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ABSTRACT 
 
The in-loop deblocking filter contains highly adaptive processing 
on both sample level and block edge level, which inevitably 
appears in the loop kernel of the algorithm. Therefore it is a 
challenge for parallel processing on a digital signal processor 
(DSP) platform. In this paper, pipelined DSP solutions to the in-
loop deblocking filter in AVS1-P2 are presented. First, the whole 
filter process is divided into six sub-processes, so that the global 
filter structure can be improved to achieve regular processing flow. 
Then software pipelines are designed for these sub-processes, 
with elaborately allocating functional units and carefully choosing 
enhanced assembly instructions based on the DSP platform. The 
simulated results show that this efficient implementation can 
easily support real-time filter processing for high resolution 
videos.  
 
Index Terms— Pipelines, digital signal processors, deblocking 
filter, AVS 
 

1. INTRODUCTION 
 
AVS standard is the latest video/audio coding standard established 
by China Audio Video Coding Standard Working Group [1]. 
AVS1-P2 video coding standard [2], as one of the most important 
parts of AVS standard, mainly targets to high resolution, high bit 
rate coding applications, such as broadcasting. Compared with 
another popular video coding standards H.264 [3], AVS1-P2 can 
achieve similar performance while with lower complexity. The 
framework of AVS1-P2 is also block transform/block prediction 
hybrid based scheme, which can introduce blocking artifacts [4], 
especially in low bit rate or highly compressed video environment. 
So AVS1-P2 adopts an in-loop deblocking filter to reduce the 
artifact and to improve the objective PSNR as well. 

The in-loop deblocking filter can account for nearly 30% of 
the decoder complexity [5]. One reason for its high complexity is 
that lots of conditional branches inevitably appear in the most 
inner loops of the filter algorithm. Another reason is the wide and 
irregular data accesses. Almost every sample in a picture need be 
loaded from memory, either to be modified or used to determine if 
neighboring samples will be modified. Since the loop filter is a so 
heavy computing step that several VLSI architectures were 
presented to solve these problems in the past three years. For 
example, multiple parallel pipelines with same stages [6] were 
first introduced to calculate all possible filtered results to 
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overcome the conditional branches, and the advanced 2-D filter 
order [7] was first introduced to make full data reuse and reduce 
data access. DSP is another powerful tool for video applications, 
while conditional branches are very time consuming and are also 
quite a challenge for parallel processing in DSP hardware [5]. 
Since DSP can only support one pipeline at a time, mask 
operation was used to avoid conditional jumping and pair 
processing was adopted to increase the parallelism of a software 
pipeline [8].  

All the above mentioned methods are targeted for H.264, so 
the purpose of this paper is to provide pipelined DSP solutions to 
accelerate the in-loop deblocking filter for AVS1-P2. The rest of 
this paper is organized as follows. In Section 2, global filter flow 
is improved and divided into six sub-processes. Then software 
pipelines are designed for edge filter in Section 3. Simulated 
results are demonstrated in Section 4 to show the capability of the 
implementation. Finally, the paper is concluded in Section 5. 

 
2. GLOBAL FILTER CONTROL 

 
Three are mainly three parts in the loop filter, including boundary 
strength (Bs) decision, edge filter and filter control. In this section, 
global filter structure is to be improved from the viewpoint of 
pipeline processing.  
 
2.1. Original Filter Flow 
 
The minimum block partition adopted by AVS1-P2 is 8x8 block. 
Accordingly, the loop filter is performed on the edges of 8x8 
blocks. Vertical filter is first performed then horizontal filter. The 
original detailed process of edge filter in AVS1-P2 is shown in 
Fig. 1. Bs is used to control the filter strength performed on edge 
level. Six pixels (p2, p1, p0, q0, q1, and q2) across a vertical or 
horizontal boundary and two threshold values ( , ) are used to 
control sample-level filter. P1, P0, Q0, and Q1 are the filtered 
outputs. For further information, please refer to the AVS1-P2 
standard [2]. 
 
2.2. Process Division 
 
As shown in Fig. 1, the whole process contains so many 
conditional operations, such as jumping, clipping, and threshold-
decision that DSP cannot build up an efficient pipeline for the 
whole process. So we divide the whole process into six parts, and 
then design pipelines for each part.  

First, one macroblock (MB) line is set as a macro process unit. 
Once all the Bs within the MB line have been determined, the 
luminance edges can be consecutively filtered, so do the 
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Fig. 1. Edge filter in AVS1-P2 

 
chrominance edges. Thus, the process of Bs decision can be 
divided into three sub-processes according to the picture type, 
because the calculations for Bs are regular under different type. 
For instance, in I picture, all the Bs are equal to 2 except for 
picture or slice boundaries, and in P or B picture, the motion 
vector array and reference index array can be regularly accessed 
to decide each Bs. 

Second, the edge filter should be divided into multiple sub-
processes with fewer conditional operations, and each sub-process 
should be independent with others. Luminance/chrominance is the 
most obvious division. When filtering chrominance pixels, only 
p0 and q0 are filtered, so chroma-MB edge filter can be a simple 
sub-process and suitable for pipeline design. While for luminance 
pixels, Bs can be a further division. When Bs=2 (Bs=1), the left 
(right) branch in Fig. 1 denotes the relevant sub-process. 

As a summarization, Table I lists the above six sub-processes 
and their main functions.  

 
TABLE I 

SUB-PROCESSES IN THE LOOP FILTER 
Sub-process Function 

1 Bs decision within a MB line in I picture 
2 Bs decision within a MB line in P picture Bs  

decision 
3 Bs decision within a MB line in B picture 
1 luma-block edge filter with Bs=1 
2 luma-block edge filter with Bs=2 edge  

filter 
3 chroma-MB edge filter 

 

2.3. Improved Filter Control 
 
Good data flow and global function control are the basis of 
efficient DSP implementation. In order to achieve better data 
reuse, regular data access to memory is a key point. Based on the 
macro process unit mentioned in Section 2.2 and the six sub-
processes listed in Table I, the improved global filter control is 
shown below: 
 
for (each MB line in the picture){ 

Perform one sub-process of Bs decision according to  
picture type;  

Load one luminance MB line to on-chip memory; 
for (each luminance MB in the MB line) { 

for (each luma-block edge in current MB) 
Perform one sub-process of luma-block edge filter  

according to Bs; 
} 
Load two chrominance (UV) MB lines to on-chip memory; 
for (each chrominance (UV) MB pair in the MB line) { 

for (each chroma-MB edge in current MB)  
if (two Bs of the edge are not all zero) 

Perform the sub-process of chroma-MB edge filter; 
} 

} 
 

Since the edge filter cannot be performed on slice boundaries, 
extra slice boundary check is required. In fact, slice boundary 
check can be put into the pipeline of Bs decision, i.e. Bs of the 
slice boundary can be set to zero. Therefore, only Bs is used to 
determine whether to perform edge filter or not. Such 
improvement can reduce the overhead of slice boundary check. 

 
3. PIPELINES DESIGN 

 
Since edge filter is the most complex part in the loop filter, 
pipelines design for this part is to shown in this section. Our work 
is based on TI TMS320C64x DSP [9]. A brief introduction to the 
DSP would help to ease the understanding of the specific design. 
 
3.1. Instruction Set and CPU Data Paths 
 
DSP has a powerful instruction set. Many enhanced instructions in 
assembly language can deal with multiple data in parallel. 
Properly choosing the enhanced instructions can bring a great 
increment for pipeline efficiency. The CPU in the DSP has two 
similar data paths (A/B), and each data path mainly consists of 32 
register files and 4 functional units. As for this architecture, high 
parallelism is achieved by software pipeline. There are total eight 
functional units in CPU, so in a single clock cycle, CPU can 
execute a maximum of eight instructions in parallel, reaching its 
peak performance. More detailed information of this kind of DSP 
can be found in [9]. 
 
3.2. Pipelines Design for Edge Filter 
 
In the sub-processes of edge filter, there are still conditional 
operations which do not meet the requirement of software pipeline, 
so the processing flow should be rearranged. An efficient solution 
is that translate the conditional jumping to conditional storing. 
This process can be implemented in a pipeline.  
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(a)                                                                                                                     (b) 

Fig. 2. Software pipeline design for luma-block edge filter with Bs=1, (a) Improved processing flow, (b) The inner loop dependency graph 
corresponding to Fig. 2(a). Note: in order to make the whole graph clear, we omit some nodes, which denote 5-bit constants or whose values saved 
in source register are constant during the loop, instead we put these constants and operands into parenthesis following the instruction and 
functional unit, e.g. SHR.S1(3) and MIN2.L2(C). 
 

For further explanation, we set the sub-process of luma-block 
edge filter with Bs=1 as an illustrative instance, which is the most 
complex among the three sub-processes. From the pipeline-
oriented viewpoint, Fig. 2(a) shows the improved processing flow 
of this sub-process. In the first two steps in Fig. 2(a), P1, P0, Q0, 
and Q1 are calculated despite any condition check. Since there are 
two additional spatial activity checks |p2-p0|<  and |q2-q0|< , 
conditional storing has to be performed on P1 and Q1 first, shown 
in step3 in Fig. 2(a). In the last step in Fig. 2(a), P1, P0, Q0, and 
Q1 are conditionally stored back to memory according to the 
result of sample-level content activity check. The flow of the 
other two filter sub-process can also be rearranged in the same 
way.  

Next, a software pipeline is designed based on the improved 
processing flow. Fig. 2(b) shows the dependency graph of the 
loop kernel in the sub-process of luma-block edge filter with Bs=1. 
Each node in the dependency graph denotes an operand, and an 
edge connecting the nodes denotes an instruction. Moreover, Fig. 
2(b) also indicates how to allocate functional units and what 
instructions have been used. 

(1) Functional unit allocation. All the resources on each side 
of CPU data path should be balanced. These resources mainly 
include register files and all kinds of functional units. Under such 
rules, side A is in charge of most operations for p2, p1, p0, while 
side B is in charge of most operations for q2, q1, q0. For example, 

calculations for deltap and deltaq, shown in Fig. 2(b), contain 
same operations that can be easily assigned to side A/B; but for 
delta0, there are no similar calculations, so the operations for 
delta0 need to be carefully separated into each side. 

(2) Instruction selection. Properly choosing the enhanced 
instructions can achieve high parallelism. For example, in Fig. 
2(b), the PACK2 and PACKL4 instructions are used together to 
pack four pixels into a 32-bit register, then the DOTPSU4 
instruction can compute the dot product of the four pixels; and the 
MIN2, MAX2, and SPACKU4 instructions can implement the 
clipping and threshold-decision operations. 

Thus, a pipeline can be built up following the guide line from 
the dependency graph. Software pipelines for the other two sub-
processes can also be designed in the same way. The detailed 
cycle statistic for each pipeline is listed in Table II. 
 

4. SIMULATED RESULTS 
 
The comparison between the proposed DSP strategy and another 
strategy in [8] is presented in Table II. The table shows that the 
proposed strategy produces smaller loop kernels and requires less 
cycles to perform edge filter than the reference. This is because 
the techniques adopted in the reference introduce additional 
operations to the loop kernel, and they would be more efficient 
only if there are more conditional operations in the loop kernel. 
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TABLE II 
CYCLE STATISTIC COMPARED WITH ANOTHER DSP STRATEGY 

Proposed Mask operation + Pair processing [8] 

Pipeline Loop 
Kernel 

Loop 
Count 

Prolog 
Epilog 

Function 
Call Total Pipeline Loop 

Kernel 
Loop 
Count 

Prolog 
Epilog 

Function 
Call Total 

luma/Bs=1 10 8 25 6 111 luma/Bs=1 11 8 27 6 121 
luma/Bs=2 8 8 20 6 90 luma/Bs=2 9 8 25 6 103 
Chroma 9 8 24 6 102 Chroma 10 8 27 6 113 

 
TABLE III 

CYCLE STATISTIC FOR PIPELINE/NON-PIPELINE PARTS 
Pipeline Cycles Non-Pipeline Cycles

luma-block edge filter with Bs=1 111 local filter control per luma MB 177-393
luma-block edge filter with Bs=2 90 local filter control per chroma MB  52-106
chroma-MB edge filter 102 global filter control per luma MB line 622
Bs decision within a MB line in I picture 61 global filter control per chroma MB line 331
Bs decision within a MB line in P picture 990 L1D cache read miss per luma MB line 123
Bs decision within a MB line in B picture 1446 L1D cache read miss per chroma MB line 94

 
TABLE IV 

 CAPABILITY (FPS) OF THE PROPOSED DSP STRATEGY TESTING ON 720X480 SEQUENCES (IBBPBBP) 
Seq.\QP 20 24 28 32 36 40 44
football 340 353 377 398 438 513 592
mobile 549 569 613 653 713 787 877
news 802 876 947 991 1048 1117 1166

 
In the following experiments, D1 (720x480) format videos are 

tested with AVS1-P2 on TMS320C64x DSP [9] running at 
600MHz. Besides the cycles spent on the six sub-processes, we 
also consider the cycles for non-pipeline parts, including local 
filter control per MB, global filter control per MB line and L1D 
cache read miss. Table III lists the detailed cycle statistic for each 
part. Since Bs is pre-calculated, filter control on edge level could 
be achieved. So the minimum and maximum cycles for one 
luminance MB are 177 and 393+111×8=1281 respectively, and 
the minimum and maximum cycles for two chrominance (UV) 
MBs are 52 and 106+102×4=514 respectively.  

For the I picture, strong filter is performed on every edge 
except for the picture or slice boundary, so the capability of the 
proposed DSP strategy is steady at 276fps when filtering all intra 
coded 720x480 video. While filtering videos with normal GOP 
structure like IBBPBBP, the capability is dependent on QP and 
the content of videos, as shown in Table IV. As QP increases, it is 
a general trend that the capability becomes better and better. This 
is because when increasing QP, more and more MBs are coded 
with skip mode, and fewer and fewer MBs are intra coded, 
resulting in a decrement of both normal and strong filter 
operations. There is also another trend that the capability of 
filtering low motion video (like news) is much better than that of 
filtering high motion video (like football). This is simply due to 
the difference of motion vector between two adjacent blocks in Bs 
decision. 

Finally, the capability of the proposed DSP strategy is 16 to 
20 times faster than the original processing flow. And this strategy 
can satisfy real-time processing for high resolution videos. 

 
5.   CONCLUSIONS 

 
This paper provides some pipelined DSP solutions to accelerate 
the in-loop deblocking filter in AVS1-P2 on the DSP platform. In 
order to design efficient software pipelines, the processes of edge 
filter and Bs decision are respectively divided into three sub-
processes. And based on these sub-processes, the whole flow is 

regularly improved. Since the sub-processes contain fewer 
conditional operations, more efficient software pipelines are 
achieved with elaborately allocating functional units and carefully 
choosing instructions. The proposed techniques have been 
adopted in a developed DSP-based real-time AVS1-P2 decoder. 
The future work is to support multi-channel decoding or to 
integrate these techniques into a DSP-based encoder for pursuing 
high coding speed. 
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