
DSP IMPLEMENTATION OF DEBLOCKING FILTER FOR AVS

Zhigang Yang1, Wen Gao1,2, Yan Liu1, and Debin Zhao1

1Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2Institute of Computing Technology, Chinese Academy of Science, Beijing 100080, China

{zgyang, wgao, liuyan, dbzhao}@jdl.ac.cn

ABSTRACT

The in-loop deblocking filter contains highly adaptive processing
on both sample level and block edge level, which inevitably
appears in the loop kernel of the algorithm. Therefore it is a
challenge for parallel processing on a digital signal processor
(DSP) platform. In this paper, pipelined DSP solutions to the in-
loop deblocking filter in AVS1-P2 are presented. First, the whole
filter process is divided into six sub-processes, so that the global
filter structure can be improved to achieve regular processing flow.
Then software pipelines are designed for these sub-processes,
with elaborately allocating functional units and carefully choosing
enhanced assembly instructions based on the DSP platform. The
simulated results show that this efficient implementation can
easily support real-time filter processing for high resolution
videos.

Index Terms— Pipelines, digital signal processors, deblocking
filter, AVS

1. INTRODUCTION

AVS standard is the latest video/audio coding standard established
by China Audio Video Coding Standard Working Group [1].
AVS1-P2 video coding standard [2], as one of the most important
parts of AVS standard, mainly targets to high resolution, high bit
rate coding applications, such as broadcasting. Compared with
another popular video coding standards H.264 [3], AVS1-P2 can
achieve similar performance while with lower complexity. The
framework of AVS1-P2 is also block transform/block prediction
hybrid based scheme, which can introduce blocking artifacts [4],
especially in low bit rate or highly compressed video environment.
So AVS1-P2 adopts an in-loop deblocking filter to reduce the
artifact and to improve the objective PSNR as well.

The in-loop deblocking filter can account for nearly 30% of
the decoder complexity [5]. One reason for its high complexity is
that lots of conditional branches inevitably appear in the most
inner loops of the filter algorithm. Another reason is the wide and
irregular data accesses. Almost every sample in a picture need be
loaded from memory, either to be modified or used to determine if
neighboring samples will be modified. Since the loop filter is a so
heavy computing step that several VLSI architectures were
presented to solve these problems in the past three years. For
example, multiple parallel pipelines with same stages [6] were
first introduced to calculate all possible filtered results to

* Supported by the National Natural Science Foundation of China
under Grant No. 60672088.

overcome the conditional branches, and the advanced 2-D filter
order [7] was first introduced to make full data reuse and reduce
data access. DSP is another powerful tool for video applications,
while conditional branches are very time consuming and are also
quite a challenge for parallel processing in DSP hardware [5].
Since DSP can only support one pipeline at a time, mask
operation was used to avoid conditional jumping and pair
processing was adopted to increase the parallelism of a software
pipeline [8].

All the above mentioned methods are targeted for H.264, so
the purpose of this paper is to provide pipelined DSP solutions to
accelerate the in-loop deblocking filter for AVS1-P2. The rest of
this paper is organized as follows. In Section 2, global filter flow
is improved and divided into six sub-processes. Then software
pipelines are designed for edge filter in Section 3. Simulated
results are demonstrated in Section 4 to show the capability of the
implementation. Finally, the paper is concluded in Section 5.

2. GLOBAL FILTER CONTROL

Three are mainly three parts in the loop filter, including boundary
strength (Bs) decision, edge filter and filter control. In this section,
global filter structure is to be improved from the viewpoint of
pipeline processing.

2.1. Original Filter Flow

The minimum block partition adopted by AVS1-P2 is 8x8 block.
Accordingly, the loop filter is performed on the edges of 8x8
blocks. Vertical filter is first performed then horizontal filter. The
original detailed process of edge filter in AVS1-P2 is shown in
Fig. 1. Bs is used to control the filter strength performed on edge
level. Six pixels (p2, p1, p0, q0, q1, and q2) across a vertical or
horizontal boundary and two threshold values (,) are used to
control sample-level filter. P1, P0, Q0, and Q1 are the filtered
outputs. For further information, please refer to the AVS1-P2
standard [2].

2.2. Process Division

As shown in Fig. 1, the whole process contains so many
conditional operations, such as jumping, clipping, and threshold-
decision that DSP cannot build up an efficient pipeline for the
whole process. So we divide the whole process into six parts, and
then design pipelines for each part.

First, one macroblock (MB) line is set as a macro process unit.
Once all the Bs within the MB line have been determined, the
luminance edges can be consecutively filtered, so do the

VI - 2051-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Fig. 1. Edge filter in AVS1-P2

chrominance edges. Thus, the process of Bs decision can be
divided into three sub-processes according to the picture type,
because the calculations for Bs are regular under different type.
For instance, in I picture, all the Bs are equal to 2 except for
picture or slice boundaries, and in P or B picture, the motion
vector array and reference index array can be regularly accessed
to decide each Bs.

Second, the edge filter should be divided into multiple sub-
processes with fewer conditional operations, and each sub-process
should be independent with others. Luminance/chrominance is the
most obvious division. When filtering chrominance pixels, only
p0 and q0 are filtered, so chroma-MB edge filter can be a simple
sub-process and suitable for pipeline design. While for luminance
pixels, Bs can be a further division. When Bs=2 (Bs=1), the left
(right) branch in Fig. 1 denotes the relevant sub-process.

As a summarization, Table I lists the above six sub-processes
and their main functions.

TABLE I

SUB-PROCESSES IN THE LOOP FILTER
Sub-process Function

1 Bs decision within a MB line in I picture
2 Bs decision within a MB line in P picture Bs

decision
3 Bs decision within a MB line in B picture
1 luma-block edge filter with Bs=1
2 luma-block edge filter with Bs=2 edge

filter
3 chroma-MB edge filter

2.3. Improved Filter Control

Good data flow and global function control are the basis of
efficient DSP implementation. In order to achieve better data
reuse, regular data access to memory is a key point. Based on the
macro process unit mentioned in Section 2.2 and the six sub-
processes listed in Table I, the improved global filter control is
shown below:

for (each MB line in the picture){

Perform one sub-process of Bs decision according to
picture type;

Load one luminance MB line to on-chip memory;
for (each luminance MB in the MB line) {

for (each luma-block edge in current MB)
Perform one sub-process of luma-block edge filter

according to Bs;
}
Load two chrominance (UV) MB lines to on-chip memory;
for (each chrominance (UV) MB pair in the MB line) {

for (each chroma-MB edge in current MB)
if (two Bs of the edge are not all zero)

Perform the sub-process of chroma-MB edge filter;
}

}

Since the edge filter cannot be performed on slice boundaries,
extra slice boundary check is required. In fact, slice boundary
check can be put into the pipeline of Bs decision, i.e. Bs of the
slice boundary can be set to zero. Therefore, only Bs is used to
determine whether to perform edge filter or not. Such
improvement can reduce the overhead of slice boundary check.

3. PIPELINES DESIGN

Since edge filter is the most complex part in the loop filter,
pipelines design for this part is to shown in this section. Our work
is based on TI TMS320C64x DSP [9]. A brief introduction to the
DSP would help to ease the understanding of the specific design.

3.1. Instruction Set and CPU Data Paths

DSP has a powerful instruction set. Many enhanced instructions in
assembly language can deal with multiple data in parallel.
Properly choosing the enhanced instructions can bring a great
increment for pipeline efficiency. The CPU in the DSP has two
similar data paths (A/B), and each data path mainly consists of 32
register files and 4 functional units. As for this architecture, high
parallelism is achieved by software pipeline. There are total eight
functional units in CPU, so in a single clock cycle, CPU can
execute a maximum of eight instructions in parallel, reaching its
peak performance. More detailed information of this kind of DSP
can be found in [9].

3.2. Pipelines Design for Edge Filter

In the sub-processes of edge filter, there are still conditional
operations which do not meet the requirement of software pipeline,
so the processing flow should be rearranged. An efficient solution
is that translate the conditional jumping to conditional storing.
This process can be implemented in a pipeline.

VI - 206

(a) (b)

Fig. 2. Software pipeline design for luma-block edge filter with Bs=1, (a) Improved processing flow, (b) The inner loop dependency graph
corresponding to Fig. 2(a). Note: in order to make the whole graph clear, we omit some nodes, which denote 5-bit constants or whose values saved
in source register are constant during the loop, instead we put these constants and operands into parenthesis following the instruction and
functional unit, e.g. SHR.S1(3) and MIN2.L2(C).

For further explanation, we set the sub-process of luma-block
edge filter with Bs=1 as an illustrative instance, which is the most
complex among the three sub-processes. From the pipeline-
oriented viewpoint, Fig. 2(a) shows the improved processing flow
of this sub-process. In the first two steps in Fig. 2(a), P1, P0, Q0,
and Q1 are calculated despite any condition check. Since there are
two additional spatial activity checks |p2-p0|< and |q2-q0|< ,
conditional storing has to be performed on P1 and Q1 first, shown
in step3 in Fig. 2(a). In the last step in Fig. 2(a), P1, P0, Q0, and
Q1 are conditionally stored back to memory according to the
result of sample-level content activity check. The flow of the
other two filter sub-process can also be rearranged in the same
way.

Next, a software pipeline is designed based on the improved
processing flow. Fig. 2(b) shows the dependency graph of the
loop kernel in the sub-process of luma-block edge filter with Bs=1.
Each node in the dependency graph denotes an operand, and an
edge connecting the nodes denotes an instruction. Moreover, Fig.
2(b) also indicates how to allocate functional units and what
instructions have been used.

(1) Functional unit allocation. All the resources on each side
of CPU data path should be balanced. These resources mainly
include register files and all kinds of functional units. Under such
rules, side A is in charge of most operations for p2, p1, p0, while
side B is in charge of most operations for q2, q1, q0. For example,

calculations for deltap and deltaq, shown in Fig. 2(b), contain
same operations that can be easily assigned to side A/B; but for
delta0, there are no similar calculations, so the operations for
delta0 need to be carefully separated into each side.

(2) Instruction selection. Properly choosing the enhanced
instructions can achieve high parallelism. For example, in Fig.
2(b), the PACK2 and PACKL4 instructions are used together to
pack four pixels into a 32-bit register, then the DOTPSU4
instruction can compute the dot product of the four pixels; and the
MIN2, MAX2, and SPACKU4 instructions can implement the
clipping and threshold-decision operations.

Thus, a pipeline can be built up following the guide line from
the dependency graph. Software pipelines for the other two sub-
processes can also be designed in the same way. The detailed
cycle statistic for each pipeline is listed in Table II.

4. SIMULATED RESULTS

The comparison between the proposed DSP strategy and another
strategy in [8] is presented in Table II. The table shows that the
proposed strategy produces smaller loop kernels and requires less
cycles to perform edge filter than the reference. This is because
the techniques adopted in the reference introduce additional
operations to the loop kernel, and they would be more efficient
only if there are more conditional operations in the loop kernel.

VI - 207

TABLE II
CYCLE STATISTIC COMPARED WITH ANOTHER DSP STRATEGY

Proposed Mask operation + Pair processing [8]

Pipeline Loop
Kernel

Loop
Count

Prolog
Epilog

Function
Call Total Pipeline Loop

Kernel
Loop
Count

Prolog
Epilog

Function
Call Total

luma/Bs=1 10 8 25 6 111 luma/Bs=1 11 8 27 6 121
luma/Bs=2 8 8 20 6 90 luma/Bs=2 9 8 25 6 103
Chroma 9 8 24 6 102 Chroma 10 8 27 6 113

TABLE III

CYCLE STATISTIC FOR PIPELINE/NON-PIPELINE PARTS
Pipeline Cycles Non-Pipeline Cycles

luma-block edge filter with Bs=1 111 local filter control per luma MB 177-393
luma-block edge filter with Bs=2 90 local filter control per chroma MB 52-106
chroma-MB edge filter 102 global filter control per luma MB line 622
Bs decision within a MB line in I picture 61 global filter control per chroma MB line 331
Bs decision within a MB line in P picture 990 L1D cache read miss per luma MB line 123
Bs decision within a MB line in B picture 1446 L1D cache read miss per chroma MB line 94

TABLE IV

 CAPABILITY (FPS) OF THE PROPOSED DSP STRATEGY TESTING ON 720X480 SEQUENCES (IBBPBBP)
Seq.\QP 20 24 28 32 36 40 44
football 340 353 377 398 438 513 592
mobile 549 569 613 653 713 787 877
news 802 876 947 991 1048 1117 1166

In the following experiments, D1 (720x480) format videos are

tested with AVS1-P2 on TMS320C64x DSP [9] running at
600MHz. Besides the cycles spent on the six sub-processes, we
also consider the cycles for non-pipeline parts, including local
filter control per MB, global filter control per MB line and L1D
cache read miss. Table III lists the detailed cycle statistic for each
part. Since Bs is pre-calculated, filter control on edge level could
be achieved. So the minimum and maximum cycles for one
luminance MB are 177 and 393+111×8=1281 respectively, and
the minimum and maximum cycles for two chrominance (UV)
MBs are 52 and 106+102×4=514 respectively.

For the I picture, strong filter is performed on every edge
except for the picture or slice boundary, so the capability of the
proposed DSP strategy is steady at 276fps when filtering all intra
coded 720x480 video. While filtering videos with normal GOP
structure like IBBPBBP, the capability is dependent on QP and
the content of videos, as shown in Table IV. As QP increases, it is
a general trend that the capability becomes better and better. This
is because when increasing QP, more and more MBs are coded
with skip mode, and fewer and fewer MBs are intra coded,
resulting in a decrement of both normal and strong filter
operations. There is also another trend that the capability of
filtering low motion video (like news) is much better than that of
filtering high motion video (like football). This is simply due to
the difference of motion vector between two adjacent blocks in Bs
decision.

Finally, the capability of the proposed DSP strategy is 16 to
20 times faster than the original processing flow. And this strategy
can satisfy real-time processing for high resolution videos.

5. CONCLUSIONS

This paper provides some pipelined DSP solutions to accelerate
the in-loop deblocking filter in AVS1-P2 on the DSP platform. In
order to design efficient software pipelines, the processes of edge
filter and Bs decision are respectively divided into three sub-
processes. And based on these sub-processes, the whole flow is

regularly improved. Since the sub-processes contain fewer
conditional operations, more efficient software pipelines are
achieved with elaborately allocating functional units and carefully
choosing instructions. The proposed techniques have been
adopted in a developed DSP-based real-time AVS1-P2 decoder.
The future work is to support multi-channel decoding or to
integrate these techniques into a DSP-based encoder for pursuing
high coding speed.

6. REFERENCES

[1] AVS Working Group Website: http://www.avs.org.cn
[2] “Final draft of information technology – advanced coding of
audio and video – part 2: video,” in AVS workgroup Doc. N1214,
Shanghai, China, Sep. 2005.
[3] “Draft ITU-T recommendation and final draft international
standard of joint video specification (ITU-T Rec. H.264/ISO/IEC
14 496-10 AVC),” in Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, JVTG050, 2003.
[4] S. D. Kim, J. Yi, H. M. Kim, and J. B. Ra, “A deblocking
filter with two separate modes in block-based video coding,”
IEEE Trans. CSVT, vol. 9, pp. 156-160, Feb. 1999.
[5] Peter List, Anthony Joch, Jani Lainema, Gisle Bjøntegaard,
and Marta Karczewicz, “Adaptive deblocking filter”, IEEE Trans.
CSVT, vol. 13, No. 7, pp. 614-619, July 2003.
[6] Miao Sima, Yuanhua Zhou, Wei Zhang, “An efficient
architecture for adaptive deblocking filter of H.264/AVC video
coding”, IEEE Trans. CE, vol.50, No. 1, pp. 292-296, Feb. 2004.
[7] Bin Sheng, Wen Gao, and Di Wu, “An implemented
architecture of deblocking filter for H.264/AVC,” in Proc. ICIP,
vol. 1, pp. 665-668, Oct. 2004.
[8] Zhigang Yang, Wen Gao, Yan Liu, and Debin Zhao, “Deeply
pipeline solution to deblocking filter for H.264/AVC”, IEEE
Trans. CE, Vol. 52, No. 4, pp. 1267-1274, Nov. 2006.
[9] TMS320C64x/C64x+ DSP CPU and Instruction Set Reference
Guide, SPRU732A, Jun. 2005, http://www.ti.com

VI - 208

