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A note on the border of an exponential family

Luigi Malago and Giovanni Pistone

Abstract Limits of densities belonging to an exponential family agpgn many
applications, e.g. Gibbs models in Statistical Physidsxesl combinatorial opti-
mization, coding theory, critical likelihood computatgrBayes priors with singu-
lar support, random generation of factorial designs. Weudis the problem from
the methodological point of view in the case of a finite stgiace. We prove two
characterizations of the limit distributions, both basedaosuitable description of
the marginal polytope (convex hull of canonical statisticdues). First, the set of
limit densities is equal to the set of conditional densigjeen a face of the marginal
polytope. Second, in the lattice case there exists a par@rpetsentation, in mono-
mial form, of the closure of the statistical model.

Key words: Algebraic Statistics, Convex Support, Extended Expomaé&family,
Statistical Modeling.

1 Background

We consider thexponential familylefined by the family of densities
m
D(X;9)=8X9<Z 91Tj(X)—¢'(9)>, 6 €R", 1)
=1

on a finite state spadqe?’, u) with n=#2" points and reference measyreMany
monographs have been devoted to the study of this importass of statistical
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models, e.g.]1,12,11]. In this section we have collectetsfrom this theory and
its algebraic version in order to introduce to our resultdssed in Sectidn 2.
Different exponential families could represent the samaéistical model. Con-
sider the orthogonal decomposition Spay,...,Tm) = 1@V C L2(2", ). In
fact,V C Lg(%, [). For each densitp in the exponential family({1) there exists a
uniquev € V such thatp(x) = e Ku(V), see[T4,B].
Thecanonical statistics

T=(T,....Tm): Z =% =T(Z)CR™

map the statistical modéll(1) to tikanonical exponential family
m
p(y; 6) = exp( > Oiyi— w<9)> , O€eRM )
=1

where the new state spacé#, v), with v = o T L. In Equation[(2), the canonical
statistics are coordinate projections> yj, j =1,...,m.

1.1 Monomial and implicit presentations

Other useful parameterization of the exponential faniily dte available, in par-
ticular the mean parameterization which shall be discuss&kctionL.B. In this
paper we focus on a less known parameterization, i.emiv@omial parameteriza-
tion, which is obtained from[{1) by introducing the exponentigls- Y of each
canonical parametdl, j =1,...,m,

DT
pxt) O [t""7, teRD. (3)

This presentation is especially useful in the lattice case,when the canonical
statistics are integer valued. This is the case which has &tedied with the meth-
ods of Algebraic Statistics, see elg.][13, Sec. 6.9], [9].

While Equations[{l1) and{3) are equivalent for positive i@ an interesting
phenomenon appears if the conditiaps- O are relaxed to; > 0. In such a case,
(@) makes sense and an extension of the original model isnalotasee [15, 16]. For
example, assume we let just one of tfis, sayt;, to be zero. It follows that the cor-
responding unnormalized density is zer@4fx) # 0 and is positive foif1(x) = 0,
giving rise to densities with suppofT; = 0} which form a new exponential family.
Thus, the exponential family (1) is extended to include exgudial families with
defective support. Unfortunately, such extension dependke canonical statistics
used to describe the statistical model as an exponentialyfdror example, if the
chosen canonical statistics are never zero, no such eateisgpossible.
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Statistical models of typé{1) admit amplicit representationsee [138/12]. Let
1®V = SpanTy=1,T4,...,Tm) be the linear space generated by the canonical
statistics together with the constant 1, andvet...,w; be a linear basis of the
orthogonal spacEl®V)™*,i.e., 1 Ti,..., Tm,Wa, ..., W is alinear basis df?( 2", u)
and

Z wi(X)Tj(x)u(x) =0, i=1,...,I, j=0,...,m
xe2

If we introduce th€m+ 1) x nmatrixA=[T;(X)u(x)], j =0,...,mxe 2, To=1,
then Sparwi,...,w;) = kerA. The case wherA is integer valued is discussed in
[9]. The general case is discussed.in| [17].

Since logp(+; 8) is an affine function of the canonical statistiGss, a densityp
belongs to the exponential model (1) if and onlyiis a positive density of 2", 1)
and

w(X)U(X)logp(x) =0, we Spanwi,...,w). 4
xe
More precisely, ifp = p(+;0) in @) for a 6, then [4) holds true; vice versa, if
S xe2 WX)U(X)log p(x) = O holds true forw =w;, i =1,...,I, thenp = p(-; 0)
for some®.
Equation[(#) is equivalent to the following equation

PO =1, w/u € Spanwy,...,w), (5)

xe 2
or, clearing the denominators,

p(x)V ¥ = pOO™ ¥, w/p e Sparwy,...,w),  (6)

X: w(x)>0 X: W(x)<0

wherew = w" —w~ andw',w~ > 0. Equation[(b) makes sense outside the expo-
nential model, i.e. if we assungx) > 0. AssumeZ, = Suppp is strictly contained
in 2" and satisfies Equatiohl(5). Therefopehelongs to the exponential model as-

sociated to the spaa#, with 1 Vo = Span(wy 4, ... ,WW,;;O)l C L2( 20, My25)-

1.2 Toric statistical models

From now on we assume that thex 2" matrix A = [Tj(X)]j=1,..dxe2", IS non-
negative integer valued. The nonnegativity assumptiors dog restrict the class of
model we consider. We define

L (A) = {ye 77 y+40,Ay= o}

be thelattice of A. We denote byA(x), x € 27, the columns ofA. The model[(B) is
written p(x;t) = tA® = /... tAn( and it is calledA-model
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Consider the homomorphismfrom the polynomial ringQ[q(x): x € £7] into
the polynomial ringQ|tj: j =1,...,d] defined by

X) T A0 e g
JI:IIJ

The kernel oft is a polynomial ideal Ide&h), which is called theoric ideal of
A. Itis proved in[21] that IdedlA) is generated as a vector space by the binomials

g™ ™ — T ™%, ke.2*(A)

xe xe 2

and it is generated as an ideal by a finite subset of such baisme. the binomials
wherek is an element of the Graver basis & (A). Note that the binomials are
homogeneous if, and only if, & Span(A).

Assume now thdt, ... ,ty take nonnegative and not all zero real values and con-
sider the parameterization

qx) =t"¥, xe 2, teQ=RI\{0}.

Note thattAX) =Tj: A 7éot A0 Eachq(x) is nonnegative and strily positive if
t1,...,tg > 0. Letl be asubset of indices {1,...,d} suchthat; =0forall j €.
Thenq(x) # 0 for allx € 2" such thaiAj(x) =0, j € I.

There exists at least onec 2" whereq(x) # 0 if, and only if, each column of
A contains at least one zero. In such a case, we have definedragiarization of
unnormalized probabilitieg with parameters in the vertex-less quadrant:

tA(X)
er Fa tAX)

Let us study the confounding induced by such a parametirnizan strictly pos-
itive parameters. If

Qot— p(xt) =

SM A
ZXG,%' $AX a ZXG% tAX)”

then the unnormalized probabilities are proportional and

xeZ,

d Aj(x
I_I, ( > = constantx € .2".
or

d
Z (logsj — logtj) Aj(x) = constant
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If, and only if, 1€ Rank(A), there exists vectors= (cy,...,Cq) such thatA(x)c =
constant and log; — logt; = ¢j, j = 1,...,d or s; = €°it;. Confounding is reduced
to the confounding of uniform probability.

1.3 Trace, closure, marginal polytope

In the present section we discuss two general methods urfdehhe reduction
of the support appears, namely the trace operation andntiteolperation. For each
event. C 2, thetraceon .¥ of the exponential family in[{1) is the exponential
family defined on.’, ys) by conditioning ons".

We denote by#- the convex set of strictly positive densities and.# the
convex set of densities. Both sets are endowed with the vegaitdgy, i.e., ifpn, n=
1,2,..., andp are densities, then lim,. pn = p means lim_.. pn(X) = p(x) for all
x€ 2 .In general, the exponential model (1) is not closed in thakwepology. The
extended exponential family the closure in the weak topology of an exponential
family [@). An extended exponential family according tostiiefinition is a set of
densities. A proper parameterization of the extended farafjuires the use of the
expectation parameters and the identification of theireang

Definition 1. The convex supportcf. e.g [42[7], omarginal polytopesee [23],
and also[[1D], of the exponential familyi (1) is the convex bfil? = T(.2"),

m m
co(imT)=<neR™n=SAtj:A; >0, Aj=1,.
{ le i Aj j; j

The previous set-up covers the behavior of the exponeatiaily and its param-
eterization with the expectation parameters in the intericthe marginal polytope,
see [2]. The discussion of the parameterization of the ee@family requires the
notion of exposed subset.

Definition 2. 1. A face of the marginal polytopé is a subseF c M such that
there exists an affine mappig R™ >t — A(t) € R which is zero orF and
strictly positive onM \ F.

2. A subseSc 2 is exposed for the exponential fam{) if S= T~(F) andF
is a face of the marginal polytope.

The following theorem is a minor improvement of known result

Theorem 1.Let6,, n=1,2,..., be a sequence of parameters in Equai{@such
that for some ¢ .4~ we havdimp_.. p(X; 6h) = q(X), i.e., q belongs to the extended
exponential model.

1. If the support of g is ful{q > 0} = 2", then g belongs to the exponential family
(@ for some parameter valug = limp_.« 6.
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2. If the support of q is defective, then the sequedads not convergentSuppg =
{q> 0} is an exposed subset 4f, and q belongs to the trace of the exponential
family on the reduced support.

Proof. Let Zp={x€ 2 :q(x) > 0}, 21 ={x€ 2 :q(x) = 0}. For eactkx € 2o,
we have lim_,.logp(x; 6,) = logq(x) by continuity; for eachx € 23, we have
limy_elogp(x; 6h) = —oo. From [4) we get

10gGOOK(X)H(X) + m 5 logp(x B)k(X)(X) = O, 7)

xXeZo Xe 21
with k € Spanwi,...,w).

1. Ifthe setZ7 is empty, themm belongs to the exponential model because Equation
(@) reduces to[{4). The convergencelim, Nn = limp_,w Eg, [T] = E4[T] = n
in M° implies the convergence of th& parameters ( mod the identifiability
constraints).

2. If the set27 is not empty, the second term of the LHS[af (7) has to be finde, s
that no linear combination of th&’s can be definite in sign. Otherwise, the limit
would diverge. In other words, the problem

[
k: 213X~ ZlAiWi (x) > 0 andk # O for at least on& (8)
=

is not satisfiable. By the Theorem of the alternative, se B33 Ch. 15], the non
satisfiability of [IB) is equivalent to the existence of aifios solutionu™ (x) >
0,x € 21, to the problem

2_ uY k() u(x) =0, ke Spanwi,...,w).

The random variable

0 if xe 2o,
ud(x) if xe 23,

is orthogonal to allv;’s, so that there exisy, as, . .. ,am such that
m
u(X) =ao+ 3 ajTj(x)- 9)
=1

The conclusion on the support now follows frdm (9). In faot,dacht € % such
thatT (t) € 21 the linear functiorao + ¥ j ajt; is positive, while for eachsuch
thatT—1(t) € .20 takes value zero, so that the points#i are the points of an
exposed set of the face bf identified by [9).

Finally, on the support afj, logq is a linear combination of th§’s being a limit
in the linear space generated by those functions.
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Theorem 2.1f g belongs to the trace of the exponential fanflllywith respect to an
exposed subset S, then q belongs to the extended exponsudiail

Proof. We generate sequences that admit as limit a generic densttyei trace
model by considering a one-dimensional (Gibbs) sub-magsIF be the face of
the marginal polytope such th&t= T~1(F) and letA be an affine function such that
A(n)=0forn € F andA(n) > 0 forn € M\ F. We can chosé such thatAo T
belongs to the space generated byil..., T, i.e.AoT = ag+ z’j“:l a;Tj. We can
takeap =0if 1 € SpanTj: j=1,...,m).

Let 6 be a value of the canonical parameter such that

exp(511 6T ()

q(X) = 4 Sxesexp(3T1 6T () ) H()
0 ifxe 2°\S

if xe S

ForB e R,

m _ m _
BA+ S 6Ty = (Baj+6;)Tj+Bao,
=1 =1

so that the one-dimensional statistical model

3

p,;:exp(B(A—ao)Jr B_jTj—w(Ba+9_)), BEeR,
1

i
is a sub-model of{1). The family of densities

p — —

p—ﬁ = exp(B(A— ao) — (W(Ba+6) - y(6)))

is a one-dimensional exponential family whose canonicisticsA — ap reaches
its minimum value-ag on S. Therefore, if3, — —o0, N — oo, its limit is the uniform
distribution onSand, consequentlyg, is convergentt@. 0O

2 Extended families

In this section we assume the exponential fanily (1) to beatifce type, i.e. we
assume that thenx n matrix A = [Tj(x)u(x)], j =1,...,mandx € 2, is non-
negative integer valued. Hence, the exponential familybzawritten as in Equation
@) and takes the monomial parametric form
. Aj(x) ) P
p(X!Z) O |_| Z] ’ ZJ 207 J *17"'7m' (10)
it Aj(x)>0

In [9] the statistical mode([{10) is called thfemode] see also[[8]. If all{;’s are
positive, then[(10) is the exponential family with a diffet@arameterization. If we
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let one, or more, of thé;’s to be zero, either the monomials [n10) are zero for all
x € Z, in which case no probability is defined, or the monomialsreme-zero for
somey, giving rise to a statistical model with restricted suppsete the discussion
in [9].

Each integer vectdt such thatAk = 0, i.e.k € kerz A, splits into its positive and
negative partk = k" —k~, and we have

M Pxa<¥= ] 0@ kekenA @)
X: KT (x)>0 x: k= (x)>0

The statistical model defined by the infinite system of biredrequations[(11) is
called thetoric modelof A, as defined in[13]. Again, if all the probabilities in{11)
are positive, then the toric model is just the exponentiailia If some probabilities
are zero, then the toric model implies thanodel. In fact, substitution of (10) into
(17) leads to an algebraic identity, without any restrictim the parameteids.

The existence of a finite generating set for Equafioh (1lisisugsed in details in
[9], see also[[B]. Moreover, in[9] it is proved that each mabliity in the extended
exponential family satisfieg (JL1). We shall obtain a relag=lilt in a different way.

Consider a secordx n matrix B with the same integer ker &s The exponential
model would be the same, but the border cases oAtheodel could be different
then the border cases of tBemodel. The problem of finding a suitable maximal
monomial model was considered first in [16] and it is fullyalissed in[[1[7]. Ra-
pallo’s method has been applied|ii [6] to the Bayesian aisabfgables with struc-
tural zeros. Here, we show that all of the extended expoaldfatinily is actually
parameterized by this maximal monomial model. For a relamgatoach see also
[18].

The maximality of the monomial model is defined as followsn§ider the model
matrix A € Z™". If the constant vector 1 does not belong to the row spacekwit
to the matrix[1A] which defines the same exponential model. Let the column span
of the orthogonal matrix = [w; ---wj] € Z™! be kep A. The integer matrix can
be computed by a symbolic algebra software, such lals 5, 22heMic software
might be unsuitable because it will normally produce flogipoint unit vectors, not
integer vectors.

Consider all possible rows of a non-negative matrix eqeiveloA, i.e. produc-
ing the same statistical model when all the parameters acdyspositive:

% ={be Spapy(A) :b#0,beZl} ={beZ :b#0b'K=0}.

The set% is closed for the sum of vectors. It is proved in][20] that aquei
inclusion-minimal generating set, calletilbert basis exists. The Hilbert basis can
be computed by symbolic softwaiig [5,122]. It i€agenerating set but it is usually
much larger than a lattice basis.

The following theorem was stated first/i[ [16] without a coetel proof, see also
the discussion if [17].
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Theorem 3.Let us consider the se# of non-negative and non-zero integer vectors
that are orthogonal tdker; A and let ky, ..., by be its unique Hilbert basis. Define
a | x n matrix B whose rows are the elements of the Hilbert basisiceethe ex-
tended exponential family is fully parametrized by the Bietavith non-negative
parameters i.e. each one of the maximal exposed subsets Afritiodel is obtained
by letting one of th&;’s to be zero.

Proof. The constant vector belongs#, therefore 1by,. .., by is aQ-vector gener-
ating set, possibly non-minimal. In fact, any rational baxfiSpag,(A) becames an
integer basis by multiplication by a suitable integer; thteger basis is transformed
to an integer positive basis by adding, where needed, aamiristeger vector; each
of the vector obtained in such a way belongZo

The setsS; = {x€ 2 :bj(x) =0}, j =1,...,I are non empty. In fact, ifn; =
minybj(x) > 0, asbj(x) # 0 for somex, the vectorb; —m;1 belongs to#, and
therefore can be represented as

bj (X) —mj = linibi(x), xeZ.

If nj =0, the basis is not minimal. i; > 1, subtracting;(x) from both sides, we
get, by inspection of the signs of the two sides, that= 0.

Each of the5;'s is an exposed set of the exponential family. In fact, edement
of the Hilbert basis belongs to the rdv— Span of the original matriR, so that

bj(x):Bonrl;Bija;(x), j=1,...,1,

whereg is thei-th row of A. The definition of exposed set is easily checked.
Vice-versa, let be an exposed set, i.e.

o) = o+ 3 fart)

with .7 = {x: b(x) = 0} andb(x) > O for eachx ¢ .. As A has integer entries, the
coefficientsBy, 1, - . ., B can be chosen to have integer values, therdiae” and
it is a sum of elements of the Hilbert basis,

|
b(x) = ajbj(x), ajeZi, j=1...1
=1

ThereforeS=Nj: g;20Sj. O

Remark 1 The additive representation bffor maximal exposed sets contains only
one term. However, the Hilbert basis might contain an eldémgsuch that its zero
setS; is the intersection of othej’s. In such a case, suchlg could be dropped
from theB-model without loosing any part of the extended family.
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3 Examples

3.1 4-cycle

L. Malago, G. Pistone

The 4-cycle is the exponential family

exp(6pD + 6cC + 6B+ OaA + 6aBA+ 6ceCB+ OpcDC + OapAD — ((0))

whereA, B,C,D are the coordinates o™ = {il}"’. The model matrixA and theB
matrix are shown in the following edited R output:

2 |l D C B A BACBDC DAby by bg by bs bg by bg bg big b1y by b3 big bys big P17 big big bao b2y bz b3 bag

++++2 1.1 1 1 1 1 1 340 1 1 1 0 1 O OO O O O O O O 1 1 O O 1 O O 1 O
+++-2 1 1 1-1-1 1 1-1/0 1 1 0 0 0 0 O O 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0
++-+2 1 1-1 1-1-1 1 10 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1
++-——1 1 1-1-1 1-1 1-1/0 1 0 0 O 0 0 O O 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0
4+-++/2 1-1 1 1 1-1-1 1/1 0 0 1 0 1 1 1 0 O 0 0 0 1 0 1 0 0 0 0 0 0 1 0
+-+-/1 1-1 1-1-1-1-1-1/1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0
4+--+/1 1-1-1 1-1 1-1 1/1 0 0 1 0 0 0 1 0 O O O 1 0 0 1 0 O 0 1 o 1 0 1
4+--——f1 1-1-1-1 1 1-1-1/1 0 0 0 0 0 0 0 O O 1 0 1 1 0 1 1 1 0 0 0 1 0 0
-+++/12-1 1 1 1 1 1-1-1/0 0 1 0 1 1 0 O O O O O O 1 0 1 1 0 0 O 1 1 0 O
-++-/1-1 1 1-1-1 1-1 10 0 1 0 0 0 O 1 1 0O O i1 0 0 0 1 0 O 0 1 1 1 0 O
-+-+17-1 1-1 1-1-1-1-110 0 0 0 1 0 01 0 1 0 0 O 1 0 0 0 O 1 O 1 1 0 1
-+--/1-1 1-1-1 1-1-1 1/0 0 0 0 0 0 0 1 1 O 0 0 0 1 0 1 0 1 1 0 1 0 1 0
-=++17-1-1 1 1 1-1 1-1/0 0 0 0 1 1 1 0 O 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0
-=+4-/1-1-1 1-1-1-1 1 10 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0
-=-+1-1-1-1 1-1 1 1-1/0 0 0 0 1 0 0 0 O 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1
---—/17-1-1-1-1 1 1 1 30 0 0 0 0 0 0 0 1 O 0 0 1 0 1 1 1 1 0 1 0 0 1 0
In this exemple all théd; vectors are binary vectors, which implies they are all

indispensable. The vectdfg = 1 — bj are the indicator functions of tlf§ sets. The
polynomial representation is (after multiplication by15):

6 |FL 2 F3 Fa F5 Fg F7 Fg Fo Fig F11 F1o P13 Fia Fi5 Fig F17 Fig Fig9 Foo Fo1 Fop Fo3 Fog
1|12 12 12 12 12 12 12 8 12° 8 12" 12 12 8 12 8 8 12 12 8 12 8 '8 12
D|-4-4 04 4 0004 04 0 0 0 4 0 0 0 0 0 4 0 0 0
cl4-4-4 000400 0 0 0 4 0 4 0 0 04 0-4 0 0 0
B|o o4 0 04-4 00 0 0-4 4 0 0 0 0O 4 4 0 0 0 0 4
Alo o o-4-4-4 00 4 0 4 4 0 0 0 0 0 4 0 0 0 0 04
BAl] O O 0 O 04 0 4 0 4 0 4 0-4 0 -4 -4 -4 0 4 0 4-4 4
cBlo o0-4 0 0 0 440 4 0 0-4 4 0-4-4 0 4-4 0-4 4 0
bcl 4-4 0 0 0 0 0 4 0-4 0 0 0 4-4 4 -4 0 0-4 4 4 -4 0
DAl O 0 0-4 4 0 0-4-4 4 4 0 0 4 0-4 4 0 0-4 0 4 -4 0
e.g.
3 1 1 1
Fi=7-;D+3C+3DC

thatisDC=D-ConS;.

The Grobner basis of each idegaf — 1,B% — 1,C?>— 1,D? — 1,Fj — 1) reveals in
a different way the aliasing induced on each facet.

Next: polynomial representation of the model.

3.2 Markov chain

Let X, t=0,1,...,n be a Markov chain with stationary transitions on the binary
state spacg0,1}. Let us denote bk = P(Xp = x), x= 0,1, the initial probability
and withtyy = P(Xy =y|Xo = X), X,y = 0,1, the transition probabilities. For each
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n+1

trajectoryw € 2" = {0,1} "~ the probability of the trajectory is

1
p(w) =15 50 [ (12)
Xy=0

whereNyy(w) is the number of transitions fromito y appearing in the trajectoiy.
This in an instance of the toric model of ti& x 6 matrix whose rows are

[(1—Xo) Xo Noo Noz N1g Nu1] .
Let us compute the confounding, i.e. find the vectoesR® such that
Co(1—Xo(w)) + C1Xo(w)
+ CooNoo(@) + Co1No1(w) +CroNio(w) + c1Ni(w) = a, we 2.
for somea. Note the following equalities:

n

Nop= 5 (1= X2)(1-%) = n—xo—zrzlxt —xn+tixt1xt,
No1 = ti(l— X-1)% = ?let + Xn —tixtlxt,
Nio= tixtl(l— %) = XOJFTzilXt —tiixtlxu

Ny = tilxtlxt-

Expanding the equation far and observing that the vectors Ay, z{‘;llxt, Xn,
Y11 %—_1% are linearly independent, we obtain, equating to zero tkedfictent of
each vector, that

Co+NGo = a
C1—Co—Coo+Cro=0
—2Coo+ Co1+C10=10

—Coo+Co1=0

Coo— Co1—Cr0+C11=0

The solution of the previous system is

Co=C1, Cpo= Co1= C10= C11.
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It follows that an identifiable parameterization of the empntial model from
(12 is

1
p(w) =t5 0 M, =1 Tty=2 (13)
X,y=0 Xy

while the Markov chain model is the submodel

Nyy (@)

1
tyy” . to+ti=1, toot+tor=1, tip+tin=1 (14)

p(w) =t e
X,y=0

The orthogonal space of the model matrix is generated by #wovk =
(n,n,1,1,1,1)
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