A family of statistical symmetric divergences based on Jensen's inequality

Frank Nielsen
Ecole Polytechnique
Sony Computer Science Laboratories, Inc.

September 2010

Abstract

We introduce a novel parametric family of symmetric information-theoretic distances based on Jensen's inequality on a convex generator that unifies Jeffreys divergence with Jensen-Shannon divergence for the Shannon entropy generator. We then design a generic algorithm to compute the unique centroid defined as the minimum average divergence. This yields a smooth family of centroids linking the Jeffreys to the Jensen-Shannon centroid.

1 Introduction

The Shannon entropy [4] of a probability distribution p measures the amount of uncertainty:

$$
\begin{equation*}
H(p)=\int p(x) \log \frac{1}{p(x)} \mathrm{d} x=-\int p(x) \log p(x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

The cross-entropy [4] measures the amount of extra bits required to compute a code based on an observed empirical probability \tilde{p} instead of the true probability (hidden by nature):

$$
\begin{equation*}
H(p: \tilde{p})=\int p(x) \log \frac{1}{\tilde{p}(x)} \mathrm{d} x=-\int p(x) \log \tilde{p}(x) \mathrm{d} x . \tag{2}
\end{equation*}
$$

The ":" notation emphasizes on the oriented aspect [4] of the functional: $H(p: q) \neq H(q: p)$. The Kullback-Leibler divergence [9, 4] is a statistical distance measure computing the relative entropy as follows:

$$
\begin{align*}
\mathrm{KL}(p: q) & =\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x \tag{3}\\
& =H(p: q)-H(p) \geq 0, \tag{4}
\end{align*}
$$

This last inequality is called Gibb's inequality [4, with equality if and only if $p=q$. We have $H(p: q)=$ $H(p)+\mathrm{KL}(p: q)$. The Kullback-Leibler divergence can be extended to unnormalized positive distributions (or positive arrays) as follows:

$$
\begin{align*}
\operatorname{eKL}(p: q) & =\int\left(p(x) \log \frac{p(x)}{q(x)}+q(x)-p(x)\right) \mathrm{d} x, \tag{5}\\
& =\mathrm{eH}(p: q)-\mathrm{eH}(p) \geq 0, \tag{6}
\end{align*}
$$

with $\mathrm{eH}(p: q)=\int\left(p(x) \log \frac{1}{q(x)}+q(x)\right) \mathrm{d} x$ and $\mathrm{eH}(p)=\mathrm{eH}(p, p)$.
(Rényi based on an axiomatic approach [13 derived yet another expression for the Kullback-Leibler divergence of unnormalized generalized distributions.)

Many applications in information retrieval (IR) requires to deal with a symmetric distortion measure. Jeffreys divergence [7] (also called J-divergence) symmetrizes the oriented Kullback-Leibler divergence as follows:

$$
\begin{align*}
J(p, q) & =\mathrm{KL}(p: q)+\mathrm{KL}(q: p)=J(q, p) \tag{7}\\
& =H(p: q)+H(q: p)-(H(p)+H(q)) \tag{8}\\
& =\int(p(x)-q(x)) \log \frac{p(x)}{q(x)} \mathrm{d} x \tag{9}
\end{align*}
$$

Here, we replaced ":" by "," in the distortion measure to emphasize the symmetric property: $J(p, q)=$ $J(q, p)$. Jeffreys divergence is interpreted as twice the average of the cross-entropies minus the average of the entropies. One of the drawbacks of Jeffreys divergence is that it may be unbounded and therefore numerically quite unstable to compute in practice: For example, let $p=\left(p_{i}\right)_{i=1}^{d}$ and $q=\left(q_{i}\right)_{i=1}^{d}$ be frequency histograms with d bins, then $J(p, q) \rightarrow \infty$ if there exists one bin $l \in\{1, \ldots, d\}$ such that p_{l} is above some constant, and $q_{l} \rightarrow 0$. In that case, $p_{l} \log \frac{p_{l}}{q_{l}} \rightarrow \infty$. To circumvent this unboundedness problem, the JensenShannon divergence was introduced in [10]. The Jensen-Shannon divergence symmetrizes the KullbackLeibler divergence by taking the average relative entropy of the source distributions to the average distribution $\frac{p+q}{2}$:

$$
\begin{align*}
\mathrm{JS}(p, q) & =\frac{1}{2}\left(\mathrm{KL}\left(p: \frac{p+q}{2}\right)+\mathrm{KL}\left(q: \frac{p+q}{2}\right)\right)=\mathrm{JS}(q, p) \tag{10}\\
& =\frac{1}{2}\left(H\left(p: \frac{p+q}{2}\right)-H(p)+H\left(q: \frac{p+q}{2}\right)-H(q)\right) \tag{11}\\
& =\frac{1}{2} \int\left(p \log \frac{2 p}{p+q}+q \log \frac{2 q}{p+q}\right) \mathrm{d} x \tag{12}\\
& =H\left(\frac{p+q}{2}\right)-\frac{H(p)+H(q)}{2} \geq 0 \tag{13}
\end{align*}
$$

The Jensen-Shannon divergence has always finite value, and its square root yields a metric, satisfying the triangular inequality. Moreover, we have the following information-theoretic inequality [10]

$$
\begin{equation*}
0 \leq \mathrm{JS}(p, q) \leq \frac{1}{4} J(p, q) \tag{14}
\end{equation*}
$$

By introducing the K-divergence [10] (see Eq. 7):

$$
\begin{equation*}
K(p: q)=\int p(x) \log \frac{2 p(x)}{p(x)+q(x)} \mathrm{d} x=\mathrm{KL}\left(p: \frac{p+q}{2}\right) \tag{15}
\end{equation*}
$$

we interpret the Jensen-Shannon divergence as the Jeffreys symmetrization of the K-divergence (see Eq. 7).

$$
\begin{align*}
\mathrm{JS}(p, q) & =\frac{1}{2}(K(p: q)+K(q: p)) \tag{16}\\
& =H\left(\frac{p+q}{2}\right)-\frac{H(p)+H(q)}{2} \tag{17}
\end{align*}
$$

The Jensen-Shannon divergence is also widely used in earth sciences as a diversity index. Indeed, the basic two-point measure can further be generalized to a population as follows:

$$
\begin{equation*}
\mathrm{JS}\left(p_{1}, \ldots, p_{n} ; w\right)=H\left(\sum_{i=1}^{n} w_{i} p_{i}\right)-\sum_{i=1}^{n} w_{i} H\left(p_{i}\right), \tag{18}
\end{equation*}
$$

for a given normalized unit positive weight vector w.
Let P be a random variable following density p with associated weight distribution $w(W \sim w)$, then the Jensen-Shannon divergence can be defined as

$$
\begin{align*}
\operatorname{JS}(P ; W) & =H\left(\int w(x) p(x) \mathrm{d} x\right)-\int w(x) H(p(x)) \mathrm{d} x \tag{19}\\
& =H\left(E_{W}[P]\right)-E_{W}[H(P)] \tag{20}
\end{align*}
$$

where $E_{W}[H(P)]=\int w(x) H(p(x)) \mathrm{d} x$ denote the expectation of the entropy with respect to the weight distribution. Since $H(x)$ is a concave function, it follows from Jensen inequality that $\mathrm{JS}(P ; W) \geq 0$.

Consider

$$
\begin{equation*}
K_{\alpha}(p: q)=p \log \frac{p}{(1-\alpha) p+\alpha q} \tag{21}
\end{equation*}
$$

and its symmetrized divergence

$$
\begin{equation*}
\mathrm{JS}_{\alpha}(p, q)=\frac{K_{\alpha}(p: q)+K_{\alpha}(q: p)}{2}=\mathrm{JS}_{\alpha}(q, p) \tag{22}
\end{equation*}
$$

For $\alpha=\frac{1}{2}$, we find the Jensen-Shannon divergence: $\mathrm{JS}(p, q)=\mathrm{JS}_{\frac{1}{2}}(p, q)$. For $\alpha=1$, we obtain half of Jeffreys divergence: $\mathrm{JS}_{1}(p, q)=\frac{1}{2} J(p, q)$. It turns out that this family of α-Jensen-Shannon divergence belongs to a broader family of information-theoretic measures, called Ali-Silvey-Csiszár divergences [5, 1]. A ϕ-divergence is defined for a strictly convex function ϕ such that $\phi(1)=0$ as:

$$
\begin{equation*}
I_{\phi}(p: q)=\int q(x) \phi\left(\frac{p(x)}{q(x)}\right) \mathrm{d} x . \tag{23}
\end{equation*}
$$

We can always symmetrize ϕ-divergences by taking the coupled function $\phi^{*}(x)=x \phi\left(\frac{1}{x}\right)$. Indeed, we get

$$
\begin{align*}
I_{\phi^{*}}(p: q) & =\int q(x) \phi^{*}\left(\frac{p(x)}{q(x)}\right) \mathrm{d} x \tag{24}\\
& =\int q(x) \frac{p(x)}{q(x)} \phi\left(\frac{q(x)}{p(x)}\right) \mathrm{d} x \tag{25}\\
& =\int p(x) \phi\left(\frac{q(x)}{p(x)}\right) \mathrm{d} x=I_{\phi}(q: p) \tag{26}
\end{align*}
$$

Therefore, $I_{\phi+\phi^{*}}(p, q)$ is a symmetric divergence. Let $\phi^{s}=\phi+\phi^{*}$ denote the symmetrized generator. Jeffreys divergence is a ϕ-divergence for $\phi(u)=-\log u$ (and $\phi^{s}(u)=(u-1) \log u$). Similarly, JensenShannon divergence is interpreted as $\operatorname{JS}(p, q)=\frac{1}{2}(K(p: q)+K(q: p))$, with $\frac{1}{2} K(p: q)$ a ϕ-divergence for $\phi(u)=\frac{u}{2} \log \frac{2 u}{1+u}$, see [10]. It follows that Jensen-Shannon is also a ϕ-divergence. The α-Jensen-Shannon divergences are ϕ-divergences for the generators $\phi_{\alpha}^{s}=\phi_{\alpha}^{*}+\phi_{\alpha}$, with $\phi_{\alpha}^{*}(x)=-\log ((1-\alpha)+\alpha x)$ and $\phi_{\alpha}(x)=-x \log \left((1-\alpha)+\frac{\alpha}{x}\right) . \alpha$-Jensen-Shannon divergences are convex in both arguments.

One drawback for estimating α-JS divergences on continuous parametric densities (say, Gaussians), is that the mixture of two Gaussians is not a Gaussian, and therefore the average distribution falls outside the family of considered distributions. This explains the lack of closed-form solution for computing the Jensen-Shannon divergence on Gaussians.

Next, we introduce a novel family of symmetrized divergences which occur in the closed form equations of statistical distances of a large class of parametric distributions, called exponential families.

2 A novel parametric family of Jensen divergences

At the heart of many statistical distances lies the celebrated Jensen's convex inequality 8]. For a strictly convex function F and a parameter $\alpha \in \mathbb{R} \backslash\{0,1\}$, let us define the α-skew Jensen divergence as

$$
\begin{equation*}
J_{F}^{(\alpha)}(p: q)=\frac{1}{\alpha(1-\alpha)} \int((1-\alpha) F(p(x))+\alpha F(q(x))-F((1-\alpha) p(x)+\alpha q(x)) \mathrm{d} x \tag{27}
\end{equation*}
$$

In the limit cases, we find the oriented Kullback-Leibler divergences [11]:

$$
\begin{align*}
\lim _{\alpha \rightarrow 0} J_{F}^{(\alpha)}(p: q) & =\operatorname{KL}(p: q) \tag{28}\\
\lim _{\alpha \rightarrow 1} J_{F}^{(\alpha)}(p: q) & =\operatorname{KL}(q: p) \tag{29}
\end{align*}
$$

Observe also that $J_{F}^{(\alpha)}(q: p)=J_{F}^{(1-\alpha)}(p: q)$, and that therefore α-skew Jensen divergences are asymmetric distortion measures (except for $\alpha=\frac{1}{2}$). Therefore, let us symmetrize those α-skew divergences by averaging the two orientations as follows:

$$
\begin{align*}
\mathrm{sJ}_{F}^{(\alpha)}(p, q)= & \frac{1}{2}\left(J_{F}^{(\alpha)}(p: q)+J_{F}^{(\alpha)}(q: p)\right) \tag{30}\\
= & \frac{1}{2}\left(J_{F}^{(\alpha)}(p: q)+J_{F}^{(1-\alpha)}(p: q)\right) \tag{31}\\
= & \frac{1}{2 \alpha(1-\alpha)} \int(F(p(x))+F(q(x)) \\
& -F(\alpha p(x)+(1-\alpha) q(x))-F((1-\alpha) p(x)+\alpha q(x)) \mathrm{d} x \tag{32}\\
= & \operatorname{sJ}_{F}^{(\alpha)}(q, p)=\operatorname{sJ}_{F}^{(1-\alpha)}(p, q) \geq 0 \tag{33}
\end{align*}
$$

Figure 1 depicts this novel family of symmetric Jensen divergences (it is enough to consider $\alpha \in\left[0, \frac{1}{2}\right]$). Note that except for $\alpha \in\{0,1\}$, this family of divergences have the boundedness property: $\mathrm{sJ}_{F}^{(\alpha)}(p, q)<$ $\infty, \forall \alpha \notin\{0,1\}$

Consider the strict convex generator $F(x)=x \log x$ (Shannon information). Rewriting the divergence for $F(x)=-H(x)$ (Shannon entropy is concave) the negative Shannon entropy we get a family of symmetric Kullback-Leibler divergences:

$$
\begin{equation*}
\operatorname{sKL}^{(\alpha)}(p, q)=\frac{1}{2 \alpha(1-\alpha)}(H(\alpha p+(1-\alpha) q)+H((1-\alpha) p+\alpha q)-(H(p)+H(q))) \geq 0 \tag{34}
\end{equation*}
$$

We have in the limit case:

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \operatorname{sKL}^{(\alpha)}(p, q)=J(p, q)=\operatorname{sKL}^{(0)}(p, q) \tag{35}
\end{equation*}
$$

That is, symmetrized α-Jensen divergences tend asymptotically to the Jeffreys divergence for the Shannon information generator. Furthermore, consider the case $\alpha=\frac{1}{2}$:

$$
\begin{equation*}
\mathrm{sKL}^{\left(\frac{1}{2}\right)}(p, q)=2\left(2 H\left(\frac{p+q}{2}\right)-(H(p)+H(q))\right)=4 \mathrm{JS}(p, q) \tag{36}
\end{equation*}
$$

Thus this family of symmetric Kullback-Leibler divergences unify both Jensen-Shannon divergence (up to a constant factor for $\alpha=\frac{1}{2}$) with Jeffreys divergence ($\alpha \rightarrow 0$).

Theorem 1 There exists a parametric family of symmetric information-theoretic divergences $\left\{\mathrm{sKL}^{(\alpha)}\right\}_{\alpha}$ that unifies Jeffreys J-divergence with Jensen-Shannon divergence.

Figure 1: A family of symmetric Jensen divergences $\left\{\mathrm{sJ}_{F}^{(\alpha)}\right\}_{\alpha}$ for $\left.\alpha \in 0, \frac{1}{2}\right]$ that includes both Jeffreys divergence in the limit case $\alpha=0$ and Jensen-Shannon divergence for $\alpha=\frac{1}{2}$, for the Shannon information generator $F(x)=x \log x$.

This result can be obtained by considering skew average of distributions instead of the one-half of Eq. 15

$$
\begin{equation*}
L_{\alpha}(p: q)=\frac{H((1-\alpha) p+\alpha q)-H(p)}{\alpha(1-\alpha)} \geq 0 \tag{37}
\end{equation*}
$$

Then it comes out that (see Eq. 7)

$$
\begin{equation*}
\operatorname{sKL}^{(\alpha)}(p, q)=\frac{1}{2 \alpha(1-\alpha)}\left(L_{\alpha}(p: q)+L_{\alpha}(q: p)\right) \tag{38}
\end{equation*}
$$

Note that $L_{\frac{1}{2}}(p: q)=4 K(p: q)$. The scaling factor is due to historical convention. However L_{α} is in general not a ϕ-divergence (excepts for $\alpha \in\{0,1\}$).

An alternative description of the symmetric family is given by

$$
\begin{equation*}
S_{F}^{(\alpha)}(p, q)=\frac{2}{1-\alpha^{2}}\left(F(p)+F(q)-F\left(\frac{1-\alpha}{2} p+\frac{1+\alpha}{2} q\right)-F\left(\frac{1+\alpha}{2} p+\frac{1-\alpha}{2} q\right)\right) \tag{39}
\end{equation*}
$$

It can be checked that $\operatorname{sJ}_{F}^{(\alpha)}(p, q)=S_{F}^{\left(\alpha^{\prime}\right)}(p, q)$ for $\alpha^{\prime}=1-2 \alpha$.
Many parametric distributions follow a regular structure called exponential families. We shall link next that class of symmetric $s J^{\alpha}$-divergences to equivalent symmetric α-Bhattacharrya divergences computed on the parameter space.

3 Case of exponential families

Many common statistical distributions are handled in the unified framework of exponential families [12, 11]. A distribution is said to belong to an exponential family E_{F}, if its parametric density can be canonically rewritten as

$$
\begin{equation*}
p_{F}(x ; \theta)=\exp (\langle t(x), \theta\rangle-F(\theta)+k(x)), \tag{40}
\end{equation*}
$$

where θ describes the member of the exponential family $E_{F}=\left\{p_{F}(x ; \theta) \mid \theta \in \Theta\right\}$, characterized by the log-normalizer $F(\theta)$, a convex differentiable function. $\langle x, y\rangle$ denotes the inner-product (e.g., $x^{T} y$ for vectors, etc. - see [12, 11]). $t(x)$ is the sufficient statistic.

Discrete d-dimensional distributions (corresponding to frequency histograms with d bins in visual applications) are multinomials, an exponential family with the dimension of the natural space Θ being $d-1$ (the order of the family). In information retrieval, one often needs to perform clustering on frequency histograms for building a codebook to perform efficiently retrieval queries (eg., bag of words method [6]).

The Kullback-Leibler divergence of members $p \sim E_{F}\left(\theta_{p}\right)$ and $q \sim E_{F}\left(\theta_{q}\right)$ of the same exponential family E_{F} is equivalent to a Bregman divergence on the natural parameters [2]:

$$
\begin{equation*}
\mathrm{KL}\left(p_{F}\left(x ; \theta_{p}\right): p_{F}\left(x ; \theta_{q}\right)\right)=B_{F}\left(\theta_{q}: \theta_{p}\right) \tag{41}
\end{equation*}
$$

The Jeffreys J-divergence on members of the same exponential family can be computed as a symmetrized Bregman divergence, yielding a calculation on the natural parameter space:

$$
\begin{equation*}
J\left(p_{F}\left(x ; \theta_{p}\right), p_{F}\left(x ; \theta_{q}\right)\right)=\left(\theta_{p}-\theta_{q}\right)^{T}\left(\nabla F\left(\theta_{p}\right)-\nabla F\left(\theta_{q}\right)\right) \tag{42}
\end{equation*}
$$

Note that although the product of two exponential families is an exponential family, it is not the case for the mixture of two exponential families. Indeed, the mixture $(1-\alpha) p+\alpha q$ does not in general belong to E_{F}. Therefore, the Jensen-Shannon divergence on members of the same exponential family cannot be computed directly from the natural parameters, since it requires to compute the entropy of the mixture distribution (with no known generic closed form):

$$
\begin{equation*}
\mathrm{JS}\left(p=p_{F}\left(x ; \theta_{p}\right), q=p_{F}\left(x ; \theta_{q}\right)\right)=H\left(\frac{p+q}{2}\right)-\frac{H(p)+H(q)}{2} \tag{43}
\end{equation*}
$$

In fact, Eq. 41 is the limit case of the property that α-skew Bhattacharrya divergence $B^{(\alpha)}$ of members $p=p_{F}\left(x ; \theta_{p}\right)$ and $q=p_{F}\left(x ; \theta_{q}\right)$ of the same exponential family E_{F} is equivalent to a α-Jensen divergence on the natural parameters [11]:

$$
\begin{align*}
B^{(\alpha)}\left(p_{F}\left(x ; \theta_{p}\right): p_{F}\left(x ; \theta_{q}\right)\right) & =-\log \int p_{F}\left(x ; \theta_{p}\right)^{\alpha} p_{F}\left(x ; \theta_{q}\right)^{1-\alpha} \mathrm{d} x \tag{44}\\
& =J_{F}^{(\alpha)}\left(\theta_{p}: \theta_{q}\right) \tag{45}
\end{align*}
$$

We can therefore symmetrize α-skew Bhattacharrya divergences:

$$
\begin{align*}
\mathrm{sB}^{(\alpha)}\left(p_{F}\left(x ; \theta_{p}\right), p_{F}\left(x ; \theta_{q}\right)\right) & =\frac{1}{2}\left(B^{(\alpha)}\left(p_{F}\left(x ; \theta_{p}\right): p_{F}\left(x ; \theta_{q}\right)\right)+B^{(\alpha)}\left(p_{F}\left(x ; \theta_{q}\right): p_{F}\left(x ; \theta_{p}\right)\right)\right), \tag{46}\\
& =-\frac{1}{2} \log \left(\int p^{\alpha}(x) q^{1-\alpha}(x) \mathrm{d} x\right)\left(\int p^{1-\alpha}(x) q^{\alpha}(x) \mathrm{d} x\right) \tag{47}\\
& =\alpha(1-\alpha) \mathrm{sJ}_{F}^{(\alpha)}\left(\theta_{p}, \theta_{q}\right), \tag{48}
\end{align*}
$$

and obtain equivalently a symmetrized skew Jensen divergence on the natural parameters.
Theorem 2 The symmetrized skew α-Bhattacharyya divergence on members of the same exponential family is equivalent to a symmetrized skew α-Jensen divergence defined for the log-normalizer and computed in the natural parameter space.

Let us now consider computing centers (say, for k-means clustering applications [2]).

4 Symmetrized skew α-Jensen centroids

Consider the discrete symmetrized α-Jensen divergences (not any more on distributions but on d-dimensional parameter points). In particular, we get for separable divergences:

$$
\begin{equation*}
\mathrm{sJ}_{F}^{(\alpha)}(x, y)=\frac{1}{2 \alpha(1-\alpha)} \sum_{i=1}^{d}\left(F\left(x_{i}\right)+F\left(y_{i}\right)-F\left(\alpha x_{i}+(1-\alpha) y_{i}\right)-F\left((1-\alpha) x_{i}+\alpha y_{i}\right)\right. \tag{49}
\end{equation*}
$$

This family of discrete measures includes the extended Kullback-Leibler divergence for unnormalized distributions by setting $F(x)=x \log x$. The barycenter b of n points p_{1}, \ldots, p_{n} is defined as the (unique) point that minimizes the weighted average distance:

$$
\begin{equation*}
b=\arg \min _{c} \sum_{i=1}^{n} w_{i} \times \mathrm{sJ}_{F}^{(\alpha)}\left(p_{i}, c\right) \tag{50}
\end{equation*}
$$

for $w=\left(w_{1}, \ldots, w_{n}\right)$ a normalized weight vector $\left(\forall i, w_{i}>0\right.$ and $\left.\sum_{i} w_{i}=1\right)$. In particular, choosing $w_{i}=\frac{1}{n}$ for all i yields the centroid. Note that the multiplicative factor in the energy function of Eq. 50 does not impact the minimum. Thus we need to minimize:

$$
\begin{equation*}
\min _{c} E(c)=\min _{c} \sum_{i=1}^{n} w_{i}\left(F\left(p_{i}\right)+F(c)-F\left(\alpha p_{i}+(1-\alpha) c\right)-F\left(\alpha c+(1-\alpha) p_{i}\right)\right) \tag{51}
\end{equation*}
$$

Removing the constant terms (i.e., independent of c), this amounts to minimize the following energy functional $\left(\sum_{i} w_{i}=1\right)$:

$$
\begin{equation*}
\min E(c) \equiv \min _{c} E^{\prime}(c)=\min _{c} F(c)-\sum_{i} w_{i}\left(F\left(\alpha p_{i}+(1-\alpha) c\right)+F\left(\alpha c+(1-\alpha) p_{i}\right)\right) \tag{52}
\end{equation*}
$$

Since F is convex, E is the minimization of a sum of a convex function plus a concave function. Therefore, we can apply the ConCave-Convex Procedure [14] (CCCP) that guarantees to converge to a minimum. We thus bypass using a gradient steepest descent numerical optimization that requires to tune a learning parameter.

Initializing

$$
\begin{equation*}
c_{0}=\sum_{i=1}^{n} w_{i} p_{i} \tag{53}
\end{equation*}
$$

to the Euclidean barycenter, we iteratively update as follows:

$$
\begin{equation*}
\nabla F\left(c_{t+1}\right)=\sum_{i=1}^{n} w_{i}\left((1-\alpha) \nabla F\left(\alpha p_{i}+(1-\alpha) c_{t}\right)+\alpha \nabla F\left(\alpha c_{t}+(1-\alpha) p_{i}\right)\right) \tag{54}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{t+1}=(\nabla F)^{-1}\left(\sum_{i=1}^{n} w_{i}\left((1-\alpha) \nabla F\left(\alpha p_{i}+(1-\alpha) c_{t}\right)+\alpha \nabla F\left(\alpha c_{t}+(1-\alpha) p_{i}\right)\right)\right) \tag{55}
\end{equation*}
$$

(Observe that since F is strictly convex, its Hessian $\nabla^{2} F$ is positive-definite, and ∇F is strictly increasing, so that ∇F^{-1} is well-defined.)

In the limit case, we get the following fixed point equation:

$$
\begin{equation*}
c^{*}=(\nabla F)^{-1}\left(\sum_{i=1}^{n} w_{i}\left((1-\alpha) \nabla F\left(\alpha p_{i}+(1-\alpha) c^{*}\right)+\alpha \nabla F\left(\alpha c^{*}+(1-\alpha) p_{i}\right)\right)\right) \tag{56}
\end{equation*}
$$

This rule is a quasi-arithmetic mean, and can alternatively be initialized using $c_{0}^{\prime}=\nabla F^{-1}\left(\sum_{i=1}^{n} w_{i} \nabla F\left(p_{i}\right)\right)$. Let us instantiate this updating rule for $\alpha=\frac{1}{2}$ and $w_{i}=\frac{1}{n}$ on Shannon and Burg information functions:

$$
\begin{array}{l|l}
\text { Shannon information } F(x)=x \log x-x & \begin{array}{l}
\text { Burg information } F(x)=-\log x \\
\nabla F(x)=\log x,(\nabla F)^{-1}(x)=\exp x
\end{array} \\
\nabla F(x)=-1 / x,(\nabla F)^{-1}(x)=-1 / x \\
\hline c_{t+1}=\left(\prod_{i=1}^{n} \frac{c_{t}+p_{i}}{2}\right)^{\frac{1}{n}} & c_{t+1}=\frac{n}{\sum_{i=1}^{n} \frac{2}{c_{t}+p_{i}}} \\
\rightarrow \text { Geometric update } & \rightarrow \text { Harmonic update }
\end{array}
$$

A Java(TM) source code implementing this CCCP centroid method with respect to symmetrized α-Jensen divergences is available online at: http://www.informationgeometry.org/sJS/

Note that for Jeffreys $(\alpha=0)$ and Jensen-Shannon ($\alpha=\frac{1}{2}$) divergences, the energy function is convex, and therefore the minimum is necessarily unique. (In fact, both Jeffreys and Jensen-Shannon are two instances of the class of convex Ali-Silvey-Csiszár divergences [5, 1].)

Since α-JS divergences are ϕ-divergences (convex in both arguments), the barycenter with respect to α-JS is unique, and can be computed using any convex optimization technique. Ben-Tal et al. [3] called those center points entropic means; They consider scalar values that can be extended to dimension-wise separable divergences, but not to normalized nor continuous distributions.

Theorem 3 The centroid of members of the same exponential family with respect to the symmetrized α Bhattacharyya divergence can be computed equivalently as the centroid of their natural parameters with respect to the symmetrized α-Jensen divergence using the concave-convex procedure.

Note that for members of the same exponential family, both c_{0} or c_{0}^{\prime} initializations are interpreted as left-sided or right-sided Kullback-Leibler centroids [12].

5 Concluding remarks

We have introduced a novel parametric family of symmetric divergences based on Jensen's inequality called symmetrized α-skew Jensen divergences. Instantiating this family for the Shannon information generator, we have exhibited a one-parameter family of symmetrized Kullback-Leibler divergences. Furthermore, we showed that for distributions belonging to the same exponential family, the symmetrized α-Bhattacharyya divergence amounts to compute a symmetrized α-Jensen divergence defined on the parameter space, thus yielding a closed-form formula.

For applications requiring symmetric statistical distances, the choice is therefore not whether to decide between Jeffreys or Jensen-Shannon divergences, but rather to choose or tune the best α parameter according to the application and input data. It would be interesting to study the impact of α in the performance of information retrieval applications.

References

[1] Syed Mumtaz Ali and Samuel David Silvey. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society, Series B, 28:131-142, 1966.
[2] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with Bregman divergences. J. Mach. Learn. Res., 6:1705-1749, 2005.
[3] Aharon Ben-Tal, Abraham Charnes, and Marc Teboulle. Entropic means. Journal of Mathematical Analysis and Applications, 139(2):537 - 551, 1989.
[4] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience, New York, NY, USA, 1991.
[5] Imre Csiszár. Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica, 2:229318, 1967.
[6] Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural scene categories. volume 2, pages 524-531. IEEE Computer Society, June 2005.
[7] Harold Jeffreys. Scientific Inference. Cambridge University Press, 1973.
[8] Johan L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30(1):175-193, December 1906. Available online from Springer.
[9] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22:49-86, 1951.
[10] Jianhua Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37:145-151, 1991.
[11] Frank Nielsen and Sylvain Boltz. The Burbea-Rao and Bhattacharyya centroids. Computing Research Repository (CoRR), http://arxiv.org/, April 2010.
[12] Frank Nielsen and Richard Nock. Sided and symmetrized Bregman centroids. IEEE Transactions on Information Theory, 55(6):2048-2059, June 2009.
[13] Alfred Rényi. On measures of entropy and information. In Proc. 4th Berkeley Symp. Math. Stat. and Prob., volume 1, pages 547-561, 1961.
[14] Bharath Sriperumbudur and Gert Lanckriet. On the convergence of the concave-convex procedure. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1759-1767. 2009.

