
ar
X

iv
:1

01
2.

06
37

v1
  [

m
at

h.
S

T
]  

3 
D

ec
 2

01
0

A note on the border of an exponential family

Luigi Malagò and Giovanni Pistone

Abstract Limits of densities belonging to an exponential family appear in many
applications, e.g. Gibbs models in Statistical Physics, relaxed combinatorial opti-
mization, coding theory, critical likelihood computations, Bayes priors with singu-
lar support, random generation of factorial designs. We discuss the problem from
the methodological point of view in the case of a finite state space. We prove two
characterizations of the limit distributions, both based on a suitable description of
the marginal polytope (convex hull of canonical statistics’ values). First, the set of
limit densities is equal to the set of conditional densitiesgiven a face of the marginal
polytope. Second, in the lattice case there exists a parametric presentation, in mono-
mial form, of the closure of the statistical model.

Key words: Algebraic Statistics, Convex Support, Extended Exponential Family,
Statistical Modeling.

1 Background

We consider theexponential familydefined by the family of densities

p(x;θ ) = exp

(

m

∑
j=1

θ j Tj(x)−ψ(θ )

)

, θ ∈ Rm, (1)

on a finite state space(X ,µ) with n= #X points and reference measureµ . Many
monographs have been devoted to the study of this important class of statistical

Luigi Malagò
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models, e.g. [1, 2, 11]. In this section we have collected facts from this theory and
its algebraic version in order to introduce to our result discussed in Section 2.

Different exponential families could represent the same statistical model. Con-
sider the orthogonal decomposition Span(1,T1, . . . ,Tm) = 1⊕V ⊂ L2(X ,µ). In
fact,V ⊂ L2

0(X ,µ). For each densityp in the exponential family (1) there exists a
uniquev∈V such thatp(x) = ev−Kµ (v), see [14, 3].

Thecanonical statistics

T = (T1, . . . ,Tm) : X → Y = T(X )⊂ Rm

map the statistical model (1) to thecanonical exponential family

p(y;θ ) = exp

(

m

∑
j=1

θ jy j −ψ(θ )

)

, θ ∈Rm, (2)

where the new state space is(Y ,ν), with ν = µ ◦T−1. In Equation (2), the canonical
statistics are coordinate projectionsy 7→ y j , j = 1, . . . ,m.

1.1 Monomial and implicit presentations

Other useful parameterization of the exponential family (1) are available, in par-
ticular the mean parameterization which shall be discussedin Section 1.3. In this
paper we focus on a less known parameterization, i.e. themonomial parameteriza-
tion, which is obtained from (1) by introducing the exponentialst j = eθ j of each
canonical parameterθ j , j = 1, . . . ,m,

p(x; t) ∝
m

∏
j=1

t
Tj (x)
j , t ∈ Rm

>. (3)

This presentation is especially useful in the lattice case,i.e. when the canonical
statistics are integer valued. This is the case which has been studied with the meth-
ods of Algebraic Statistics, see e.g. [13, Sec. 6.9], [9].

While Equations (1) and (3) are equivalent for positive densities, an interesting
phenomenon appears if the conditionst j > 0 are relaxed tot j ≥ 0. In such a case,
(3) makes sense and an extension of the original model is obtained, see [15, 16]. For
example, assume we let just one of thet j ’s, sayt1, to be zero. It follows that the cor-
responding unnormalized density is zero ifT1(x) 6= 0 and is positive forT1(x) = 0,
giving rise to densities with support{T1 = 0} which form a new exponential family.
Thus, the exponential family (1) is extended to include exponential families with
defective support. Unfortunately, such extension dependson the canonical statistics
used to describe the statistical model as an exponential family. For example, if the
chosen canonical statistics are never zero, no such extension is possible.
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Statistical models of type (1) admit animplicit representation, see [13, 12]. Let
1⊕V = Span(T0 = 1,T1, . . . ,Tm) be the linear space generated by the canonical
statistics together with the constant 1, and letw1, . . . ,wl be a linear basis of the
orthogonal space(1⊕V)⊥, i.e., 1,T1, . . . ,Tm,w1, . . . ,wl is a linear basis ofL2(X ,µ)
and

∑
x∈X

wi(x)Tj (x)µ(x) = 0, i = 1, . . . , l , j = 0, . . . ,m.

If we introduce the(m+1)×n matrixA= [Tj(x)µ(x)], j = 0, . . . ,m, x∈X , T0 = 1,
then Span(w1, . . . ,wl ) = kerA. The case whereA is integer valued is discussed in
[9]. The general case is discussed in [17].

Since logp(·;θ ) is an affine function of the canonical statisticsTj ’s, a densityp
belongs to the exponential model (1) if and only ifp is a positive density of(X ,µ)
and

∑
x∈X

w(x)µ(x) log p(x) = 0, w∈ Span(w1, . . . ,wl ) . (4)

More precisely, ifp = p(·;θ ) in (1) for a θ , then (4) holds true; vice versa, if
∑x∈X w(x)µ(x) log p(x) = 0 holds true forw = wi , i = 1, . . . , l , then p = p(·;θ )
for someθ .

Equation (4) is equivalent to the following equation

∏
x∈X

p(x)w(x) = 1, w/µ ∈ Span(w1, . . . ,wl ) , (5)

or, clearing the denominators,

∏
x: w(x)>0

p(x)w+(x) = ∏
x: w(x)<0

p(x)w−(x), w/µ ∈ Span(w1, . . . ,wl ) , (6)

wherew= w+−w− andw+,w− ≥ 0. Equation (6) makes sense outside the expo-
nential model, i.e. if we assumep(x)≥ 0. AssumeX0 =Suppp is strictly contained
in X and satisfies Equation (5). Therefore,p belongs to the exponential model as-

sociated to the spaceV0, with 1⊕V0 = Span
(

w1|X0
, . . . ,wl |X0

)⊥
⊂ L2

(

X0,µ|X0

)

.

1.2 Toric statistical models

From now on we assume that them×X matrix A = [Tj(x)] j=1,...,d;x∈X , is non-
negative integer valued. The nonnegativity assumption does not restrict the class of
model we consider. We define

L
⋆ (A) =

{

y∈ ZX : y 6= 0,Ay= 0
}

be thelattice of A. We denote byA(x), x∈ X , the columns ofA. The model (3) is

written p(x; t) = tA(x) = tA1(x)
1 · · · tAm(x) and it is calledA-model.
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Consider the homomorphismτ from the polynomial ringQ[q(x) : x ∈ X ] into
the polynomial ringQ[t j : j = 1, . . . ,d] defined by

τ : q(x) 7→
d

∏
j=1

t
Tj (x)
j = tA(x), x∈ X .

The kernel ofτ is a polynomial ideal Ideal(A), which is called thetoric ideal of
A. It is proved in [21] that Ideal(A) is generated as a vector space by the binomials

∏
x∈X

q(x)w+(x)− ∏
x∈X

q(x)w−(x), k∈ L
⋆ (A)

and it is generated as an ideal by a finite subset of such binomials, i.e. the binomials
wherek is an element of the Graver basis ofL ⋆ (A). Note that the binomials are
homogeneous if, and only if, 1∈ Span(A).

Assume now thatt1, . . . , td take nonnegative and not all zero real values and con-
sider the parameterization

q(x) = tA(x), x∈ X , t ∈ Q= Rd
+ \ {0} .

Note thattA(x) = ∏ j : A j (x) 6=0 t
A j (x)
j . Eachq(x) is nonnegative and strily positive if

t1, . . . , td > 0. LetI be a subset of indices,I ⊂ {1, . . . ,d} such thatt j = 0 for all j ∈ I .
Thenq(x) 6= 0 for all x∈ X such thatA j(x) = 0, j ∈ I .

There exists at least onex∈ X whereq(x) 6= 0 if, and only if, each column of
A contains at least one zero. In such a case, we have defined a parameterization of
unnormalized probabilitiesq with parameters in the vertex-less quadrant:

Q∋ t 7→ p(x; t) =
tA(x)

∑x∈X tA(x)

Let us study the confounding induced by such a parameterization on strictly pos-
itive parameters. If

sA(x)

∑x∈X sA(x)
=

tA(x)

∑x∈X tA(x)
, x∈ X ,

then the unnormalized probabilities are proportional and

d

∏
j=1

(

sj

t j

)A j (x)

= constant,x∈ X .

or
d

∑
j=1

(logsj − logt j)A j(x) = constant.
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If, and only if, 1∈ Rank(A), there exists vectorsc= (c1, . . . ,cd) such thatA(x)c=
constant and logsj − logt j = c j , j = 1, . . . ,d or sj = ecj t j . Confounding is reduced
to the confounding of uniform probability.

1.3 Trace, closure, marginal polytope

In the present section we discuss two general methods under which the reduction
of the support appears, namely the trace operation and the limit operation. For each
eventS ⊂ X , the traceon S of the exponential family in (1) is the exponential
family defined on(S ,µ|S) by conditioning onS .

We denote byM> the convex set of strictly positive densities and byM≥ the
convex set of densities. Both sets are endowed with the weak topology, i.e., ifpn, n=
1,2, . . . , andp are densities, then limn→∞ pn = p means limn→∞ pn(x) = p(x) for all
x∈X . In general, the exponential model (1) is not closed in the weak topology. The
extended exponential familyis the closure in the weak topology of an exponential
family (1). An extended exponential family according to this definition is a set of
densities. A proper parameterization of the extended family requires the use of the
expectation parameters and the identification of their range.

Definition 1. Theconvex support, cf. e.g [4, 2, 7], ormarginal polytope, see [23],
and also [10], of the exponential family (1) is the convex hull of Y = T(X ),

co(imT) =

{

η ∈ Rm,η =
m

∑
j=1

λ jt j : λ j ≥ 0,
m

∑
j=1

λ j = 1

}

.

The previous set-up covers the behavior of the exponential family and its param-
eterization with the expectation parameters in the interior of the marginal polytope,
see [2]. The discussion of the parameterization of the extended family requires the
notion of exposed subset.

Definition 2. 1. A faceof the marginal polytopeM is a subsetF ⊂ M such that
there exists an affine mappingA: Rm ∋ t 7→ A(t) ∈ R which is zero onF and
strictly positive onM \F.

2. A subsetS⊂ X is exposed for the exponential family(2) if S= T−1(F) andF
is a face of the marginal polytope.

The following theorem is a minor improvement of known results.

Theorem 1.Let θn, n= 1,2, . . . , be a sequence of parameters in Equation(1) such
that for some q∈M≥ we havelimn→∞ p(x;θn) = q(x), i.e., q belongs to the extended
exponential model.

1. If the support of q is full,{q> 0}= X , then q belongs to the exponential family
(1) for some parameter valueθ = limn→∞ θn.
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2. If the support of q is defective, then the sequenceθn is not convergent,Suppq=
{q> 0} is an exposed subset ofX , and q belongs to the trace of the exponential
family on the reduced support.

Proof. Let X0 = {x∈ X : q(x)> 0}, X1 = {x∈ X : q(x) = 0}. For eachx∈ X0,
we have limn→∞ logp(x;θn) = logq(x) by continuity; for eachx ∈ X1, we have
limn→∞ logp(x;θn) =−∞. From (4) we get

∑
x∈X0

logq(x)k(x)µ(x)+ lim
n→∞ ∑

x∈X1

logp(x;θn)k(x)µ(x) = 0, (7)

with k∈ Span(w1, . . . ,wl ).

1. If the setX1 is empty, thenq belongs to the exponential model because Equation
(7) reduces to (4). The convergence limn→∞ ηn = limn→∞ Eθn [T] = Eq [T] = η
in M◦ implies the convergence of theθ parameters ( mod the identifiability
constraints).

2. If the setX1 is not empty, the second term of the LHS of (7) has to be finite, so
that no linear combination of thewi ’s can be definite in sign. Otherwise, the limit
would diverge. In other words, the problem

k : X1 ∋ x 7→
l

∑
i=1

λiwi(x)≥ 0 andk 6= 0 for at least onex (8)

is not satisfiable. By the Theorem of the alternative, see e.g. [19, Ch. 15], the non
satisfiability of (13) is equivalent to the existence of a positive solutionu(1)(x)>
0, x∈ X1, to the problem

∑
x∈X1

u(1)(x)k(x)µ(x) = 0, k∈ Span(w1, . . . ,wl ) .

The random variable

u(x) =

{

0 if x∈ X0,

u(1)(x) if x∈ X1,

is orthogonal to allwi ’s, so that there exista0,a1, . . . ,am such that

u(x) = a0+
m

∑
j=1

a jTj(x). (9)

The conclusion on the support now follows from (9). In fact, for eacht ∈Y such
thatT−1(t)∈X1 the linear functiona0+∑ j a jt j is positive, while for eacht such
thatT−1(t) ∈ X0 takes value zero, so that the points inX1 are the points of an
exposed set of the face ofM identified by (9).
Finally, on the support ofq, logq is a linear combination of theTj ’s being a limit
in the linear space generated by those functions.⊓⊔
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Theorem 2. If q belongs to the trace of the exponential family(1) with respect to an
exposed subset S, then q belongs to the extended exponentialmodel.

Proof. We generate sequences that admit as limit a generic density in the trace
model by considering a one-dimensional (Gibbs) sub-model.Let F be the face of
the marginal polytope such thatS= T−1(F) and letA be an affine function such that
A(η) = 0 for η ∈ F andA(η) > 0 for η ∈ M \F. We can choseA such thatA◦T
belongs to the space generated by 1,T1, . . . ,Tm, i.e.A◦T = α0+∑m

j=1α j Tj . We can
takeα0 = 0 if 1 ∈ Span(Tj : j = 1, . . . ,m).

Let θ̄ be a value of the canonical parameter such that

q(x) =











exp
(

∑m
j=1 θ̄ j Tj (x)

)

∑x∈Sexp
(

∑m
j=1 θ̄ j Tj (x)

)

µ(x)
if x∈ S,

0 if x∈ X \S.

For β ∈ R,

βA+
m

∑
j=1

θ̄ jTj =
m

∑
j=1

(β α j + θ̄ j)Tj +β α0,

so that the one-dimensional statistical model

pβ = exp

(

β (A−α0)+
m

∑
j=1

θ̄ jTj −ψ(β α + θ̄)

)

, β ∈ R,

is a sub-model of (1). The family of densities

pβ

p0
= exp

(

β (A−α0)−
(

ψ(β α + θ̄)−ψ(θ̄)
))

is a one-dimensional exponential family whose canonical statisticsA−α0 reaches
its minimum value−α0 onS. Therefore, ifβn →−∞, n→ ∞, its limit is the uniform
distribution onSand, consequently,pβn is convergent toq. ⊓⊔

2 Extended families

In this section we assume the exponential family (1) to be of lattice type, i.e. we
assume that them× n matrix A = [Tj(x)µ(x)], j = 1, . . . ,m and x ∈ X , is non-
negative integer valued. Hence, the exponential family canbe written as in Equation
(3) and takes the monomial parametric form

p(x;ζ ) ∝ ∏
j : A j (x)>0

ζ A j (x)
j , ζ j ≥ 0, j = 1, . . . ,m. (10)

In [9] the statistical model (10) is called theA-model, see also [8]. If allζ j ’s are
positive, then (10) is the exponential family with a different parameterization. If we
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let one, or more, of theζ j ’s to be zero, either the monomials in (10) are zero for all
x∈ X , in which case no probability is defined, or the monomials arenon-zero for
somex, giving rise to a statistical model with restricted support, see the discussion
in [9].

Each integer vectork such thatAk= 0, i.e.k∈ kerZA, splits into its positive and
negative part,k= k+− k−, and we have

∏
x: k+(x)>0

p(x,ζ )k+(x) = ∏
x: k−(x)>0

p(x;ζ )k−(x), k∈ kerZA. (11)

The statistical model defined by the infinite system of binomial equations (11) is
called thetoric modelof A, as defined in [13]. Again, if all the probabilities in (11)
are positive, then the toric model is just the exponential family. If some probabilities
are zero, then the toric model implies theA-model. In fact, substitution of (10) into
(11) leads to an algebraic identity, without any restriction on the parametersζ j .

The existence of a finite generating set for Equation (11) is discussed in details in
[9], see also [8]. Moreover, in [9] it is proved that each probability in the extended
exponential family satisfies (11). We shall obtain a relatedresult in a different way.

Consider a secondl ×n matrixB with the same integer ker asA. The exponential
model would be the same, but the border cases of theA-model could be different
then the border cases of theB-model. The problem of finding a suitable maximal
monomial model was considered first in [16] and it is fully discussed in [17]. Ra-
pallo’s method has been applied in [6] to the Bayesian analysis of tables with struc-
tural zeros. Here, we show that all of the extended exponential family is actually
parameterized by this maximal monomial model. For a relatedapproach see also
[18].

The maximality of the monomial model is defined as follows. Consider the model
matrix A∈ Zm×n. If the constant vector 1 does not belong to the row space switch
to the matrix[1A] which defines the same exponential model. Let the column span
of the orthogonal matrixK = [w1 · · ·wl ] ∈ Zn×l be kerQA. The integer matrixK can
be computed by a symbolic algebra software, such as [5, 22]. Numeric software
might be unsuitable because it will normally produce floating point unit vectors, not
integer vectors.

Consider all possible rows of a non-negative matrix equivalent toA, i.e. produc-
ing the same statistical model when all the parameters are strictly positive:

B =
{

b∈ SpanQ(A) : b 6= 0,b∈ Zn
+

}

=
{

b∈ Zn
+ : b 6= 0,bTK = 0

}

.

The setB is closed for the sum of vectors. It is proved in [20] that a unique
inclusion-minimal generating set, calledHilbert basis, exists. The Hilbert basis can
be computed by symbolic software [5, 22]. It is aQ-generating set but it is usually
much larger than a lattice basis.

The following theorem was stated first il [16] without a complete proof, see also
the discussion in [17].
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Theorem 3.Let us consider the setB of non-negative and non-zero integer vectors
that are orthogonal tokerZA and let b1, . . . ,bl be its unique Hilbert basis. Define
a l × n matrix B whose rows are the elements of the Hilbert basis. Hence, the ex-
tended exponential family is fully parametrized by the B-model with non-negative
parameters i.e. each one of the maximal exposed subsets of the A-model is obtained
by letting one of theζ j ’s to be zero.

Proof. The constant vector belongs toB, therefore 1,b1, . . . ,bl is aQ-vector gener-
ating set, possibly non-minimal. In fact, any rational basis of SpanQ(A) becames an
integer basis by multiplication by a suitable integer; the integer basis is transformed
to an integer positive basis by adding, where needed, a constant integer vector; each
of the vector obtained in such a way belong toB.

The setsSj =
{

x∈ X : b j(x) = 0
}

, j = 1, . . . , l are non empty. In fact, ifmj =
minx b j(x) > 0, asb j(x) 6= 0 for somex, the vectorb j −mj1 belongs toB, and
therefore can be represented as

b j(x)−mj =
l

∑
i=1

nibi(x), x∈ X .

If n j = 0, the basis is not minimal. Ifn j ≥ 1, subtractingb j(x) from both sides, we
get, by inspection of the signs of the two sides, thatmj = 0.

Each of theSj ’s is an exposed set of the exponential family. In fact, each element
of the Hilbert basis belongs to the rowQ−Span of the original matrixA, so that

b j(x) = β0 j +
m

∑
i=1

βi j ai(x), j = 1, . . . , l ,

whereai is thei-th row ofA. The definition of exposed set is easily checked.
Vice-versa, letS be an exposed set, i.e.

b(x) = β0+
m

∑
i=1

βiai(x),

with S = {x: b(x) = 0} andb(x)> 0 for eachx /∈ S . As A has integer entries, the
coefficientsβ0,β1, . . . ,βl can be chosen to have integer values, thereforeb∈ B and
it is a sum of elements of the Hilbert basis,

b(x) =
l

∑
j=1

α jb j(x), α j ∈ Z+, j = 1, . . . , l .

Therefore,S= ∩ j : α j 6=0Sj . ⊓⊔

Remark 1.The additive representation ofb for maximal exposed sets contains only
one term. However, the Hilbert basis might contain an element b j such that its zero
setSj is the intersection of otherSj ’s. In such a case, such ab j could be dropped
from theB-model without loosing any part of the extended family.
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3 Examples

3.1 4-cycle

The 4-cycle is the exponential family

exp(θDD+θCC+θBB+θAA+θBABA+θCBCB+θDCDC+θADAD−ψ(θ ))

whereA,B,C,D are the coordinates ofX = {±1}4. The model matrixA and theB
matrix are shown in the following edited R output:

X I D C B A BA CB DC DAb1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24
++++ 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0
+++− 1 1 1 1 −1 −1 1 1 −1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0
++−+ 1 1 1 −1 1 −1 −1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1
++−− 1 1 1 −1 −1 1 −1 1 −1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0
+−++ 1 1 −1 1 1 1 −1 −1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
+−+− 1 1 −1 1 −1 −1 −1 −1 −1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0
+−−+ 1 1 −1 −1 1 −1 1 −1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1
+−−− 1 1 −1 −1 −1 1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0
−+++ 1 −1 1 1 1 1 1 −1 −1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0
−++− 1 −1 1 1 −1 −1 1 −1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0
−+−+ 1 −1 1 −1 1 −1 −1 −1 −1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1
−+−− 1 −1 1 −1 −1 1 −1 −1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0
−−++ 1 −1 −1 1 1 1 −1 1 −1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0
−−+− 1 −1 −1 1 −1 −1 −1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0
−−−+ 1 −1 −1 −1 1 −1 1 1 −1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1
−−−− 1 −1 −1 −1 −1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0

In this exemple all theb j vectors are binary vectors, which implies they are all
indispensable. The vectorsFj = 1−b j are the indicator functions of theSj sets. The
polynomial representation is (after multiplication by 1/16):

θ F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24
I 12 12 12 12 12 12 12 8 12 8 12 12 12 8 12 8 8 12 12 8 12 8 8 12
D −4 −4 0 −4 4 0 0 0 4 0 −4 0 0 0 4 0 0 0 0 0 4 0 0 0
C 4 −4 −4 0 0 0 4 0 0 0 0 0 4 0 4 0 0 0−4 0 −4 0 0 0
B 0 0 −4 0 0 −4 −4 0 0 0 0 −4 4 0 0 0 0 4 4 0 0 0 0 4
A 0 0 0 −4 −4 −4 0 0 4 0 4 4 0 0 0 0 0 4 0 0 0 0 0−4

BA 0 0 0 0 0 −4 0 4 0 4 0 4 0 −4 0 −4 −4 −4 0 4 0 4 −4 4
CB 0 0 −4 0 0 0 4 4 0 4 0 0 −4 4 0 −4 −4 0 4 −4 0 −4 4 0
DC 4 −4 0 0 0 0 0 4 0 −4 0 0 0 4 −4 4 −4 0 0 −4 4 4 −4 0
DA 0 0 0 −4 4 0 0 −4 −4 4 4 0 0 4 0 −4 4 0 0 −4 0 4 −4 0

e.g.

F1 =
3
4
−

1
4

D+
1
4

C+
1
4

DC

that isDC= D−C onS1.
The Gröbner basis of each ideal〈A2−1,B2−1,C2−1,D2−1,Fj −1〉 reveals in

a different way the aliasing induced on each facet.
Next: polynomial representation of the model.

3.2 Markov chain

Let Xt , t = 0,1, . . . ,n be a Markov chain with stationary transitions on the binary
state space{0,1}. Let us denote bytx = P(X0 = x), x= 0,1, the initial probability
and with txy = P(X1 = y|X0 = x), x,y = 0,1, the transition probabilities. For each
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trajectoryω ∈ X = {0,1}n+1 the probability of the trajectory is

p(ω) = t(1−X0(ω))
0 tX0

1

1

∏
x,y=0

t
Nxy(ω)
xy , (12)

whereNxy(ω) is the number of transitions fromx to y appearing in the trajectoryω .
This in an instance of the toric model of theX ×6 matrix whose rows are

[

(1−X0) X0 N00 N01 N10 N11
]

.

Let us compute the confounding, i.e. find the vectorsc∈R6 such that

c0(1−X0(ω))+ c1X0(ω)

+ c00N00(ω)+ c01N01(ω)+C10N10(ω)+ c11N11(ω) = α, ω ∈ X .

for someα. Note the following equalities:

N00 =
n

∑
t=1

(1−Xt−1)(1−Xt) = n−X0−2
n−1

∑
t=1

Xt −Xn+
n

∑
t=1

Xt−1Xt ,

N01 =
n

∑
t=1

(1−Xt−1)Xt =
n−1

∑
t=1

Xt +Xn−
n

∑
t=1

Xt−1Xt ,

N10 =
n

∑
t=1

Xt−1(1−Xt) = X0+
n−1

∑
t=1

Xt −
n

∑
t=1

Xt−1Xt ,

N11 =
n

∑
t=1

Xt−1Xt .

Expanding the equation forc and observing that the vectors 1,X0, ∑n−1
t=1 Xt , Xn,

∑n
t=1 Xt−1Xt are linearly independent, we obtain, equating to zero the coefficient of

each vector, that

c0+nc00= α
c1− c0− c00+ c10= 0

−2c00+ c01+ c10= 0

−c00+ c01= 0

c00− c01− c10+ c11= 0

The solution of the previous system is

c0 = c1, c00 = c01 = c10 = c11.
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It follows that an identifiable parameterization of the exponential model from
(12) is

p(ω) = t(1−X0(ω))
0 tX0

1

1

∏
x,y=0

t
Nxy(ω)
xy , t0+ t1 = 1, ∑

xy
txy = 2, (13)

while the Markov chain model is the submodel

p(ω) = t(1−X0(ω))
0 tX0

1

1

∏
x,y=0

t
Nxy(ω)
xy , t0+t1 = 1, t00+t01= 1, t10+t11= 1. (14)

The orthogonal space of the model matrix is generated by the vector k =
(n,n,1,1,1,1)
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