−Θ−1 + (λ2 + µ)Θ = µAk − S −Mk. (11)

Note that µAk − S −Mk will be symmetric from (9) by induction if Θk is. Assume that µAk − S −Mk is
symmetric. Then it shares the same eigenvectors as Θ and Θ−1 according to (11). We take the orthogonal
eigenvalue decomposition of the matrix µAk − S −Mk,

µAk − S −Mk = UΛUT , (12)

where UUT = UTU = I and Λ = diag(λ̃1, . . . , λ̃p) with each λ̃i being the eigenvalue of µAk − S −Mk. As
Θ and Θ−1 shares the same eigenvectors as the ones of µAk − S −Mk, we have

Θ = U Σ̃UT and Θ−1 = U Σ̃−1UT , (13)

where Σ̃ = diag(σ1, . . . , σp) with each σi being the eigenvalue of Θ. Replacing (12) and (13) into (11), we get

U((λ2 + µ)Σ̃− Σ̃−1 − Λ)UT = 0. (14)
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Together with the fact that UUT = UTU = I yields

(λ2 + µ)Σ̃− Σ̃−1 − Λ = 0,

or equivalently
(λ2 + µ)σi − σ−1

i − λ̃i = 0, i = 1, . . . , p.

As λ̃i are known and Θ is supposed to be positive definite (which implies each σi > 0), we can easily get the
solutions of σi,

σi =
λ̃i +

√
λ̃2
i + 4(λ2 + µ)

2(λ2 + µ)
, i = 1, . . . , p. (15)

Thus we get the explicit solution of (11) by taking use of (12), (13) and (15),

Θk+1 =
µAk − S −Mk +

√
(µAk − S −Mk)2 + 4(λ2 + µ)I

2(λ2 + µ)
. (16)

With the explicit solution for the update of Ak+1 in (10) and update of Θk+1 in (16), we get the explicit
iteration algorithm for (3) (Algorithm 1). Furthermore, the derived Θk for each step is positive definite.

Algorithm 1 Split Bregman method for general regularized maximum likelihood graphical model (2)
(SBGM)

Initialize Θ0, A0, and M0.
repeat

1) Θk+1 =
µAk

−S−Mk+
√

(µAk
−S−Mk)2+4(λ2+µ)I

2(λ2+µ)

2) Ak+1 = proxφλ1
µ

(Θk+1 + µ−1Mk)

3) Mk+1 = Mk + µ(Θk+1 −Ak+1)
until

Convergence

2.3.2. Newton method for deriving the square root of a positive definite matrix

From the derivation of the solution of (11), we need to calculate all the eigenvalues and eigenvectors of
matrix µAk − S −Mk, which is computational demanding when the size of the matrix is large. Note that
the main step to get the update of Θk+1 is calculating the square root of the positive definite matrix
(µAk −S−Mk)2+4(λ2+µ)I. In this subsection, we will use Newton method to calculate the square root of
a positive definite matrix directly instead of using eigenvalue decomposition of µAk−S−Mk. Our numerical
experiments shows that our proposed algorithm for calculating the square root of a positive definite matrix
saves about half of computational time from the one using eigenvalue decomposition.

We begin with finding the positive root of the equation x2 − a = 0(a > 0) using Newton method [32, 33].
That is,

xk+1 =
1

2
(xk +

a

xk
). (17)

The following lemma ensures that (17) with x0 > 0 always converges to
√
a and the convergence rate is

quadratic.

Lemma 1. If we choose x0 > 0, then xk generated by (17) is well-defined and satisfies

|xk+1 −√
a| ≤ min

{
1

2
√
a

∣∣xk −√
a
∣∣2, 1

2

∣∣xk −√
a
∣∣
}
.
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Proof. Since x0 > 0, x1 is well-defined and x1 = 1
2 (x

0 + a
x0 ) ≥ √

a. By induction, xk is well-defined and
xk ≥ √

a. Moreover, using the iteration (17),

|xk+1 −√
a| =

∣∣∣∣
1

2
(xk +

a

xk
)−√

a

∣∣∣∣ =
1

2|xk| |x
k −√

a|2 ≤ 1

2
√
a
|xk −√

a|2,

and

|xk+1 −√
a| = 1

2|xk| |x
k −√

a|2 =
1

2
(1−

√
a

xk
)|xk −√

a| ≤ 1

2
|xk −√

a|.

Now we apply Newton method to calculate the square root of a positive definite matrix of the form K+αI,
where K is positive definite and α is a positive constant. Let X0 =

√
αI and

Xk+1 =
1

2

(
Xk + (Xk)−1(K + αI)

)
. (18)

Then the iteration (18) always converges quadratically to
√
K + αI . Similar algorithms has been proposed

in [34, 35, 33] to compute polar decompositions.

Theorem 1. If we choose X0 =
√
αI, then Xk generated by (18) is well-defined and quadratically converges

to
√
K + αI. More specifically,

‖Xk −
√
K + αI‖2 ≤ min

{
1

2
√
α+ λmin(K)

‖Xk −
√
K + αI‖22,

1

2
‖Xk −

√
K + αI‖2

}
, (19)

where λmin(K) is the minimum eigenvalue of matrix K.

Proof. Let K = U Σ̃UT with Σ̃ = diag(σ1, . . . , σp) and UUT = UTU = I. Since X0 =
√
αI, by induction,

Xk can be written as Xk = U Σ̃kUT with Σ̃k = diag(σk
1 , . . . , σ

k
p ) and σk

i > 0. Furthermore,

Xk+1 = U

(
1

2

(
Σ̃k + (Σ̃k)−1(Σ̃ + αI)

))
UT .

Therefore, (18) changes only the singular values which are governed by (17). The Theorem follows immedi-
ately from Lemma 1.

Note that the choice of the initial guess X0 could be any diagonal matrix with positive entries and the
convergence result is still true.

2.3.3. Convergence Analysis

The convergence of Algorithm 1 can be derived from the convergence theory of the alternating direction
method of multipliers or the convergence of split Bregman method [23, 36, 15].

Theorem 2. Suppose that there exists at least one minimizer Θ∗ of (2). Then the following property for

Algorithm 1 holds:

lim
k→∞

− log detΘk + tr(SΘk) + λ1φ(Θ
k) +

λ2

2
‖Θk‖2F

= − log detΘ∗ + tr(SΘ∗) + λ1φ(Θ
∗) +

λ2

2
‖Θ∗‖2F .

Furthermore,

lim
k→∞

‖Θk −Θ∗‖ = 0

whenever (2) has a unique solution.

From Theorem 2, the condition for the convergence of Algorithm 1 is quite mild and even irrelevant to
the choice of the parameter µ in Algorithm 1. This might be another reason why the split Bregman method
is so popular recently.
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3. Example—Split Bregman method for ℓ1 penalized maximum likelihood graphical model
(SBGLasso)

The ℓ1 penalized maximum likelihood graphical model (1) was first proposed by Yuan and Lin [2]. It is a
special case of our general model (2) with φ(Θ) =

∑
i6=j |Θij | and λ2 = 0. Algorithm 1 can be used here with

minor changes. The update of Θ is exactly the same as (16) except that we choose λ2 = 0. For the update of
A, we only need to know the proximal operator of

∑
i6=j |Θij |, which has an explicit formula and very easy

to compute. More specifically, let Tλ be a soft thresholding operator defined on matrix space and satisfying

Tλ(Ω) = (tλ(ωij))
p
i,j=1, with tλ(ωij) = sgn(ωij)max{0, |ωij| − λ}.

Then the update of A is
Ak+1 = T µ

λ1

(Θk+1 + µ−1Mk).

Combining altogether, we get Algorithm 2 for solving (1).

Algorithm 2 Split Bregman method for ℓ1 penalized maximum likelihood graphical model (SBGLasso)

Initialize Θ0, A0, and M0.
repeat

1) Compute Kk = µAk − S −Mk

1) Use Newton method to compute Xk =
√

(Kk)2 + 4µI

1) Θk+1 = Kk+Xk

2µ

2) Ak+1 = Tλ1

µ

(Θk+1 + µ−1Mk)

3) Mk+1 = Mk + µ(Θk+1 −Ak+1)
until

Convergence

4. Numerical experiments

In this section, we would use time trial to illustrate the efficiency of our proposed algorithms including the
Newton method for computing the square root of a positive definite matrix and split Bregman method for
ℓ1 penalized maximum likelihood graphical model (SBGLasso). Time trials were generated on an Intel Core
2 Duo desktop PC (E7500, 2.93GHz).

4.1. Newton method versus eigenvalue decomposition method for computing the square root

of a positive definite matrix

We first illustrate the efficiency of the Newton method for computing the square root of a positive definite
matrix of formM = K2+µI, whereK = (B+B′)/2 and B is a p×p randomGaussian matrices with its entries
randomly drawn from the standard Gaussian distribution. The form of the matrix M we choose is mostly
motivated by the square root we need to solve in the equation (16). Our algorithm is implemented in Matlab
using mex programming. We compare it with the method using matlab function “schur” on the matrix K.
More specifically, we use the two-line code “[U,D] = schur(K);SR = U ∗ diag(sqrt(diag(D).̂ 2 + µ)) ∗ U ′”
to compute the square root of M . Note that the upper triangular matrix produced by schur decomposition
is exactly diagonal since K is symmetric.

In Table 1, we have listed the number of iterations needed for our Newton method to solve the square
root of M , where we stop the iterations whenever the relative change of two successive steps is less than
10−6. We also calculated the relative difference between the result derived by our method and the one
by schur decomposition. As shown in Table 1, the relative difference is of precision of order 10−9, which
shows our algorithm is quite accurate. Empirically, our algorithm only need 8 steps to converge and it keeps
constant as the matrix size increases, which illustrate the quadratic convergence rate of our algorithm given
in Theorem 1. Most important of all, our algorithm is much faster and saves more than 50% computational
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time from the method via schur decomposition for all the examples we tested. For example, when n = 2000,
the computational time for our algorithm is 10.86 seconds, and that for the method via schur decomposition
is 38.23.

Table 1

Experimental results for computing the square root of of M . All results are averages of 10 runs.

p
Newton method Schur decomposition relative

iters in Newton method total time(s) total time(s) difference
1000 8 1.71 4.71 1.87× 10−13

1500 8 4.79 16.37 9.47× 10−13

2000 8 10.96 38.23 3.11× 10−11

2500 8 20.72 75.25 3.73× 10−10

3000 8 35.60 128.74 2.38× 10−9

4.2. SBGlasso versus graphical lasso for ℓ1 penalized maximum likelihood graphical model

Here we illustrate the efficiency of the split Bregman method for ℓ1 penalized maximum likelihood graphical
model (SBGLasso) using time trials. As graphical lasso proposed by Friedman et al. [10] is the most efficient
algorithm for solving (1) as far as we know, we focus on our comparison with it. Our algorithm was coded
in C, linked to a Matlab function, thus it is fair to compare with graphical lasso which was coded in Fortran
and linked to an R language function using time trials.

The stopping criteria of SBGLasso is specified as follows. Let Φ(Θk) = − log detΘk+tr(SΘk)+λ
∑

i6=j |Θk
ij |.

Since ℓ1 penalized maximum likelihood graphical model (1) is a special case of model (2), we can get
limk→∞ Φ(Θk) = Φ(Θ∗) by Theorem 2. It is reasonable to terminate the algorithm when the relative change
of the energy functional Φ(Θ) falls below certain threshold δ. Furthermore, Algorithm 2 is also solving (3),
the linear constraint Θ = A is satisfied when it converges. Therefore, we also expect the relative difference
‖Θ−A‖F /‖Θ‖F is less than δ. We used δ = 10−4 in our simulation. For the graphical lasso, we also set the
termination threshold to be 10−4.

Note that the convergence of Algorithm 2 is guaranteed no matter what values of µ are chosen as shown
in Theorem 2. However, the choice of µ can influence the speed of the algorithm since it would affect the
number of iterations involved. In our implementation, we found empirically that choosing µ = 0.5 works well
for all the problems we tested.

We generate the underlying sparse inverse covariance matrices as the way described in [9]. We first
randomly choose a p × p diagonal matrix with positive diagonal entries. Then approximately p nonzeros
are inserted in the matrix at random locations symmetrically. Positive definiteness is ensured by adding a
multiple of the identity to the matrix if needed. In our numerical experiments, we added 2I to the matrix.
The penalty parameter is chosen such that the solution had about the actual number of nonzero elements.
Table 2 shows computational time as well as relative error for SBGLasso and graphhical lasso. Our algorithm
is faster than graphical lasso for large scale data (p ≥ 1000) while achieving similar accuracy. It saves more
than 30% of computational time from graphical lasso. For example, when n = 2000, p = 3000, it takes 458.66
seconds for our algorithm, while it takes 729.63 for graphical lasso. For the medium scale problem such as
p = 500, the speed of our algorithm is still very fast and comparable with graphical lasso.

To evaluate how the performance of SBGLasso scales with problem size, we plotted the CPU time that
SBGLasso took to solve the problem (1) as a function of p and n. We note that the CPU times is roughly
quadratic in p and constant in n. This phenomena is reasonable since the unknown concentration matrix

has p(p+1)
2 unknowns which is quadratic with respect to p, while the number of samples only appears in S

which will not influence the speed of SBGLasso so much.
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Table 2

Timings (seconds) and relative error for SBGLasso and graphical lasso

n,p
SBFGLasso Graphical Lasso

total time (s) relative error total time(s) relative error
n = 1000, p = 500 3.12 0.1135 1.94 0.1136
n = 1000, p = 1000 19.34 0.1192 27.08 0.1193
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