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Complex networks derived from cellular automata

Yoshihiko Kayama

Department of Media and Information, BAIKA Women’s University,

2-19-5, Shukuno-sho, Ibaraki-city, Osaka-pref., Japan

Abstract

We propose a method for deriving networks from one-dimensional binary cellular automata. The derived
networks are usually directed and have structural properties corresponding to the dynamical behaviors
of their cellular automata. Network parameters, particularly the efficiency and the degree distribution,
show that the dependence of efficiency on the grid size is characteristic and can be used to classify cellular
automata and that derived networks exhibit various degree distributions. In particular, a class IV rule
of Wolfram’s classification produces a network having a scale-free distribution.
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1. Introduction

Cellular automata (CA) have been used to study the critical phenomena of complex systems. S.
Wolfram has systematically investigated the dynamical behavior of one-dimensional automata and iden-
tified the following four essential types: homogeneous (class I), periodic (class II), chaotic (class III), and
complex (class IV) [1]. In particular, class IV rules produce complex structures with long transients.
Alternatively, complex networks exhibiting a scale-free topology can be identified ubiquitously; for exam-
ple, they occur in social relationships [2], biological and chemical systems [3, 4], and the Internet [5, 6].
Such networks have been studied extensively in the wake of papers by Watts and Strogatz on small-world
networks [7] and by Barabási and Albert on scale-free networks [8]. Even though both CA and complex
networks are used to study complex systems and various phenomena, their relation is not clear.

In recent years, the dynamics of Boolean networks with complex topology have been studied [9]-[13]
yielding several notable results such as the dependence of dynamical phases on network topology [10]
and the robustness of scale-free networks [11]. Our approach is to define networks that correspond to the
dynamical behaviors of CA.

In this article, we propose a method for deriving networks from the time evolution of CA config-
urations. For transformations of the CA rule function, the adjacency matrix of the network exhibits
characteristic properties. We investigate networks derived from the typical rules of one-dimensional bi-
nary CA with three and five neighbors. Our studies reveal that the structural properties of the derived
network reflect the dynamical behaviors of the CA rule and that chaotic or critical rules lead to complex
network topologies. We use two parameters to characterize the topology of such networks: the efficiency
of the network (corresponding to the harmonic mean of its shortest path lengths) and its degree distribu-
tion. The efficiency shows a characteristic scale dependence on the grid size of the cellular automaton and
may be useful in classifying CA rules. Class III rules correspond to random networks, and a scale-free
degree distribution has been obtained from the class IV rule.

The next section describes our notation and some definitions relevant to CA. In section 3, we describe
our method for deriving networks from CA rules and discuss their properties under transformations of
the CA rule function. Section 4 reports on the efficiency and degree distribution of derived networks and
discusses the correspondence between the dynamical behavior of a cellular automaton and the structural
properties of its derived network.

2. Notation and definitions relevant to cellular automata

CA are dynamical systems that consist of a regular grid of cells, each characterized by a finite number
of states. CA are updated synchronously in discrete time steps according to a local rule (CA rule) that
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is identical at every cell. In a one-dimensional grid, each cell is connected to its r local neighbors on
either side, where r is referred to as the radius. Thus, each cell has 2r + 1 neighbors, including itself.
The state of a cell for the next time step is determined from the current states of the neighboring cells:
xi(t + 1) = f(xi−r(t), ..., xi(t), ..., xi+r(t)), where xi(t) denotes the state of cell i at time t, and f is the
transition rule function. The term configuration refers to an assignment of states to all the cells for a
given time step; a configuration is denoted by x(t) = (x0(t), x1(t), ..., xN−1(t)), where N is the grid size.
Thus, the time transition of a configuration x(t) with periodic boundary conditions is given by

x(t+ 1) = f(x(t)) (1)

= (f(xN−r(t), . . . , x0(t), . . . , xr(t)),

f(xN−r+1(t), . . . , x1(t), . . . , x1+r(t)),

. . . , f(xN−1−r(t), . . . , xN−1(t), . . . , xr−1(t))), (2)

where f represents a mapping on the configuration space {x}N . In this article, we restrict our
discussion to binary CA, which satisfy xi ∈ {0, 1} for all i.

For a given configuration x, the mirror (left-right reflection) and complement (0-1 exchange) config-
urations are denoted as x̃ ≡ (xN−1, ..., x1, x0) and x̄ ≡ (x̄0, x̄1, ..., x̄N−1), respectively. By analogy, the
mirror, complement and mirror-complement of a rule function f are defined as follows:

f̃(xi−r, ..., xi, ..., xi+r) ≡ f(xi+r , ..., xi, ..., xi−r) (3)

f̄(xi−r, ..., xi, ..., xi+r) ≡ f(x̄i−r , ..., x̄i, ..., x̄i+r) (4)
¯̃f(xi−r, ..., xi, ..., xi+r) ≡ f(x̄i+r , ..., x̄i, ..., x̄i−r), (5)

respectively. The CA rules of these transformed functions are equivalent to the original rule f [14]. It is

trivial that mirror and complement operations are commutative, i.e. ¯̃f = ˜̄f . The mappings defined from
these functions are

f̃(x) ≡ (f̃(xN−r, . . . , x0, . . . , xr), f̃(xN−r+1, . . . , x1, . . . , x1+r),

. . . , f̃(xN−1−r, . . . , xN−1, . . . , xr−1)) (6)

= (f(xr , . . . , x0, . . . , xN−r), f(x1+r , . . . , x1, . . . , xN−r+1),

. . . , f(xr−1, . . . , xN−1, . . . , xN−1−r)) (7)

= f̃ (x̃) (8)

f̄(x) ≡ (f̄(xN−r, . . . , x0, . . . , xr), f̄(xN−r+1, . . . , x1, . . . , x1+r),

. . . , f̄(xN−1−r, . . . , xN−1, . . . , xr−1)) (9)

= (f(x̄N−r, . . . , x̄0, . . . , x̄r), f(x̄N−r+1, . . . , x̄1, . . . , x̄1+r),

. . . , f(x̄N−1−r, . . . , x̄N−1, . . . , x̄r−1)) (10)

= f (x̄) (11)

¯̃
f(x) = f̃ (¯̃x) = ˜̄f(x). (12)

A t-fold repetition of these mappings yields, respectively,

f̃
t
(x) = ˜f t

R(x̃) (13)

f̄
t
(x) = f t

R(x̄) (14)

¯̃
f t(x) = ˜f t

R(¯̃x) =
˜̄f t(x). (15)

Elementary Cellular Automata (ECA) are the simplest nontrivial binary CA; they are defined on
a one-dimensional grid with minimal neighborhood size (r = 1). The 23 = 8 different neighborhood
configurations result in 28 = 256 possible rules, of which 88 are nonequivalent under the transformations
(3)-(5) [14]. ECA rules are generally referred to by their Wolfram code, a standard naming convention
invented by Wolfram [1, 15] that gives each rule a number from 0 to 255. For example, rule 30 exhibits
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(a) rule 62 (b) rule 30 (c) rule 90 (d) rule 54 (e) rule 110

Figure 1: Examples of network graphs derived from ECA rules with N = 41 and t = 20. The dots on the
circumference of each graph correspond to the nodes of the derived network, which in turn correspond
to the cells of the cellular automaton. The time t is selected to give each cell causal relationships with
all other cells and to avoid repetitions.

class III behavior, meaning that even simple input patterns lead to chaotic, seemingly random histories.
Rule 90 is also chaotic with a fractal structure (Sierpinski triangle). Furthermore, rule 110 generates class
IV behavior, which is neither completely random nor completely repetitive. Localized structures appear
and interact in various complicated ways.

Other simple models are 5-neighbor (r = 2) CA, which contain 232 rules. Our discussion is restricted
to the totalistic CA (5TCA), in which the state of each cell at time t depends only on the sum of the states
of the cells in its neighborhood at the previous time. Of the 26 = 64 totalistic rules, 36 are independent.
To avoid confusion, we add the letter “T ” to the Wolfram code of the 5TCA rules, e.g., rule T20.

3. Derivation of networks from CA rules

We consider a one-dimensional grid with N cells, where each cell is connected to its r nearest neighbors
with periodic boundary conditions. Each cell state x ∈ {0, 1} evolves by an identical CA rule function
fR, where R denotes its Wolfram code. After t time steps, the configuration of cells obtained from an
initial one ϕ ≡ x(0) is given by x(t,ϕ) = f t

R(ϕ). If ϕi denotes the initial configuration with a changed
state for cell i, the difference between the configurations after t time steps from ϕi and ϕ can be written
as

∆ix(t,ϕ) ≡ x(t,ϕi) + x(t,ϕ) (mod 2) = f t
R(ϕi) + f t

R(ϕ) (mod 2) (16)

where ∆ix(t,ϕ) characterizes the influence of cell i on other cells in the grid after t time steps. This
influence represents the flow of information from cell i through the network. We define a matrix as

AR(t,ϕ) ≡ [∆0x(t,ϕ),∆1x(t,ϕ), . . . ,∆N−1x(t,ϕ)]
T

(17)

=
[
∆0f

t
R(ϕ),∆1f

t
R(ϕ), . . . ,∆N−1f

t
R(ϕ)

]T
, (18)

where the transpose operation T does not apply to the individual elements ∆ix(t,ϕ). We treat
AR(t,ϕ) as the adjacency matrix of a network derived from the CA rule R; an entry aij = 1 if a
directed edge from node i to node j exists, and 0 otherwise. Because ∆ix(t,ϕ) depends on the initial
configuration, AR(t,ϕ) gives a different network for each initial configuration. Although this derived
network is not identical with an analogous network derived by considering the change of two or more
cells, it captures essential properties of its cellular automaton, as shown below. Some graphs derived
from ECA and 5TCA rules are presented in Fig.1 and Fig.2, respectively.

From Eqs.(13), (16) and (18), the adjacency matrix is transformed by the mirror operation as follows:

ÃR(t,ϕ) ≡
[
∆0f̃

t

R(ϕ),∆1f̃
t

R(ϕ), . . . ,∆N−1f̃
t

R(ϕ)
]T

=
[
∆N−1

˜f t
R(ϕ̃),∆N−2

˜f t
R(ϕ̃), . . . ,∆0

˜f t
R(ϕ̃)

]T
(19)

= ˜AR(t, ϕ̃), (20)
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(a) rule T40 (b) rule T10 (c) rule T42 (d) rule T20 (e) rule T52

Figure 2: Examples of network graphs derived from 5TCA rules with N = 41 and t = 10.

where the subscript of ∆ in Eq.(19) labels the state-changed elements of ϕ̃ and the ∼ operation acting
on the adjacency matrix in the right-hand side of Eq.(20) represents the mirroring of elements about
both the horizontal and vertical axes. Similarly, the complement of the adjacency matrix is obtained
from Eqs.(14), (16) and (18) as follows:

ĀR(t,ϕ) ≡
[
∆0f̄

t

R(ϕ),∆1f̄
t

R(ϕ), . . . ,∆N−1f̄
t

R(ϕ)
]T

=
[
∆0f

t
R(ϕ̄),∆1f

t
R(ϕ̄), . . . ,∆N−1f

t
R(ϕ̄)

]T

=
[
∆0f

t
R(ϕ̄),∆1f

t
R(ϕ̄), . . . ,∆N−1f

t
R(ϕ̄)

]T
(21)

= AR(t, ϕ̄), (22)

where Eq.(21) is derived from the invariance of the modulo operation in Eq.(16) under
complementation. In general, the graph of the complement ĀR(t,ϕ) is not identical with the “graph
complement” [16] of AR(t,ϕ). Finally, the mirror-complement of the adjacency matrix is

¯̃AR(t,ϕ) = ˜AR(t, ¯̃ϕ) = ˜̄AR(t,ϕ). (23)

An important property of the adjacency matrix may be derived for self-complementary rule functions.
Adding the transformations (3)-(5), we define the diminished-radix complement of the rule function fR
as

f̂R(xi−r, ..., xi, ..., xi+r) ≡ fR(x̄i−r , ..., x̄i, ..., x̄i+r). (24)

If a mapping fR is self-complementary, i.e. fR = f̄R, the mapping f̂R

t
obtained from f̂R satisfies the

equation

f̂
t

R(ϕ) =

{
f t
R(ϕ) for odd t

f t
R(ϕ) for even t.

(25)

Therefore, ∆if̂
t

R(ϕ) is equal to ∆if
t
R(ϕ) for all t, and the adjacency matrix ÂR(t,ϕ) defined by f̂

t

R(ϕ)

is identical with AR(t,ϕ). Although this property of the adjacency matrix makes the rule f̂R
indistinguishable from rule R, this degeneracy is not a drawback of our method but rather a new way of
detecting similarity among CA rules, as described below.

Another interesting property of our approach pertains to additive mappings which satisfy the equation
fR(x+ y (mod 2)) = fR(x) + fR(y) (mod 2). Eq.(16) leads to the result ∆ix(t,ϕ) = f t

R(0i), where 0i

is the null configuration except at cell i. Thus, the adjacency matrix (18) is independent of the initial
configuration and all nodes of the derived network are equivalent. Hence, the same number of edges
connects to each node. If an edge from node i to node j exists, an edge also exists in the opposite direction;
the network is undirected, which means that the adjacency matrix is symmetric. For example, rule 90 is
additive and, for this reason, corresponds to the geometrical graph shown in Fig.1(c). Furthermore, if cell
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15(85) 240(170)
23 232

43(113) 212(142)
51 204
77 178
105 150

(a) ECA pairs

7 56
11 52
21 42
25 38

(b) 5TCA pairs

Table 1: The diminished-radix complements pairs of self-complement rules of ECA and 5TCA. The rule
inside the parentheses is mirror equivalent to the one outside the parentheses.

i and cell j change their states in the initial configuration ϕ, the difference between the configurations
ϕij and ϕ after t time steps satisfies the equation

∆ijx(t,ϕ) = f t
R(ϕij) + f t

R(ϕ) (mod 2) = f t
R(0ij) = f t

R(0i) + f t
R(0j) (mod 2)

= ∆ix(t,0) + ∆jx(t,0) (mod 2) (26)

= (AR(t))i + (AR(t))j (mod 2). (27)

where (A)i denotes i-th row vector of matrix A. Consequently, the adjacency matrix for additive
mappings can represent the influence of changes at more than two cells.

4. Properties of derived networks

Following the Wolfram’s classification, we examine some typical rules of ECA and 5TCA. There is
no reason to restrict our discussion to even-numbered rules. We use two basic parameters, the efficiency
and the degree distribution, to investigate the properties and complexities of derived networks.

A descriptive network parameter is the distribution of degrees. PR(kin) and PR(kout) indicate the
probabilities of a node having an in-degree kin and an out-degree kout, respectively. In particular, scale-
free networks are the class of networks whose degree distribution is a power-law: P (k) ∼ k−γ , where γ
is called the scale-free exponent. Small-world networks can be categorized by their average shortest path
length l =< dij >, where dij is the length of the shortest path between node i and node j. To sidestep
any divergence of the dij , we consider their harmonic mean, which we use to define the network efficiency
E = 1

N(N−1)

∑
i6=j

1
dij

[17, 18].

Because these parameters are calculated for adjacency matrices obtained from randomly generated
initial configurations, the transformed matrices defined in Eqs.(20), (22) and (23) give assuredly equivalent
results with the original adjacency matrix. Hence, the dependence of efficiency on grid size N is very
useful for the classification of CA rules. Further insight is obtained by using the degree distribution to
characterize the CA rules; for example, random and scale-free distributions are found in networks derived
from chaotic and complex rules, respectively.

Pairs of the diminished-radix complement of self-complementary rules of ECA and 5TCA are listed in
Table 1. Although the individual rules of a pair have different CA patterns, they have similar statistical
properties and belong to the same Wolfram class. As indicated by Eq.(25), this correspondence is obvious
from the invariance of the time evolution under the exchange of zero and one (complementation).

Networks derived from ECA and 5TCA rules

As shown in Figs.1 and 2, the topology of the derived network reflects properties of the corresponding
CA rule. Fig.3 and Fig.4 plots the efficiencies of illustrative ECA and 5TCA rules, respectively. The
efficiency values can be categorized into several types. All class I CA have zero efficiency, whereas class
III CA are characterized by a high, N -independent efficiency (i.e. short average path length), except
for rule 90, 60 and T42. For class II CA, the efficiency decreases as N−1, with the exception of rule
184. This N -dependence of class II efficiency can be explained intuitively as follows. Because nontrivial
patterns of class II CA are localized, the derived networks are disconnected; hence, the number of edges
is proportional to N , whereas the total number of node pairs is proportional to N2. Therefore, the
contribution of edges to the efficiency decreases as N−1. Although it is somewhat difficult to decide
empirically how to classify rule 41, the efficiency values above N > 1600 provide evidence that it belongs
to class II.
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Figure 3: Efficiencies of networks derived from ECA rules, representing the average of ten sampled
networks.
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Figure 4: Efficiencies of networks derived from 5TCA rules, representing the average of ten sampled
networks.
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Figure 5: In-degree distributions of networks derived from ECA and 5TCA class II rules.
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(b) rule T10 with N = 6401 and t = 1600

Figure 6: In-degree distributions of networks derived from ECA and 5TCA class III rules.

The efficiency of rule 110 and T52, which is thought to belong to class IV, varies as N−0.117 and
N−0.53(as estimated by least-squares fitting), respectively; these N -dependence indicates that they lies
on the “edge of chaos” [19]. In contrast, rule 54 appears to be indistinguishable from class III rules.
Furthermore, the efficiency of rule T20 is almost proportional to N−1 for N>1600. Thus it is difficult to
distinguish rule T20 from class II rules using only its efficiency dependence.

Rules 90, 60 and T42 are exceptional. Because they are additive, each node has the same number
of edges, and the total number of edges is proportional to N . Hence, their efficiencies have similar
tendencies to those of class II CA. However, in the case of t = 2n − 1 (where n is a positive integer)
and N = 2t+ 1, each node of rule 90 has 2n = (N − 1)/2 edges, which means that its numbers of total
edges are proportional to N2. Consequently, the efficiency of rule 90 oscillate between class II and class
III regions. Similar oscillations of the efficiencies of rule 60 and T42 are confirmed. Another exception
is rule 184, which is usually called the "traffic rule"; its derived network has random values of efficiency,
indicating strong dependence on the initial configuration. This random behavior can be interpreted as
critical phenomena of the phase transition described in Wolfram [15].

The in-degree distributions of rule 62 and T13 (class II) and those of rule 30 and T10 (class III) are
illustrated in Fig.5 and Fig.6, respectively. Rule 62 is a class II rule but has a large components of class
III character [20], which may account for its long-tail distribution. Rule 30 is well-known for its random
behavior, from which a random network with a Poisson distribution of degrees is derived. Similarly, rule
T10 has two peaks, each fitting a Poisson distribution; this double-peak property corresponds to the
double-triangle structure of its CA patterns.

Fig.7 shows that class IV rules exhibit exponential decays and long-tail distributions. Fig.8 is an
unaveraged distribution of ten sampled networks of rule T20, from which we obtain the scale-free exponent
γ = 2.096, based on linear fitting. Hence, a scale-free network can be derived from a class IV rule.
However, the N−1 efficiency dependence of rule T20 suggests that the network derived from rule T20 is
disconnected in many components, which contrasts with other scale-free networks such as the BA model.
We have confirmed that the network derived from rule T20 with N = 6401 and t = 1600 has dozens
of disconnected components. In other words, the network can be rendered scale-free and connected by
adding, at most, a few dozen edges. By examining Figs.6(b), 7(b) and 7(a), it is apparent that the
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Figure 7: In-degree distributions of networks derived from 5TCA class IV rules with N = 6401 and
t = 1600. (a) The distribution of rule T20 plotted on log-log scale exhibits scale-free behavior.
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Figure 8: In-degree distribution of networks derived from rule T20. The results for ten sampled networks
are illustrated with a best-fitting power-law, yielding a scale-free exponent γ = 2.096.
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two peaks gradually collapse; the left peak becomes the scale-free distribution, whereas the right peak
becomes a structure at the lower slope. This change of network structure may represent a phase transition
from a chaotic phase to a periodic phase.

5. Conclusions and discussion

In this article, we have proposed a method for deriving networks from binary CA rules. Networks of
representative ECA and 5TCA rules have been shown and we have discussed their properties in terms
of two parameters; their efficiency and their degree distribution. The efficiency parameters appear to be
useful in classifying CA rules. Representative degree distributions of complex networks have also been
determined, exhibiting Poisson, long-tail and scale-free distributions. our approach has other interesting
aspects, such as a new way to characterize additive rules and the similarity of CA rules. We conclude
that our derived network is an effective representation of CA.

A survey of all ECA and 5TCA rules will be reported in a full-length paper. However, our method
can be applied or extended to other CA rules. For example, it is straightforward to apply it to binary
CA with two or more dimensions and many neighbors, such as the “Game of Life”. The extension of the
adjacency matrix to CA with three or more states may yield weighted networks.

One remaining problem is how one is to understand the appearance of a scale-free degree distribution.
The fundamental elements leading to emergent scale-free properties are thought to be the growth of the
network and the preferential attachment of its links. The former corresponds to the time evolution of
CA and the latter may derive from the CA rule and the randomly chosen initial configuration. However,
if the following correspondences between dynamical phases of complex systems and types of complex
network are assumed,

• Periodic phase ⇔ disconnected and localized network

• Chaotic phase ⇔ random network

• Critical phase ⇔ scale-free network,

it may be possible to describe phase-transition phenomena as evolutions and transformations of network
structures. If so, the scale-free network may be an intermediate structure of the description. In any
event, these correspondences and the appearance of the scale-free degree distribution warrant further
investigation.
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