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Small-time expansions of the distributions, densities,

and option prices of stochastic volatility models with

Lévy jumps

J.E. Figueroa-López∗ R. Gong† C. Houdré‡§

Abstract

We consider a stochastic volatility model with Lévy jumps for a log-return pro-
cess Z = (Zt)t≥0 of the form Z = U +X, where U = (Ut)t≥0 is a classical stochastic
volatility process and X = (Xt)t≥0 is an independent Lévy process with absolutely
continuous Lévy measure ν. Small-time expansions, of arbitrary polynomial order
in time t, are obtained for the tails P (Zt ≥ z), z > 0, and for the call-option prices
E
(
ez+Zt − 1

)
+
, z 6= 0, assuming smoothness conditions on the Lévy density away

from the origin and a small-time large deviation principle on U . The asymptotic
behavior of the corresponding implied volatility is also given. Our approach al-
lows for a unified treatment of general payoff functions of the form ϕ(x)1x≥z for
smooth functions ϕ and z > 0. As a consequence of our tail expansions, the poly-
nomial expansions in t of the transition densities ft are obtained under rather mild
conditions.

1 Introduction

It is generally recognized that accurate modeling of the option market and asset prices
requires a mixture of a continuous diffusive component and a jump component. For
instance, based on high-frequency statistical methods for Itô semimartingales, several
empirical studies have rejected statistically the null hypothesis of either a purely-jump or
a purely-continuous model (see, e.g., [3], [4], [5], [31]). Similarly, by characterizing the
small-time behavior of at-the-money (ATM) and out-of-the-money (OTM) call option
prices, [9] argued that both, continuous and jump, components are necessary to explain
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the implied volatilities behavior of S&P500 index options. Historically, local volatility
models (and more recently stochastic volatility models) were the models of choice to
replicate the skewness of the market implied volatilities at a given time (see [19] and
[21] for more details). However, it is a well-known empirical fact that implied volatility
skewness is more dramatic as the expiration time approaches. Such a phenomenon is hard
to reproduce within the purely-continuous framework unless the “volatility of volatility”
is forced to take very high values. Furthermore, as it is nicely explain in [11] (Chapter
1), the very existence of a market for short-term options is evidence that option market
participants operate under the assumption that a jump component is present.

In recent years the literature of small-time asymptotics for vanilla option prices of
jump-diffusion models has grown significantly with strong emphasis to consider either
a purely-continuous model or a purely Lévy model. In the case of stochastic volatility
models and local volatility models, we can mention, among others, [6], [7], [12], [17],
[18], [20], [22], [32]. In the case of Lévy process, [35] and [38] show independently that
OTM option prices are generally1 asymptotically equivalent to the time-to-maturity τ as
τ → 0. In turn, such a behavior implies that the implied volatilities of a Lévy model
explodes as τ → 0. The exact first order asymptotic behavior of the implied volatility
close to maturity was independently obtained by [14] and [38], while the former paper
also gives the second order asymptotic behavior. There are few pieces of work that
consider simultaneously stochastic volatility and jumps in the model. One such work is
[9] which obtains, partially by heuristic arguments, the first order asymptotic behavior of
an Itô semimartingale with jumps. Concretely, ATM option prices of pure-jump models
of bounded variation decrease at the order O(τ), while they are just O(

√
τ ) under the

presence of a Brownian component. By considering a stable pure-jump component, they
also show that, in general, the behavior could be O(τβ) for some β ∈ (0, 1). For OTM
options, they also argue that the first order behavior is O(e−c/τ) in the pure-continuous
case, while it behaves like O(τ) under the presence of jumps. Recently, [30] shows that the
leading term of ATM option prices is of order

√
T for purely-continuous models, while for

a more general type of Lévy processes with α-stable-like small jumps, the leading term
is O(τ 1/α). Fractional expansions are also obtained for the distributions of some Lévy
processes in [28].

In this article, we consider a jump diffusion model by combining a stochastic volatility
model with a pure-jump Lévy process. More precisely, let (Ω,F ,Q) be a complete prob-
ability space equipped with a filtration (Ft)t≥0 satisfying the usual conditions, on which
we consider a risk-free asset with constant interest rate r ≥ 0 and a risky asset with price
process

St := S0e
rt+Zt . (1.1)

For the log-return process Z = (Zt)t≥0, we consider the following jump diffusion model:

Zt = Ut +Xt, dUt = µ(Yt)dt+ σ(Yt)dW
(1)
t , (1.2)

dYt = α(Yt)dt+ γ(Yt)dW
(2)
t (1.3)

1That is, except for some pathological cases(see [35] for examples)
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with U0 = X0 = 0, Y0 = y0 ∈ R. Here, W (1) and W (2) are Wiener processes adapted to
(Ft), X is an independent (Ft)-adapted pure-jump Lévy process with triplet (b, 0, ν), and
σ, γ, µ and α are deterministic functions such that (1.2)-(1.3) admits a solution. In order
for (e−rtSt)t≥0 to be a Q-martingale, we also assume that

b = −
∫

R

(
ez − 1− z1|z|≤1

)
ν(dz), and µ(y) = −1

2
σ2(y). (1.4)

For z 6= 0 and t > 0, let
Gt(z) := E

(
ez+Zt − 1

)
+
, (1.5)

where E denotes, from now on, the expectation under a fixed risk-neutral probability
measure Q. We will show that, under mild conditions, the following small-time expansions
for Gt(z) hold true:

Gt(z) =

n∑

j=0

bj(z)
tj

j!
+O(tn+1), (1.6)

for each n ≥ 0 and certain functions bj . Note that the time-t price of a European call
option with strike K, which is not at-the-money, can then be expressed as

C(t, s) := e−r(T−t)E

(
(ST −K)+

∣∣St = s

)
= Ke−rτGτ (ln s− lnK), (1.7)

where τ = T − t and s 6= K. Hence, (1.5) leads to close-to-expiry approximations for the
price of an arbitrary not-at-the-money call option as a polynomial expansion in time.

Our method of proof is built on a type of iterated Dynkin formula of the form

Eg(Xt) = g(0) +

n∑

k=1

tk

k!
Lkg(0) +

tn+1

n!

∫ 1

0

(1− α)nE
(
Ln+1g(Xαt)

)
dα, (1.8)

where g is a sufficiently smooth function and L is the infinitesimal generator of the Lévy
process X . The main complication with option call prices arises from the lack of smooth-
ness of the payoff function gz(x) = (ez+x − 1)+. In order to “regularized” the payoff
function g, we follow a two step procedure. First, we decompose the Lévy process into a
compound Poisson process with a smooth jump density vanishing in a neighborhood of
the origin and an independent Lévy process with small jumps. Then, we condition the
expectation Eg(Xt) on the number of jumps of the compound Poisson component of X
and apply Dynkin’s formula on each of the resulting terms. Contrary to the approaches
in [14] and [38], where the special form of the payoff function gz(x) = (ez+x − 1)+ plays a
key role, our approach can handle more general payoff functions of the form

gz(x) = ϕ(x)1{x≥z}, (1.9)

for a smooth function ϕ and positive z. In particular, for ϕ(x) ≡ 1, we generalize the
distribution expansions in [13] to our jump-diffusion setting. Also, we are able to obtain
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polynomial expansions for the transition densities ft of the Lévy process, under conditions
involving only the Lévy density ofX . This is in contrast to our former results in [13] where
a uniform boundedness condition on all the derivatives of ft away from the origin was
imposed. Expansions for the transition densities of local volatility models (with possibly
finite-jump activity) have appeared before in the literature (e.g. see [1], [2], [39]). Unlike
our approach, the general idea in the referred papers consists of first proposing the general
form of the expansion, and then choosing the coefficients so that either the backward or
forward Kolmogorov equation is satisfied. The resulting coefficients typically involve
iterated infinitesimal generators as in ours expansions, even though our approximations
are uniform away from the origin.

The paper is organized as follows. Section 2 contains some preliminary results on Lévy
processes, which will be needed throughout the paper. Section 3 establishes the small-time
expansions, of arbitrary polynomial order in t, for both the tail distributions P(Zt ≥ z),
z > 0, and the call-option price function Gt(z), z 6= 0. This section also justifies the valid-
ity of our results for payoff functions of the form (1.9). Section 4 illustrates the first few
terms of those expansions. Interestingly enough, the first two coefficients of the expansion
of the general model coincide with the first two coefficients of an exponential Lévy model.
Section 5 obtains the asymptotic behavior of the corresponding implied volatility. As
another application of our methodology, Section 6 gives a small-time expansion for the
transition density of a general Lévy process under rather mild conditions.

2 Background and preliminary results

2.1 Notation

Throughout this paper, Cn or Cn(R), n ≥ 0, is the class of real valued functions, defined
on R, which have continuous derivatives of order 0 ≤ k ≤ n. Cn

b ⊂ Cn corresponds to
the ones having bounded derivatives. In a similar fashion, C∞ or C∞(R) is the class of
real valued function, defined on R, which have continuous derivatives of any order k ≥ 0,
while C∞

b (R) ⊂ C∞ are again the ones having bounded derivatives. Sometimes R will be
replaced by R \ {0} or Rk when the functions are defined on these spaces.

Throughout this section, let X be a general Lévy process with triplet (b, σ2, ν) defined
on (Ω,F , (Ft)t≥0,Q). Let us write X in terms of its Lévy-Itô decomposition:

Xt = bt + σWt +

∫ t

0

∫

|z|>1

zµ(ds, dz) +

∫ t

0

∫

|z|≤1

zµ̄(ds, dz),

where W is a Wiener process and µ is an independent Poisson measure on R\{0} × R+

with mean measure ν(dz)dt and compensator µ̄. For each ε > 0, let cε ∈ C∞ be a
symmetric truncation function such that 1[−ε/2,ε/2](z) ≤ cε(z) ≤ 1[−ε,ε](z) and consider
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the processes:

X̄ε
t :=

∫ t

0

∫

R

z c̄ε(z)µ(ds, dz), and Xε
t := Xt − X̄ε

t , (2.1)

where c̄ε(x) := 1− cε. Clearly, X̄
ε is a compound Poisson process with intensity of jumps

λε :=
∫
c̄ε(z)ν(dz), and jumps distribution c̄ε(z)ν(dz)/λε. Throughout, N ε

t and ξεi stand
for the respective jump counting measure and the jumps of the process X̄ε. Note that
the remaining process Xε has infinitesimal generator Lε given by

Lεg(y) = bεg
′(y) +

σ2

2
g′′(y) +

∫ {
g(y + z)− g(y)− zg′(y)1|z|≤1

}
cε(z)ν(dz), (2.2)

for g ∈ C2
b , where

bε := b−
∫

|z|≤1

zc̄ε(z)ν(dz).

The following tail estimate for Xε is also used in the sequel:

P(|Xε
t | ≥ z) ≤ taz exp(az0 ln z0) exp(az − az ln z), (2.3)

where a ∈ (0, ε−1), and t, z > 0 satisfy t < z/z0 for some z0 depending only on a (see [37,
Section 2.6], [36, Lemma 3.2] and [13, Remark 3.1] for proofs and extensions).

Throughout the paper, we also make the following standing assumptions:

ν(dz) = s(z)dz, s ∈ C∞(R\{0}) and γk,δ := sup
|z|>δ

|s(k)(z)| < ∞, ∀δ > 0, (2.4)

supp(s) ∩ (lnK − x0,∞) 6= ∅, (2.5)∫

|z|>1

ec|z|ν(dz) < ∞, for some c > 2. (2.6)

Finally, the following terminology will also be needed:

sε := cεs, s̄ε := (1− cε)s, L0g = g, Lk+1g = L(Lkg), (k ≥ 0),

s̄∗0ε ∗ g = g, s̄∗1ε = s̄ε, s̄∗kε (x) =

∫
s̄∗(k−1)
ε (x− u)s̄ε(u)du, (k ≥ 2).

2.2 Dynkin’s formula for smooth subexponential functions

Let us recall that taking expectations in the well-known Dynkin’s formula gives:

Eg(Xt) = g(0) +

∫ t

0

E (Lg(Xu)) du = g(0) + t

∫ 1

0

E (Lg(Xαt)) dα, (2.7)
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valid if g ∈ C2
b . Iterating (2.7), one obtains the following expansion for g ∈ C2n+2

b (e.g.,
see [23, Proposition 9]):

Eg(Xt) = g(0) +
n∑

k=1

tk

k!
Lkg(0) +

tn+1

n!

∫ 1

0

(1− α)nE
(
Ln+1g(Xαt)

)
dα, (2.8)

For our purposes, it will be useful to extend (2.8) to subexponential functions. We have
the following result whose proof can be found in the Appendix A:

Proposition 2.1 Let ν satisfy (2.6), and let g ∈ C2n+2 be such that

lim sup
|y|→∞

e−
c
2
|y||g(i)(y)| < ∞, (2.9)

for any 0 ≤ i ≤ 2n+ 2. Then, (2.8) holds true.

In order to work with the iterated infinitesimal generator Lk appearing in (2.8), the
forthcoming representation will turn out to be useful (see [13, Lemma 4.1] for its verifi-
cation2). Set

b0 := −
∫

R

c̄ε(u)ν(du), b1 := b−
∫

R

u(cε(u)− 1|u|≤1)ν(du),

b2 := σ2/2, b3 :=
1

2

∫

R

u2cε(u)ν(du), and b4 :=

∫

R

c̄ε(u)ν(du),

and note that all these constants depend on ε > 0, but this is not explicitly indicated for
the ease of notation.

Lemma 2.2 Let Kk = {k = (k0, . . . , k4) ∈ N5 : k0 + · · · + k4 = k} and for k ∈ Kk, let
ℓk := k1 + 2k2 + 2k3. Then, for any k ≥ 1 and ε > 0,

Lkg(x) =
∑

k∈Kk

4∏

i=0

bkii

(
k

k

)
B

k,ε
g(x), (2.10)

where

B
k,ε
g(x) :=





∫
g(ℓk)

(
x+

k3∑

j=1

βjwj +

k4∑

i=1

ui

)
dπ

k,ε
, if k3 + k4 > 0,

g(ℓk) (x) , if k3 = k4 = 0,

and the above integral is with respect to the probability measure

dπ
k,ε

=

k3∏

j=1

1

b3
cε(wj)w

2
jν(dwj)(1− βj)dβj

k4∏

i=1

1

b4
c̄ε(ui)ν(dui),

on Rk3 × [0, 1]k3 × Rk4 (under the standard conventions that 0/0 = 1 and
∏0

i=1 = 1).

Remark 2.3 The expansion (2.10) holds true for (possibly unbounded) functions g ∈
C2k+2 satisfying (2.9) for any 0 ≤ i ≤ 2k + 2.

2Note that for convenience we switch the role of b3 and b4.
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3 Small-time expansions for stochastic volatility mod-

els with Lévy jumps

In this section, we derive the small-time expansions for both the tail distribution P (Zt ≥ z),
z > 0, and for the call-option price function E

(
ez+Zt − 1

)
+
, z 6= 0. With an approach

similar to that in [13, Theorem 3.2], the idea is to apply the following general moment
expansion (easily obtained by conditioning on the number of jumps of the process X̄ε

t

introduced in (2.1)):

Ef(Zt) = e−λεtEf (Ut +Xε
t ) + e−λεt

∞∑

k=n+1

(λεt)
k

k!
Ef

(
Ut +Xε

t +

k∑

i=1

ξεi

)
(3.1)

+ e−λεt
n∑

k=1

(λεt)
k

k!
Ef

(
Ut +Xε

t +
k∑

i=1

ξεi

)
, (3.2)

where ξεi are the jumps of the process X̄ε. We shall take f(u) = fz(u) := 1{u≥z} in order
to obtain the expansion of the transition distribution and f(u) = fz(u) := (ez+u − 1)+ in
order to obtain the expansion of the call-option price. To work out the terms in (3.2), we
use the iterated formula (2.8), while to estimate the terms in (3.1), we assume that the
underlying stochastic volatility model U satisfies a small-time large deviation principle:

lim
t→0

t lnP(Ut > u) = −1

2
d(u)2, (u > 0), (3.3)

where d(u) is a strictly positive rate function. In Section 3.4 we review conditions for
(3.3) to hold.

3.1 Expansions for the transition distributions

We first treat the case fz(u) := 1{u≥z}. We have the following expansion for the tail
distributions of Z (its proof can be found in the Appendix B):

Theorem 3.1 Let z0 > 0, n ≥ 1, and 0 < ε < z0/(n + 1) ∧ 1. Let the dynamics of Z
be given by (1.2), and the conditions (2.4)-(2.6) and (3.3) be satisfied. Then, there exists
t0 > 0 such that, for any z ≥ z0 and 0 < t < t0,

P(Zt ≥ z) = e−λεt
n∑

j=1

Âj,t(z)
tj

j!
+Oε,z0(t

n+1), (3.4)

where

Âj,t(z) :=

j∑

k=1

(
j

k

)
E

{(
Lj−k
ε f̂k,z

)
(Ut)

}

with f̂k,z(y) :=
∫∞

z−y
s̄∗kε (u)du.
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The expression (3.4) is not really satisfactory since the coefficients Âj,t are time-
dependent and so the asymptotic behaviors as t → 0 are unclear. In order to obtain
an expansion of Âj,t, we can further apply an iterated expansion for Eg(Ut, Yt). Indeed,
assuming for simplicity that W (1) and W (2) are independent, (U, Y ) is a Markov process
with infinitesimal generator

Lg(u, y) = µ(y)
∂g

∂u
+

σ2(y)

2

∂2g

∂u2
+ α(y)

∂g

∂y
+

γ2(y)

2

∂2g

∂y2
, (3.5)

for g ∈ C2
b . Itô’s formula and induction imply that

Eg(Ut, Yt) = g(u0, y0)+

n∑

k=1

tk

k!
Lkg(u0, y0)+

tn+1

n!

∫ 1

0

(1−α)nE
{
Ln+1g(Uαt, Yαt)

}
dα, (3.6)

for any function g such that Lkg(u, y) is well-defined and belongs to Cb for 0 ≤ k ≤ 2n+2.
As in the case of the infinitesimal generator of X , one can view the operator (3.5) as the
sum of four operators. However, given that in general those operators do not commute,
it is not possible to write a simple closed-form expression for Lkg(u0, y0) as in the case
for X . Nevertheless, the following result gives a recursive method to get such expression
when µ(y) = −σ2(y)/2 and g(u, y) = h(u) as is needed here:

Proposition 3.2 Let the dynamics of U and Y be given by (1.2) with independent W (1)

and W (2) and with C∞ deterministic functions α, σ2, and γ2. On C2(R2), let:

Luh(u) := h′′(u)− h′(u), Lyh̃(y) :=
γ2(y)

2
h̃′′(y) + α(y)h̃′(y).

Let h ∈ C2n+2, and fix g(u, y) := h(u). Then, the infinitesimal generator (3.5) is such
that

Lkg(u, y) =
k∑

j=0

Bk
j (y)Lj

uh(u), for k ≥ 0,

where Bk
j (y) are defined iteratively as follows:

B0
0(y) = 1, Bk

j (y) = 0, ∀j /∈ {0, . . . , k},

Bk
j (y) = LyB

k−1
j (y) +

σ2(y)

2
Bk−1

j−1 (y), 0 ≤ j ≤ k, k ≥ 1.

Proof. The proof is done by induction. Using the previous result, we can easily check
conditions for the iterated formula (3.6) to hold. To this end, let us define the following
class of functions:

Cn
l =
{
p ∈Cn : |p(i)(x)|≤Mn(1+|x|), for some Mn<∞ independent of x, 0 ≤ i ≤ n

}
.

Corollary 3.3 In addition to the conditions of Proposition 3.2, let γ ∈ C0
l and let

α, σ2, γ2 ∈ Ck
l , for any k ≥ 0. Then, (3.6) is satisfied for g(u, y) := h(u) whenever

h ∈ C2n+2
b .
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Proof. Using Itô’s formula and induction, we can show (3.6) provided that

∫ t

0

∂Lng(Us, Ys)

∂u
σ(Ys)dW

(1)
s , and

∫ t

0

∂Lng(Us, Ys)

∂y
γ(Ys)dW

(2)
s ,

are true martingales. For this, it suffices that

E

∫ t

0

(
∂Lng

∂u
σ

)2

ds < ∞, and E

∫ t

0

(
∂Lng

∂y
γ

)2

ds < ∞, ∀t ≥ 0.

Let us recall that since α and γ belong to C0
l , we have that

sup
s≤t

E|Ys|2m < ∞, (3.7)

for any t ≥ 0 and m ≥ 1 (this is similar to [25, Problem 5.3.15]). Hence, given the
representation of Proposition 3.2, it suffices to show that for some constants Mn

i < ∞
and non-negative integers rni :

∣∣(Bn
j )

(i)(y)
∣∣ ≤ Mn

i (1 + |y|)rni , (3.8)

for any i, n ≥ 0 and 0 ≤ j ≤ n. This claim can again be shown by induction since, given
that it holds true for n − 1 and using the iterative representation for Bn

j in Proposition
3.2,

∣∣(Bn
j )

(i)(y)
∣∣ ≤

i∑

ℓ=0

(
i

ℓ

) ∣∣∣∣
1

2

(
γ2
)(ℓ) (

Bn−1
j

)(i−ℓ+2)

+ (α)(ℓ)
(
Bn−1

j

)(i−ℓ+1)
+

1

2

(
σ2
)(ℓ) (

Bn−1
j−1

)(i−ℓ)

∣∣∣∣ ,

which can be bounded by Mn
i (1 + |y|)rni since, by assumption, σ2, α, and γ2 belong to

Ck
l , for all k ≥ 0. We remark that the previous result covers the Heston model:

dUt = −1

2
Ytdt+

√
YtdW

(1)
t , dYt = κ(θ − Yt)dt+ v

√
YtdW

(2)
t . (3.9)

Let us now use Corollary 3.3 to obtain a second order expansion for Eh(Ut). Omitting,
for the ease of notation, the evaluation of the functions Bk

j at y0, we can write

Eh(Ut) = h(0) +B1
1Luh(0)t+

{
B2

1Luh(0) +B2
2L2

uh(0)
}
t2 +O(t3),

where

B1
1 =

1

2
σ2
0, B2

1 = γ2
0σ0σ

′′
0 + γ2

0(σ
′
0)

2 + 2α0σ0σ
′
0, B2

2 =
1

4
σ4
0. (3.10)

Above, we set σ0 = σ(y0), σ
′
0 = σ′(y0), and σ′′

0 = σ′′(y0), with similar notation for the other
functions. A general (formal) formula for polynomial expansion of transition distributions
will be as follows:
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Theorem 3.4 Under the notations and conditions of Theorem 3.1 and Corollary 3.3,

P(Zt ≥ z) = e−λεt
n∑

j=1

âj(z)
tj

j!
+Oε,z0(t

n+1), (3.11)

where

âj(z) :=
∑

p+q+r=j

(
j

p, q, r

)
Lq
ε

(
r∑

m=0

Br
m(y0)Lm

u (f̂p,z)

)
(0),

where we set f̂0,z(y) ≡ 0 and where the summation is over all non-negative integers p, q, r.

Proof. It is enough to plug the expansion (3.6) into the coefficients of the first summation
in (B-5) and rearrange terms using Proposition 3.2. Note that the last integral in (3.6)

is bounded for f̃k,z ∈ C∞
b (R) because of the representation in Proposition 3.2 and the

estimates (3.7)-(3.8).
As a way to illustrate the expansions, note that in the case of constant volatility

(α(y) = γ(y) ≡ 0),

Bk
k(y) ≡

(
σ2
0

2

)k

, Bk
j (y) ≡ 0, ∀j 6= k, k ≥ 0.

Hence,

âj(z) :=
∑

p+q+r=j

(
j

p, q, r

)(
σ2
0

2

)r

Lq
ε

(
Lr

u(f̂p,z)
)
(0).

3.2 Expansions for the call option price

For z 6= 0 and t > 0, let
Gt(z) := E

(
ez+Zt − 1

)
+
, (3.12)

where Z is the jump-diffusion process given by (1.2). We proceed to derive the small-time
expansion of Gt as t ↓ 0. We first consider the out-of-the-money case z < 0 from which
one can easily derive the in-the-money case z > 0 via put-call parity (see Corollary 3.8
below). Throughout this section, we set

f(u) = fz(u) := (ez+u − 1)+,

and we also assume the following uniform boundedness condition: there exists 0 < M <
∞, such that

0 < σ(y) ≤ M. (3.13)

10



Remark 3.5 Under the uniform boundedness condition (3.13), it is easy to see that
EecUt < ∞, for some c > 2. Then, a proof similar to that leading to (3.3), using the
representation of Proposition 3.2, shows that (3.6) is satisfied for g(u, y) := h(u), when-
ever h ∈ C2n+2 is a subexponential function satisfying (2.9).

The next theorem gives an expansion for the out-of-the-money call option prices (its proof
is given in Appendix C):

Theorem 3.6 Let z0 < 0, n ≥ 1, and 0 < ε < −z0/(n + 1) ∧ 1. Let the dynamics of Z
be given by (1.2), and the conditions of Theorem 3.1 and Corollary 3.3 as well as (3.13)
be satisfied. Then there exists a t0 > 0 such that, for any 0 < t < t0 and z < z0,

Gt(z) = e−λεt

n∑

j=1

b̂j(z)
tj

j!
+Oε,z0(t

n+1), (3.14)

where

b̂j(z) :=
∑

p+q+r=j

(
j

p, q, r

)
Lq
ε

(
r∑

m=0

Br
m(y0)Lm

u (f̂p,z)

)
(0)

with f̂0,z(y) ≡ 0, and

f̂k,z(y) :=

∫

R

fz(y + u)s̄∗kε (u)du =

∫

R

(
ez+y+u − 1

)
+
s̄∗kε (u)du.

Remark 3.7 By expanding e−λεt in (3.14), one obtains the coefficients in (1.6):

bk(z) :=
1

k!

k∑

j=1

(
k

j

)
b̂j(z)(−λε)

k−j. (3.15)

To deal with the in-the-money case z > 0, note that

E
(
ez+Zt − 1

)
+

= E(ez+Zt − 1) + (ez+Zt − 1)−

= ez − 1 + E(ez+Zt − 1)−.

The expansion of E(ez+Zt − 1)− when z > 0 is similar to that of E
(
ez+Zt − 1

)
+

when
z < 0. Therefore:

Corollary 3.8 Let z0 > 0, n ≥ 1, and 0 < ε < z0/(n + 1) ∧ 1. Under conditions of
Theorem 3.1, there exists a t0 > 0 such that, for any 0 < t < t0, z > z0,

Gt(z) = ez − 1 + eλεt

n∑

m=1

b̃m(z)
tm

m!
+Oε,z0(t

n+1), (3.16)

where

b̃j(z) :=
∑

i+j+k=m

(
m

i, j, k

)
Li
ε

(
i∑

l=0

Bi
l (y0)Ll

uĝk,z

)
(0)

with

ĝk,z(y) :=

∫

R

(
ey+z+u − 1

)
−
s̄∗kε (u)du.

11



3.3 Other payoff functions

One of the advantages of our approach is that it can be applied to more general payoff
functions. Concretely, consider a function of the form:

fz(u) := ϕ(u)1{u≥z},

where ϕ ∈ C∞
b . One can easily verify that, under the conditions of Theorem 3.4, we have

the following expansion for z > 0:

Efz(Zt) = e−λεt
n∑

j=1

ãj(z)
tj

j!
+Oε,z0(t

n+1), (3.17)

where

ãj(z) :=
∑

p+q+r=j

(
j

p, q, r

)
Lq
ε

(
r∑

m=0

Br
m(y0)Lm

u (f̂p,z)

)
(0),

with f̂0,z(y) = 0, and f̂k,z(y) :=
∫
R
fz(y + u)s̄∗kε (u)du =

∫∞

z−y
ϕ(y + u)s̄∗kε (u)du. Indeed,

from the proof of Theorem 3.1 (which is the key for Theorem 3.4), the only step that
requires some extra care is to justify that

f̃k,z(y) := λ−k
ε

∫ ∞

z−y

ϕ(y + u)s̄∗kε (u)du,

is C∞ and supy |f̃ (j)
k,z(y)| < ∞. This is proved by checking (using induction) that

f̃
(j)
k,z(y) = λ−k

ε

∫ ∞

z−y

ϕ(j)(y + u)s̄∗kε (u)du+ λ−k
ε

j−1∑

i=0

(−1)iϕ(j−1−i)(z)s̄∗(k−1)
ε ∗ s̄(i)ε (z − y).

Similarly, under the stronger conditions of Theorem 3.6, one can easily consider payoff
functions of the form

fz(u) := ϕ(u)1{u≥−z}, (z < 0),

with ϕ ∈ C∞ such that |ϕ(j)(u)| ≤ Mje
u for some constant Mj < ∞ and all j ≥ 0.

3.4 On the small-time large deviation principle for diffusions

Large deviation results of the form (3.3) have recently been developed for different
stochastic volatility (SV) models. For instance, for uncorrelated SV models, Forde and

12



Jacquier [17] shows (3.3) under the following conditions:

The function α is bounded and uniformly Lipschitz continuous. (3.18)

∃M2 > M1 > 0, s.t. 0 ≤ M1 ≤ σ(y) ∧ γ(y) ≤ σ(y) ∨ γ(y) ≤ M2 < ∞. (3.19)

σ, γ ∈ C∞, and σ(y) → σ±, γ(y) → γ±, as y → ±∞. (3.20)

σ and γ are diffeomorphisms with σ′ > 0 and γ′ > 0. (3.21)

∃ yc ∈ R, such that σ′′ > 0, γ′′ > 0 for y < yc, σ′′ < 0, γ′′ < 0 (3.22)

for y > yc and σ′ ∨ γ′ < M < ∞ for some M > 0.

The function u 7→ γ(σ−1(u))

u
is non-increasing. (3.23)

We refer to [17] for an explicit expression for the rate function I, which is not relevant
here. The Heston model (3.9) (even with correlated Wiener processes W (1) and W (2)) was
also considered in [16] and [18].

4 Expansions for the call-option price under expo-

nential Lévy Models

In this section, we point out the expansion of the call-option price under an exponential
Lévy model, which is a particular case of the jump-diffusion models (1.2) and (1.3). More
precisely, let the log-return process Z be a general Lévy process with the generating triplet
(b, σ2, ν). Then, the following expansion for the out-of-money call option price holds true
(see also Figueroa-López and Forde [14]).

Corollary 4.1 Let z0 < 0, n ≥ 1, and 0 < ε < −z0/(n + 1) ∧ 1. Let Z = (Zt)t≥0 be
a Lévy process with triplet (b, σ2, ν) satisfying (2.4)-(2.6). Then there exists t0 > 0 such
that, for any z < z0 and 0 < t < t0,

Gt(z) = e−λεt
n∑

j=1

cj(z)
tj

j!
+Oε,z0(t

n+1), (4.1)

where

cj(z) :=

j∑

k=1

(
j

k

)
Lj−k
ε ĥk,z(0),

with

ĥk,z(y) :=

∫

R

(
ez+y+u − 1

)
+
s̄∗kε (u)du.

For the in-the-money case, similarly to Corollary (3.8), we also have

13



Corollary 4.2 Let z0 > 0, n ≥ 1, and 0 < ε < z0/(n+ 1) ∧ 1. Then, there exists t0 > 0
such that, for any z > z0 and 0 < t < t0,

Gt(z) = ez − 1 + e−λεt
n∑

j=1

c̃j(z)
tj

j!
+Oε,z0(t

n+1), (4.2)

where

c̃j(z) :=

j∑

k=1

(
j

k

)
Lj−k
ε h̃k,z(0), h̃k,z(y) :=

∫

R

(
ez+y+u − 1

)
−
s̄∗kε (u)du.

Given that in (3.10) B0
0(y0) and B1

1(y0) depend only on σ(y0), it is interesting to
note that the first two coefficients in our expansions (3.11) and (3.14) coincide with the
coefficients corresponding to an exponential Lévy model with variance σ2 = σ2(y0). In

fact, the initial values of α and γ begin to appears with the coefficient â3(z) and b̂3(z)
through the coefficients B2

1 and B2
2 in (3.10).

Here are the first two coefficients of (3.11) for ε > 0 small enough:

â1(z) = B0
0(y0)f̂1,z(0) =

∫

R

fz(u)s̄ε(u)du =

∫ ∞

z

s(u)du;

â2(z) = 2Lε(f̂1,z)(0)︸ ︷︷ ︸
p=1,q=1,r=0

+2B1
1(y0)Lu(f̂1,z)(0)︸ ︷︷ ︸
p=1,q=0,r=1

+ f̂2,z(0)︸ ︷︷ ︸
p=2,q=0,r=0

= 2

(
bεs(z)−

∫

R

∫ 1

0

s′(z − βu)(1− β)dβu2sε(u)du

)

− σ2(y0)(s
′(z) + s(z)) +

∫

R2

1{u1+u2≥z}s̄ε(u1)s̄ε(u2)du1du2.

The corresponding coefficients for (3.14) are obtained as above with fz(x) = 1{x≥z}

replaced by fz(y) := (ez+y − 1)+ with z < 0. Hence, for ε > 0 small enough,

b̂1(z) =

∫

R

(
ez+u − 1

)
+
s(u)du;

b̂2(z) = σ2(y0)s(−z)+2bε

∫ ∞

−z

ez+us(u)du+

∫

R2

(
ez+u1+u2 − 1

)
+̄
sε(u1)s̄ε(u2)du1du2

+ 2

∫

R

∫ 1

0

(1− β)

(∫ ∞

−z−βu

ez−βu+ws(w)dw + s(−z − βu)

)
dβu2sε(u)du.

In the previous expressions one can substitute cε(y) and c̄ε(y) by 10<|y|<ε and 1|y|≥ε,
respectively.

Combining (1.6), (1.7), and the expression for b̂1(z) = b1(z) above, we obtain the
expansion for the price function of the out-of-money call option near the expiration T :

C(t, s) = Ke−r(T−t)GT−t(ln s− lnK)

= (T − t)

∫

R

(seu −K)+ s(u)du+Oε,ln(s/K)

(
(T − t)2

)
. (4.3)
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5 Asymptotics of the implied volatility

Using the leading term of the time-t price for the out-of-money call option as computed
in the previous section, we now obtain the asymptotic behavior of the implied volatility
σ̂(t; s) near T . It is defined implicitly by the equation

C(t, s) = CBS(t, s; σ̂(t; s), r), (5.1)

where CBS(t, s; σ, r) is the classical time-t Black-Scholes call-option price corresponding
to an interest rate r, a volatility σ, and time t spot price s. We shall need the following
well-known result (see, e.g., Lemma 2.5 in [20]):

Lemma 5.1 Let CBS(t, s; σ, r) be the classical Black-Scholes call price function. Then,
as t ↑ T ,

CBS(t, s; σ, r) ∼ 1√
2π

Kσ3(T − t)3/2

(lnK − ln s)2
exp

[
−(lnK − ln s)2

2σ2(T − t)

]
(5.2)

exp

[
− lnK − ln s

2
+

r(lnK − ln s)

σ2

]
+R(t, s; σ, r).

The remainder satisfies

|R(t, s; σ, r)| ≤ M(T − t)5/2 exp

[
−(lnK − ln s)2

2σ2(T − t)

]
, (5.3)

where M = M(s, σ, r,K) is uniformly bounded if all the indicated parameters vary in a
bounded region.

The next result gives the asymptotic behavior of σ̂(t, s). This has already been obtained
for a pure-Lévy processes (see, e.g., [38] and [14]) and is presented here for the sake of
completeness:

Proposition 5.2 Let σ̂(t; s) be the implied volatility when the stock price (1.1) is s at
time t. Then, as t ↑ T ,

σ̂2(t; s) ∼ (lnK − ln s)2

−2(T − t) ln(T − t)
. (5.4)

Proof. Using the leading terms in (4.3) and (5.2), we obtain that as t ↑ T :

(T−t)u(s,K)∼ v(s,K)σ̂3(t; s)(T − t)3/2 exp

[
− (lnK − ln s)2

2σ̂2(t; s)(T − t)
+

r(lnK − ln s)

σ̂2(t; s)

]
,

(5.5)

where

u(s,K) =

∫

R

(seu −K)+ s(u)du,

v(s,K) =
1√
2π

K

(lnK − ln s)2
exp

[
− lnK − ln s

2

]
.
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Assume that lim supt↑T σ̂(t)(T − t)1/2 = c ∈ (0,+∞), then lim supt↑T σ̂(t) ↑ ∞, and
thus

lim sup
t↑T

(
σ̂(t)(T − t)1/2

)3
exp

[
−(lnK − ln s)2

2σ̂2(t)(T − t)
+

r(lnK − ln s)

σ̂2(t)

]

= c3 exp

(
−(lnK − ln s)2

2c2

)
6= 0.

So the right hand side of (5.5) does not converge to 0 while the left hand side does, which
is clearly a contradiction.

Now if lim supt↑T σ̂(t)(T − t)1/2 = +∞, then lim supt↑T σ̂(t) ↑ +∞, and thus

lim sup
t↑T

(
σ̂(t)(T − t)1/2

)3
exp

[
−(lnK − ln s)2

2σ̂2(t)(T − t)
+

r(lnK − ln s)

σ̂2(t)

]
= +∞.

Again we obtain the same contradiction.
Therefore, we have lim supt↑T σ̂(t)(T−t)1/2 = 0, which obviously implies that limt↑T σ̂(t)(T−

t)1/2 = 0. Then, (5.5) can now be written equivalently as

exp

[
−(lnK − ln s)2

2σ̂2(t)(T − t)
+

r(lnK − ln s)

σ̂2(t)
+ 3 ln

(
σ̂(t)(T − t)1/2

)
− ln(T − t)

]
∼ u(s,K)

v(s,K)
.

Hence, as t ↑ T ,

1
(
σ̂(t)(T − t)1/2

)2

[
r(lnK − ln s)(T − t) + 3

(
σ̂(t)(T − t)1/2

)2
ln
(
σ̂(t)(T − t)1/2

)

− (lnK − ln s)2

2
−
(
σ̂(t)(T − t)1/2

)2
ln(T − t)−

(
σ̂(t)(T − t)1/2

)2
ln

u(s,K)

v(s,K)

]

−→ 0.

Finally, note that

lim
t↑T

(
σ̂(t)(T − t)1/2

)2
ln
(
σ̂(t)(T − t)1/2

)
= 0,

lim
t↑T

r(lnK − ln s)(T − t) = 0,

and therefore,

lim
t↑T

(
(lnK − ln s)2

2
+ σ̂2(t)(T − t) ln(T − t)

)
= 0,

which directly implies (5.4).
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6 Small-time expansions for the Lévy transition den-

sities

In this part, we revisit the important problem of finding small-time expansions for the
transition densities of Lévy processes. This problem has been considered in Rüschendorf
and Woerner [36] and [13]. As in Section 2.1, we consider a general Lévy process X with
Lévy triplet (b, σ2, ν). It is well-known that under general conditions (see, e.g, [27] and
[33]):

lim
t→0

1

t
ft(x) = s(x), (x 6= 0), (6.1)

where ft denotes the probability density ofXt and s is the Lévy density of ν (both densities
are assumed to exist). In many applications, the following uniform convergence result is
more desirable

lim
t→0

sup
|x|≥η

∣∣∣∣
1

t
ft(x)− s(x)

∣∣∣∣ = 0, (6.2)

for a fixed η > 0. The limit (6.2) is related to the following general expansions for the
transition densities:

ft(x) =
n∑

k=1

ak(x)

k!
tk + tn+1Oη(1), (6.3)

valid for any |x| ≥ η and 0 < t < t0, with t0 possibly depending on the given η > 0 and
n ≥ 0. Above, Oη(1) denotes a function of x and t such that

sup
0<t≤t0

sup
|x|≥η

|Oη(1)| < ∞.

Note that (6.2) follows from (6.3) when n = 1 and ak(x) = s(x).
Rüschendorf and Woerner [36] were the first to propose (6.2) building on results of

Léandre [27], who prove the point-wise convergence (6.1). In both papers, the standing
conditions on the Lévy density s of the Lévy process X are as follows:

lim inf
η→0

ηα−2

∫ η

−η

z2s(z)dz > 0, (0 < α < 2); (6.4)

s ∈ C∞(R \ {0}); (6.5)
∫

|z|≥η

|s′(z)|2
s(z)

dz < ∞, ∀η > 0; (6.6)

∃h ∈ C∞ such that h(z) = O(z2) (z → 0), h(z) > 0 if s(z) > 0, and (6.7)
∫

|z|≤1

∣∣∣∣
d

dz
h(z)s(z)

∣∣∣∣
2

1

s(z)
dz < ∞.

Condition (6.4) is used to conclude the existence of a C∞ transition density ft (see [37,
Chapter 5]), while (6.5)-(6.7) are needed to establish an estimate for the transition density
using Malliavin calculus. However, the method of proof of [36] seems to have a gap so
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that one can only derive the first order expansion in (6.3) (see the introduction of [13] for
more details). Recently (see [13]), (6.3) was obtained under the following assumptions:

γη,k := sup
|x|≥η

|s(k)(x)| < ∞, and (6.8)

lim sup
tց0

sup
|x|≥η

|f (k)
t (x)| < ∞, ∀k ≥ 0 and ∀η > 0. (6.9)

Condition (6.8) is quite mild but condition (6.9) could be hard to prove in general due to
the inaccessibility of closed-form expressions for the densities ft. Nevertheless [13] shows
that condition (6.9) is satisfied by, e.g., the CGMY model of [8] (or Koponen [26]) and
by other types of tempered stable Lévy processes (as defined in [34]).

In this section, we show that (6.9) is not necessary to obtain (6.3). Again, we follow
closely the approach in [13] and use the notation of Section 2.1 (see Appendix C for the
proof of the following result):

Theorem 6.1 Let η > 0 and n ≥ 1, and let the conditions in lines (6.4)-(6.8) be satisfied.
Then, (6.3) holds true for all 0 < t ≤ 1 and |x| ≥ η. Moreover, there exists ε0(η, n) > 0
such that for all 0 < ε < ε0, the coefficients ak admit the following representation (which
is moreover constant for any 0 < ε < ε0):

ak(x) :=

k∑

j=1

(
k

j

)
(−λε)

k−j

j∑

i=1

(
j

i

)
Lj−i
ε ŝi,x(0), (6.10)

where ŝi,x(u) := s̄∗iε (x− u).

Remark 6.2 Combining the proofs of Theorem 3.1 and of Theorem 6.1, it is possible
to obtain a small-time expansion for the jump-diffusion model (1.2)-(1.3) assuming, for
instance, that the stochastic volatility model admits a density function dt satisfying the
small-time estimate:

sup
|x|≥η

dt(x) ≤ Mp,ηt
p,

for any p ≥ 1 and 0 < t < t0(p, η) and some constant Mp,η < ∞.

A Proof of Proposition 2.1

Let us show (2.8) for n = 1 (the other cases are easily obtained by induction). First,
applying Itô’s lemma ([24, Theorem I.4.56]),

g(Xt) = g(0) +

∫ t

0

Lg(Xu)du+ σ

∫ t

0

g′(Xu)dWu

+

∫ t

0

∫

R

{
g(Xu− + z)− g(Xu−)− g′(Xu−)z1|z|≤1

}
µ̄(du, dz),
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where one can easily check that Lg(x) is well-defined from the continuity of g(i) and (2.9).
Indeed, there exists a constant Mi such that |g(i)(x)| ≤ Mie

c
2
|x|, for all x, and thus,

∣∣∣∣
∫

|z|≥1

g(x+ z)ν(dz)

∣∣∣∣ ≤ M1

∫

|z|≥1

e
c
2
|z|ν(dz)e

c
2
|x|,

∣∣∣∣
∫

|z|≤1

(g(x+ z)− g(x)− g′(x)z)ν(dz)

∣∣∣∣ ≤ M2e
c
2

∫

|z|≤1

z2ν(dz)e
c
2
|x|.

Next, we show that the last two terms of the expansion of g(Xt) above are true mar-
tingales. Indeed, it suffices that

E

∫ t

0

|g′(Xu)|2 du < ∞, (A-1)

E

∫ t

0

∫

|z|>1

|g(Xu + z)− g(Xu)| ν(dz)du < ∞, (A-2)

E

∫ t

0

∫

|z|≤1

|g(Xu + z)− g(Xu)− g′(Xu)z|2 ν(dz)du < ∞. (A-3)

Using (2.9) and the continuity of g′, there exists a constant M > 0 such that

E

∫ t

0

|g′(Xu)|2 du ≤ M

∫ t

0

Eec|Xu|du ≤ M

∫ t

0

EecXudu+

∫ t

0

Ee−cXudu < ∞,

for any t ≥ 0. Similarly, setting B̄ = {z : |z| > 1}, (A-2) is satisfied since

E

∫ t

0

∫

B̄

|g(Xu + z)− g(Xu)| dνdu ≤ E

∫ t

0

∫

B̄

∣∣∣∣
∫ z

0

g′(Xu + w)dw

∣∣∣∣ dνdu

≤ M

∫ t

0

Eec|Xu|du

∫

B̄

∫ |z|

0

ecwdwdν < ∞.

Also, setting B = {z : |z| ≤ 1},

E

∫ t

0

∫

B

|g(Xu + z)− g(Xu)− g′(Xu)z|2 ν(dz)du

≤ E

∫ t

0

∫

B

∫ 1

0

|g′′(Xu + zβ)|2(1− β)2dβz4dνdu

≤
∫ t

0

Eec|Xu|du

∫

B

∫ 1

0

ec|z|β(1− β)2dβz4dν < ∞.

We then have that

Eg(Xt) = g(0) + E

∫ t

0

Lg(Xu)du,
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which leads to (2.7) provided
∫ t

0
E |Lg(Xu)| du < ∞. The later is proved using (2.9) and

similar arguments.
In order to obtain (2.8) for n = 1 by iterating (2.7), we need to show that for any C4

function g satisfying (2.9),

lim sup
|y|→∞

e−
c
2
|y||(Lg)(i)(y)| < ∞, (A-4)

for i = 0, 1, 2. To this end, we first note that

(Lg)(i)(y) = bg(i+1)(y) +
σ2

2
g(i+2)(y) +

∫

R

(g(i)(y + z)− g(i)(y)− zg(i+1)(y)1|z|≤1)ν(dz)

for i = 0, 1, 2. Hence, it is sufficient to show (A-4) when i = 0, and we have

e−
c
2
|y||Lg(y)| ≤ be−

c
2
|y||g′(y)|+ σ2

2
e−

c
2
|y||g′′(y)| (A-5)

+ e−
c
2
|y|

∫

|z|>1

|g(y + z)− g(y)|ν(dz) (A-6)

+ e−
c
2
|y|

∫

|z|≤1

|g(y + z)− g(y)− zg′(y)|ν(dz). (A-7)

The limits of the right-hand terms in (A-5) as |y| → ∞ are trivially finite by the assump-
tion (2.9). For the term in (A-6), again by the assumption (2.9) and the continuity of
g(i), there exists M > 0 such that,

|g(i)(y)| ≤ Me
c
2
|y|, i = 0, 1, 2.

It follows that

e−
c
2
|y|

∫

|z|>1

|g(y + z)− g(y)|ν(dz) = e−
c
2
|y|

∫

|z|>1

∣∣∣
∫ z

0

g′(y + w)
∣∣dw
∣∣∣ν(dz)

≤ M

∫

|z|>1

(∫ |z|

0

e
c
2
wdw

)
ν(dz)

= M

∫

|z|>1

e
c
2
|z|ν(dz) < ∞.

which immediately implies that

lim sup
|y|→∞

e−
c
2
|y|

∫

|z|>1

|g(y + z)− g(y)|ν(dz) < ∞. (A-8)

Similarly, we can show that the limit of (A-7) as |y| → ∞ is finite. Therefore, we can
iterate (2.7) to obtain (2.8) for n = 1. 2
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B Proof of Theorem 3.1

We will analyze each term on the right-hand side of the expansion of Ef(Zt) given in
(3.1)-(3.2):

(1) For any z ≥ z0, we have

Efz (Ut +Xε
t ) = P(Ut +Xε

t ≥ z) ≤ P(Ut ≥ z/2) + P(Xε
t ≥ z/2). (B-1)

By our assumption (3.3), there exists t0(z0) > 0 such that for any 0 < t ≤ t0, z ≥ z0 > 0,

P(Ut ≥ z/2) ≤ P(Ut ≥ z0/2) ≤ exp

(
−d(z0/2)

2

4t

)
, (B-2)

which can be seen to be Oz0(t
n+1). Also, the second term on the right-hand-side of (B-1) is

Oε,z0(t
n+1) in light of (2.3) by taking a := (n+1)/z0 and using that 0 < ε < z0/(n+1)∧1.

(2) The second term in (3.1) is also Oε,z0(t
n+1) because f ≤ 1 and clearly

e−λεt
∑∞

k=n+1(λεt)
k/k! ≤ (λεt)

n+1 = O(tn+1).

(3) We proceed to work out those terms in (3.2). Using the independence of U and X ,
we have

Efz

(
Ut +Xε

t +

k∑

i=1

ξi

)
= Ef̃k,z (Ut +Xε

t ) = Ef̆k,z,t(X
ε
t ), (B-3)

where

f̃k,z(y) :=(λε)
−k

∫ ∞

z−y

s̄∗kε (u)du and f̆k,z,t(y) :=Ef̃k,z (Ut + y) .

In particular, by the assumption (2.4),

f̃
(j)
k,z(y) = (λε)

−k(−1)j−1s̄∗(k−1)
ε ∗ s̄(j−1)

ε (z − y),

sup
y,z

∣∣∣f̃ (j)
k,z(y)

∣∣∣ ≤ λ−1
ε ‖s̄(j−1)

ε ‖∞ ≤ λ−1
ε max

0≤i≤j−1
γi,ε/2 := Γε < ∞.

It follows that f̆k,z,t ∈ C∞
b (R) and moreover,

f̆
(j)
k,z,t(y) = Ef̃

(j)
k,z (Ut + y) , and sup

z,y

∣∣∣f̆ (j)
k,z,t(y)

∣∣∣ ≤ Γε, for any j ≥ 0. (B-4)

We will then be able to apply the iterated formula (2.8) to get

Ef̆k,z,t(X
ε
t ) =

n−k∑

i=0

ti

i!
Li
εf̆k,z,t(0) +

tn−k+1

(n− k)!

∫ 1

0

(1− α)n−kE{Ln−k+1
ε f̆k,z,t(X

ε
αt)}dα. (B-5)

It follows from the representation in Lemma 2.2 and (B-4) that

sup
z

∫ 1

0

(1− α)n−kE
(
Ln−k+1
ε f̆k,z,t(X

ε
αt)
)
dα < ∞,
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and thus the second term on the right hand side of (B-5) is Oε,z0(t
n−k+1).

(4) Combining (3.1), (3.2) and (B-5), we obtain

Ef(Zt) = e−λεt

n∑

k=1

(λεt)
k

k!
Ef̆k,z,t(X

ε
t ) +Oε,z0(t

n+1)

= e−λεt
n∑

k=1

(λεt)
k

k!

n−k∑

i=0

ti

i!
Li
εf̆k,z,t(0) +Oε,z0(t

n+1)

= e−λεt
n∑

j=1

tj

j!

j∑

k=1

(
j

k

)
λk
εL

j−k
ε f̆k,z,t(0) +Oε,z0(t

n+1).

Using again the representation in Lemma 2.2 and (B-4), it follows that

Lj−k
ε f̆k,z,t(x) = Lk

ε

[
Ef̃k,z(Ut + ·)

]
(x) = λ−k

ε Lk
ε

[
Ef̂k,z(Ut + ·)

]
(x),

and (3.4) follows. 2

C Proof of Theorem 3.6

We will analyze each term in (3.1) and (3.2).
(1) For z ≤ z0 < 0,

Efz(Ut +Xε
t ) = E

(
ez+Ut+Xε

t − 1
)
+
≤ E

(
eUt+Xε

t 1{Ut+Xε
t ≥−z}

)
(C-1)

≤
(
Ee2Ut+2Xε

t P(Ut +Xε
t ≥ −z)

)1/2

≤
(
Ee2UtEe2X

ε
t

)1/2 (
P(Ut ≥ −z/2) + P(Xε

t ≥ −z/2)
)1/2

,

= etΨ(2)/2
(
Ee2Ut

)1/2 (
P(Ut ≥ −z/2) + P(Xε

t ≥ −z/2)
)1/2

,

where Ψ is the characteristic exponent of Xε. Since Mt := eUt satisfies the SDE dMt =
Mtσ(Yt)dW

(1)
t and using the Davis-Burkhölder-Gundy inequality,

Ee2Ut = E

(
1 +

∫ t

0

Msσ(Ys)dW
(1)
s

)2

≤ 2 + 2E

(∫ t

0

eUsσ(Ys)dW
(1)
s

)2

≤ 2 + 2M2 E

∫ t

0

e2Usds.

By Gronwall’s Inequality,

Ee2Ut ≤ 2e2M
2t = Oε,z0(1).

Therefore, the right-hand-side of (C-1) can be made oε,z0(t
n+1) by (2.3) and (3.3).
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(2) The second summation in (3.1) is also Oε,z0(t
n+1) since for any k ≥ n+ 1,

Efz(Ut +Xε
t +

k∑

i=1

ξi) ≤ ezEeUtEeX
ε
t (Eeξ1)k

≤ λ−k
ε etΨ(1)(

∫

R

exs̄ε(x)dx)
k.

(3) To work out the summation in (3.2), recall that by the independence of U and X , for
any 1 ≤ k ≤ n,

Efz

(
Ut +Xε

t +
k∑

i=1

ξi

)
= Ef̃k,z (Ut +Xε

t ) = Ef̆k,z,t(X
ε
t ),

where

f̆k,z,t(x) = Ef̃k,z (Ut + x) and f̃k,z(x) = Efz

(
x+

k∑

i=1

ξi

)
.

Let us show that f̃k,z is C∞. Indeed, since

f̃k,z(x) = λ−k
ε

∫

Rk−1

∫ ∞

−
∑k

ℓ=2
uℓ−z−x

(
ez+x+

∑k
ℓ=1

uℓ − 1
)
s̄ε(u1)du1

k∏

ℓ=2

s̄ε(uℓ)duℓ,

and s̄ε ∈ C∞
b , we have that

f̃ ′
k,z(x) = λ−k

ε

∫

Rk−1

∫ ∞

−
∑k

ℓ=2
uℓ−z−x

ez+x+
∑k

ℓ=1
uℓ s̄ε(u1)du1

k∏

ℓ=2

s̄ε(uℓ)duℓ,

f̃ ′′
k,z(x) = λ−k

ε

∫

Rk−1

∫ ∞

−
∑k

ℓ=2 uℓ−z−x

ez+x+
∑k

ℓ=1 uℓ s̄ε(u1)du1

k∏

ℓ=2

s̄ε(uℓ)duℓ

+ λ−k
ε

∫

Rk−1

s̄ε

(
−

k∑

ℓ=2

uℓ − z − x

)
k∏

ℓ=2

s̄ε(uℓ)duℓ.

Using induction, we see that

f̃
(i)
k,z(x) = λ−k

ε

∫

R

∫ ∞

−
∑k

ℓ=2 uℓ−z−x

ez+x+
∑k

ℓ=1
uℓ s̄ε(u1)du1

k∏

ℓ=2

s̄ε(uℓ)duℓ (C-2)

+ λ−k
ε

i−2∑

j=0

(−1)j
∫

Rk−1

s̄(j)ε

(
−

k∑

ℓ=2

uℓ − z − x

)
k∏

ℓ=2

s̄ε(uℓ)duℓ,
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In view of (2.4), there exists a constant Mi,ε < ∞ such that, for any i ≥ 1,

∣∣∣f̃ (i)
k,z(Ut + x)

∣∣∣ ≤ λ−k
ε

∫

Rk

ez+x+
∑k

ℓ=1
uℓ

k∏

ℓ=1

s̄ε(uℓ)duℓ · eUt (C-3)

+Mi,ελ
−k
ε

i−2∑

j=0

∫

Rk−1

k∏

ℓ=2

s̄ε(uℓ)duℓ · max
0≤j≤i

γj,ε/2.

The right-hand side of (C-3) is integrable because EeUt = 1. By dominated convergence,
we conclude that f̆k,z,t ∈ C∞(R), and also,

f̆
(i)
k,z,t(x) = E

[
f̃
(i)
k,z(Ut + x)

]
, ∀i ≥ 0, and lim sup

|x|→∞

e−
c
2
|x|
∣∣∣f̆ (i)

k,z,t(x)
∣∣∣ < ∞,

since c ≥ 2. Thus, applying (2.8) gives

Ef̆k,z,t(X
ε
t ) =

n−k∑

i=0

ti

i!
Li
εf̆k,z,t(0) +

tn−k+1

(n− k)!

∫ 1

0

(1− α)n−kE{Ln−k+1
ε f̆k,z,t(X

ε
αt)}dα. (C-4)

To show that the last integral in (C-4) is bounded, we apply Lemma 2.2 to get that

E

{
(Ln−k+1

ε f̆k,z,t)(X
ε
αt)
}
=

∑

k∈Kn−k+1

4∏

i=0

bkii

(
n− k + 1

k

)
E

[
B

k,ε
f̆k,z,t(X

ε
αt)
]
,

Thus, it is sufficient to show the boundedness of EB
k,ε
f̆k,z,t(X

ε
αt), for any 1 ≤ k ≤ n and

k = (k0, . . . , k4) ∈ Kn−k+1. Indeed, noting that (2.6) implies that

M̃ :=

∫

[0,1]k3×Rk3+k4

e
∑k3

j=1
βjwj+

∑k4
i=1

uidπ
k,ε

< ∞,

we have, for any x ∈ R and some contants K1, K2 < ∞,

∣∣∣B
k,ε
f̆k,z,t(x)

∣∣∣ ≤
∫

[0,1]k3×Rk3+k4

∣∣∣f̆ (ℓk)
k,z,t

∣∣∣
(
x+

k3∑

j=1

βjwj +

k4∑

i=1

ui

)
dπ

k,ε

≤
∫

[0,1]k3×Rk3+k4

E

∣∣∣f̃ (ℓk)
k,z

∣∣∣
(
Ut + x+

k3∑

j=1

βjwj +

k4∑

i=1

ui

)
dπ

k,ε

≤ M̃λ−k
ε E eUt

∫

Rk−1

∫

R

ez+x+
∑k

ℓ=1
uℓ s̄ε(u1)du1

k∏

ℓ=2

s̄ε(uℓ)duℓ

+Mi,ελ
−k
ε

ℓk−2∑

j=0

∫

Rk−1

k∏

ℓ=2

s̄ε(uℓ)duℓ · max
0≤j≤i

γj,ε/2

= M1e
x +M2 < ∞,
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where the third inequality follows from (C-3). It follows that EB
k,ε
f̆k,z,t(X

ε
αt) is Oε,z0(1),

and so is ELn−k+1
ε f̆k,z,t(X

ε
αt). Therefore, the last integral in (C-4) is indeed Oε,z0(t

n−k+1).

(4) By plugging (C-4) into(3.1) and (3.2) and rearranging terms, we obtain that

Efz(Zt) = e−λεt
n∑

k=1

(λεt)
k

k!
f̆k,z,t(X

ε
t ) +Oε,z0(t

n+1)

= e−λεt
n∑

j=1

tj

j!

j∑

k=1

(
j

k

)
λk
εL

j−k
ε f̆k,z,t(0) +Oε,z0(t

n+1). (C-5)

It remains to expand the coefficients

Lj−k
ε f̆k,z,t(0) = Lj−k

ε

[
Ef̃k,z(Ut + ·)

]
(0) = λ−k

ε Lj−k
ε

[
Ef̂k,z(Ut + ·)

]
(0). (C-6)

Using the expansion (3.6) and Remark 3.5, we have

Ef̂k,z(Ut + x) =

n−j∑

i=0

ti

i!
Lif̂k,z(x)+

tn−j+1

(n−j+1)!

∫ 1

0

(1−α)n−jE
(
Ln−j+1f̂k,z(Uαt + x)

)
dα

=

n−j∑

i=0

ti

i!

i∑

l=0

Bi
l (y0)Ll

uf̂k,z(x) (C-7)

+
tn−j+1

(n− j + 1)!

∫ 1

0

(1− α)n−jE

(
Ln−j+1f̂k,z(Uαt + x)

)
dα.

Finally, by combining (C-5), (C-6) and (C-7), it follows that

Efz(Zt) = e−λεt
n∑

j=1

tj

j!

j∑

k=1

(
j

k

)[ n−j∑

i=0

ti

i!
Lj−k
ε

(
i∑

l=0

Bi
l (y0)Ll

uf̂k,z

)
(0)

+
tn−j+1

(n−j+1)!

∫ 1

0

(1−α)n−jE

{
Lj−k
ε

[
Ln−j+1f̂k,z(Uαt+ ·)

]
(0)
}
dα

]
+Oε,z0(t

n+1) (C-8)

= e−λεt
n∑

j=1

tj

j!

j∑

k=1

(
j

k

) n−j∑

i=0

ti

i!
Lj−k
ε

(
i∑

l=0

Bi
l (y0)Ll

uf̂k,z

)
(0) +Oε,z0(t

n+1) (C-9)

= e−λεt
n∑

j=1

tj

j!

∑

p+q+r=j

(
j

p, q, r

)
Lq
ε

(
r∑

m=0

Br
m(y0)Lm

u f̂p,z

)
(0)+Oε,z0(t

n+1). (C-10)

Here in (C-9) we used the fact that the integral in (C-8) is Oε,z0(1) as seen from the
uniform boundedness condition (3.13) and the estimate (C-3). 2
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D Proof of Theorem 6.1

We only consider x > 0 (the case x < 0 can be similarly analyzed by considering P(Xt ≤
x)). Again, we start with the expression

P(Xt ≥ x) = e−λεtP (Xε
t ≥ x)︸ ︷︷ ︸

Bt(x)

+ e−λεt

∞∑

k=n+1

(λεt)
k

k!
P

(
Xε

t +

k∑

i=1

ξi ≥ x

)

︸ ︷︷ ︸
Ct(x)

(D-1)

+ e−λεt

n∑

k=1

(λεt)
k

k!
P

(
Xε

t +

k∑

i=1

ξi ≥ x

)

︸ ︷︷ ︸
Dt(x)

. (D-2)

Let us denote by f ε
t the density of Xε

t , whose existence follows from (6.4-a). Given that

d

dx
P

(
Xε

t +
k∑

i=1

ξi ≥ x

)
= − 1

λk
ε

f ε
t ∗ s̄∗kε (x),

and that sup
x

|f ε
t ∗ s̄∗kε (x)| ≤ sup

x
|s̄∗kε (x)| ≤ γε/2,0λ

k−1
ε ,

one can interchange derivative and summation in (D-1) to show that Ct(x) admits a
density ct(x) and moreover,

sup
x

|ct(x)| = sup
x

e−λεt
∞∑

k=n+1

tk

k!
f ε
t ∗s̄∗kε (x) ≤ e−λεt

γε/2,0
λε

∞∑

k=n+1

(λεt)
k

k!
≤ λn

εγε/2,0t
n+1. (D-3)

Also, in view of Proposition III.2 in [27], there exists a real ε0(η, n) > 0 such that for all
0 < ε < ε0 and t ≤ 1,

sup
|x|≥η

f ε
t (x) ≤ M(η, ε)tn+1, (D-4)

where M(η, ε) is some unversal constant depending only on η and ε. The last step is to
deal with the terms in Dt. Recall that

P

(
Xε

t +
k∑

i=1

ξi ≥ x

)
= Ef̃k,x (X

ε
t ) ,

d(i)

dzi
f̃k,x(y) = λ−k

ε (−1)i−1s̄∗(k−1)
ε ∗ s̄(i−1)

ε (x− y),

with

f̃k,x(y) := P

(
y +

k∑

ℓ=1

ξi ≥ x

)
= λ−k

ε

∫ ∞

x−y

s̄∗kε (u)du.
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Then, applying the iterated formula (2.8), we get

Ef̃k,x(X
ε
t ) =

n−k∑

i=0

ti

i!
Li
εf̃k,x(0) +

tn+1−k

(n− k)!

∫ 1

0

(1− α)n−kE

(
Ln+1−k
ε f̃k,x(X

ε
αt)
)
dα. (D-5)

Using the representation of Lε in Lemma 2.2, one can easily verify that

d

dx
Li
εf̃k,x(y) = −Li

εf̃
′
k,x(y) = −(λε)

−kLi
εŝk,x(y), (D-6)

sup
x,z

∣∣∣∣
d

dx
Ln+1−k
ε f̃k,x(y)

∣∣∣∣ ≤ Mn,k,ε max
0≤k≤2n

{γε/2,k}, (D-7)

for some constants Mn,k,ε < ∞. Hence, one can pass d/dx through the integral and the
expectation in the last term of (D-5) to get

d

dx
Ef̃k,x(X

ε
t ) = −(λε)

−k
n−k∑

i=0

ti

i!
Li
εŝk,x(0) + tn+1−kOε,k,n(1), (D-8)

where Oε,k,n(1) means that supx |Oε,k,n(1)| is bounded by a constant depending only on
ε, k, and n. Differentiating P(Xt ≥ x) in (D-1) and plugging (D-3), (D-4), (D-8), we get
that for any 0 < ε < ε0 and t ≤ 1,

ft(x) = e−λεt
n∑

k=1

tk

k!

n−k∑

i=0

ti

i!
Li
εŝk,x(0) + tn+1Oε,η(1),

where Oε,η(1) is such that supt≤1 sup|x|≥η |Oε,η(1)| < ∞. Rearranging the terms above, we
have

ft(x) = e−λεt
n∑

p=1

cp(x)
tp

p!
+ tn+1Oε,η(1),

with

cp(x) :=

p∑

k=1

(
p

k

)
Lp−k
ε ŝk,x(0).

The expression in (6.10) follows from the Taylor expansion of e−λεt, using also that
supx |cp(x)| < ∞ (a fact that itself follows from (D-6)). Finally, the ”constant property”
of (6.10), for any 0 < ε < ε0, follows from inversion. Indeed, given that a posterior

ft(x) =

n∑

k=1

ak(x)

k!
tk + tn+1Oη,ε(1) (D-9)

holds true for any t ≤ 1 and 0 < ε < ε0, ak(x) can be recovered from ft(x) (independently
of ε) by the recursive formulas:

a1(x) = lim
t→0

1

t
ft(x), ak(x) = lim

t→0

k!

tk

(
ft(x)−

k∑

i=1

ai(x)

i!
ti

)
, 2 ≤ k ≤ n.

2
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models. Thesis, University of New South Wales, 2009.
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