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Abstract

We introduce a novel parametric family of symmetric information-theoretic distances based on Jensen’s
inequality on a convex generator that unifies Jeffreys divergence with Jensen-Shannon divergence for the
Shannon entropy generator. We then design a generic algorithm to compute the unique centroid defined
as the minimum average divergence. This yields a smooth family of centroids linking the Jeffreys to the
Jensen-Shannon centroid.

1 Introduction

The Shannon entropy [4] of a probability distribution p measures the amount of uncertainty:

H(p) =

∫
p(x) log

1

p(x)
dx = −

∫
p(x) log p(x)dx. (1)

The cross-entropy [4] measures the amount of extra bits required to compute a code based on an observed
empirical probability p̃ instead of the true probability (hidden by nature):

H(p : p̃) =

∫
p(x) log

1

p̃(x)
dx = −

∫
p(x) log p̃(x)dx. (2)

The “:” notation emphasizes on the oriented aspect [4] of the functional: H(p : q) 6= H(q : p). The
Kullback-Leibler divergence [9, 4] is a statistical distance measure computing the relative entropy as follows:

KL(p : q) =

∫
p(x) log

p(x)

q(x)
dx (3)

= H(p : q)−H(p) ≥ 0, (4)

This last inequality is called Gibb’s inequality [4], with equality if and only if p = q. We have H(p : q) =
H(p) + KL(p : q). The Kullback-Leibler divergence can be extended to unnormalized positive distributions
(or positive arrays) as follows:

eKL(p : q) =

∫ (
p(x) log

p(x)

q(x)
+ q(x)− p(x)

)
dx, (5)

= eH(p : q)− eH(p) ≥ 0, (6)

with eH(p : q) =
∫

(p(x) log 1
q(x) + q(x))dx and eH(p) = eH(p, p).

(Rényi based on an axiomatic approach [13] derived yet another expression for the Kullback-Leibler
divergence of unnormalized generalized distributions.)
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Many applications in information retrieval (IR) requires to deal with a symmetric distortion measure.
Jeffreys divergence [7] (also called J-divergence) symmetrizes the oriented Kullback-Leibler divergence as
follows:

J(p, q) = KL(p : q) + KL(q : p) = J(q, p) (7)

= H(p : q) +H(q : p)− (H(p) +H(q)), (8)

=

∫
(p(x)− q(x)) log

p(x)

q(x)
dx. (9)

Here, we replaced “:” by “,” in the distortion measure to emphasize the symmetric property: J(p, q) =
J(q, p). Jeffreys divergence is interpreted as twice the average of the cross-entropies minus the average of
the entropies. One of the drawbacks of Jeffreys divergence is that it may be unbounded and therefore
numerically quite unstable to compute in practice: For example, let p = (pi)

d
i=1 and q = (qi)

d
i=1 be frequency

histograms with d bins, then J(p, q) → ∞ if there exists one bin l ∈ {1, ..., d} such that pl is above some
constant, and ql → 0. In that case, pl log pl

ql
→∞. To circumvent this unboundedness problem, the Jensen-

Shannon divergence was introduced in [10]. The Jensen-Shannon divergence symmetrizes the Kullback-
Leibler divergence by taking the average relative entropy of the source distributions to the average distribution
p+q
2 :

JS(p, q) =
1

2

(
KL

(
p :

p+ q

2

)
+ KL

(
q :

p+ q

2

))
= JS(q, p) (10)

=
1

2

(
H

(
p :

p+ q

2

)
−H(p) +H

(
q :

p+ q

2

)
−H(q)

)
, (11)

=
1

2

∫ (
p log

2p

p+ q
+ q log

2q

p+ q

)
dx, (12)

= H

(
p+ q

2

)
− H(p) +H(q)

2
≥ 0. (13)

The Jensen-Shannon divergence has always finite value, and its square root yields a metric, satisfying
the triangular inequality. Moreover, we have the following information-theoretic inequality [10]

0 ≤ JS(p, q) ≤ 1

4
J(p, q). (14)

By introducing the K-divergence [10] (see Eq. 7):

K(p : q) =

∫
p(x) log

2p(x)

p(x) + q(x)
dx = KL

(
p :

p+ q

2

)
, (15)

we interpret the Jensen-Shannon divergence as the Jeffreys symmetrization of the K-divergence (see
Eq. 7).

JS(p, q) =
1

2
(K(p : q) +K(q : p)), (16)

= H

(
p+ q

2

)
− H(p) +H(q)

2
. (17)

The Jensen-Shannon divergence is also widely used in earth sciences as a diversity index. Indeed, the
basic two-point measure can further be generalized to a population as follows:
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JS(p1, ..., pn;w) = H

(
n∑
i=1

wipi

)
−

n∑
i=1

wiH(pi), (18)

for a given normalized unit positive weight vector w.
Let P be a random variable following density p with associated weight distribution w (W ∼ w), then the

Jensen-Shannon divergence can be defined as

JS(P ;W ) = H

(∫
w(x)p(x)dx

)
−
∫
w(x)H(p(x))dx, (19)

= H(EW [P ])− EW [H(P )], (20)

where EW [H(P )] =
∫
w(x)H(p(x))dx denote the expectation of the entropy with respect to the weight

distribution. Since H(x) is a concave function, it follows from Jensen inequality that JS(P ;W ) ≥ 0.
Consider

Kα(p : q) = p log
p

(1− α)p+ αq
, (21)

and its symmetrized divergence

JSα(p, q) =
Kα(p : q) +Kα(q : p)

2
= JSα(q, p). (22)

For α = 1
2 , we find the Jensen-Shannon divergence: JS(p, q) = JS 1

2
(p, q). For α = 1, we obtain half of Jeffreys

divergence: JS1(p, q) = 1
2J(p, q). It turns out that this family of α-Jensen-Shannon divergence belongs to a

broader family of information-theoretic measures, called Ali-Silvey-Csiszár divergences [5, 1]. A φ-divergence
is defined for a strictly convex function φ such that φ(1) = 0 as:

Iφ(p : q) =

∫
q(x)φ

(
p(x)

q(x)

)
dx. (23)

We can always symmetrize φ-divergences by taking the coupled function φ∗(x) = xφ( 1
x ). Indeed, we get

Iφ∗(p : q) =

∫
q(x)φ∗

(
p(x)

q(x)

)
dx, (24)

=

∫
q(x)

p(x)

q(x)
φ

(
q(x)

p(x)

)
dx, (25)

=

∫
p(x)φ

(
q(x)

p(x)

)
dx = Iφ(q : p). (26)

Therefore, Iφ+φ∗(p, q) is a symmetric divergence. Let φs = φ + φ∗ denote the symmetrized generator.
Jeffreys divergence is a φ-divergence for φ(u) = − log u (and φs(u) = (u − 1) log u). Similarly, Jensen-
Shannon divergence is interpreted as JS(p, q) = 1

2 (K(p : q) + K(q : p)), with 1
2K(p : q) a φ-divergence for

φ(u) = u
2 log 2u

1+u , see [10]. It follows that Jensen-Shannon is also a φ-divergence. The α-Jensen-Shannon
divergences are φ-divergences for the generators φsα = φ∗α + φα, with φ∗α(x) = − log((1 − α) + αx) and
φα(x) = −x log((1− α) + α

x ). α-Jensen-Shannon divergences are convex in both arguments.
One drawback for estimating α-JS divergences on continuous parametric densities (say, Gaussians), is

that the mixture of two Gaussians is not a Gaussian, and therefore the average distribution falls outside
the family of considered distributions. This explains the lack of closed-form solution for computing the
Jensen-Shannon divergence on Gaussians.

Next, we introduce a novel family of symmetrized divergences which occur in the closed form equations
of statistical distances of a large class of parametric distributions, called exponential families.
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2 A novel parametric family of Jensen divergences

At the heart of many statistical distances lies the celebrated Jensen’s convex inequality [8]. For a strictly
convex function F and a parameter α ∈ R\{0, 1}, let us define the α-skew Jensen divergence as

J
(α)
F (p : q) =

1

α(1− α)

∫
((1− α)F (p(x)) + αF (q(x))− F ((1− α)p(x) + αq(x))dx. (27)

In the limit cases, we find the oriented Kullback-Leibler divergences [11]:

lim
α→0

J
(α)
F (p : q) = KL(p : q), (28)

lim
α→1

J
(α)
F (p : q) = KL(q : p). (29)

Observe also that J
(α)
F (q : p) = J

(1−α)
F (p : q), and that therefore α-skew Jensen divergences are asym-

metric distortion measures (except for α = 1
2 ). Therefore, let us symmetrize those α-skew divergences by

averaging the two orientations as follows:

sJ
(α)
F (p, q) =

1

2
(J

(α)
F (p : q) + J

(α)
F (q : p)) (30)

=
1

2
(J

(α)
F (p : q) + J

(1−α)
F (p : q)) (31)

=
1

2α(1− α)

∫
(F (p(x)) + F (q(x))

−F (αp(x) + (1− α)q(x))− F ((1− α)p(x) + αq(x)) dx (32)

= sJ
(α)
F (q, p) = sJ

(1−α)
F (p, q) ≥ 0 (33)

Figure 1 depicts this novel family of symmetric Jensen divergences (it is enough to consider α ∈ [0, 12 ]).

Note that except for α ∈ {0, 1}, this family of divergences have the boundedness property: sJ
(α)
F (p, q) <

∞,∀α 6∈ {0, 1}
Consider the strict convex generator F (x) = x log x (Shannon information). Rewriting the divergence for

F (x) = −H(x) (Shannon entropy is concave) the negative Shannon entropy we get a family of symmetric
Kullback-Leibler divergences:

sKL(α)(p, q) =
1

2α(1− α)
(H(αp+ (1− α)q) +H((1− α)p+ αq)− (H(p) +H(q))) ≥ 0 (34)

We have in the limit case:

lim
α→0

sKL(α)(p, q) = J(p, q) = sKL(0)(p, q). (35)

That is, symmetrized α-Jensen divergences tend asymptotically to the Jeffreys divergence for the Shannon
information generator. Furthermore, consider the case α = 1

2 :

sKL( 1
2 )(p, q) = 2

(
2H

(
p+ q

2

)
− (H(p) +H(q))

)
= 4JS(p, q). (36)

Thus this family of symmetric Kullback-Leibler divergences unify both Jensen-Shannon divergence (up to a
constant factor for α = 1

2 ) with Jeffreys divergence (α→ 0).

Theorem 1 There exists a parametric family of symmetric information-theoretic divergences {sKL(α)}α
that unifies Jeffreys J-divergence with Jensen-Shannon divergence.
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p q

F (q)
F (p)

p+q
2

α(α− 1)sJ
(α)
F (p, q)

αp
+
(1−

α)q

αq +
(1−

α)p

Figure 1: A family of symmetric Jensen divergences {sJ(α)
F }α for α ∈ 0, 12 ] that includes both Jeffreys

divergence in the limit case α = 0 and Jensen-Shannon divergence for α = 1
2 , for the Shannon information

generator F (x) = x log x.

This result can be obtained by considering skew average of distributions instead of the one-half of Eq. 15:

Lα(p : q) =
H((1− α)p+ αq)−H(p)

α(1− α)
≥ 0 (37)

Then it comes out that (see Eq. 7)

sKL(α)(p, q) =
1

2α(1− α)
(Lα(p : q) + Lα(q : p)). (38)

Note that L 1
2
(p : q) = 4K(p : q). The scaling factor is due to historical convention. However Lα is in general

not a φ-divergence (excepts for α ∈ {0, 1}).
An alternative description of the symmetric family is given by

S
(α)
F (p, q) =

2

1− α2

(
F (p) + F (q)− F

(
1− α

2
p+

1 + α

2
q

)
− F

(
1 + α

2
p+

1− α
2

q

))
. (39)

It can be checked that sJ
(α)
F (p, q) = S

(α′)
F (p, q) for α′ = 1− 2α.

Many parametric distributions follow a regular structure called exponential families. We shall link next
that class of symmetric sJα-divergences to equivalent symmetric α-Bhattacharrya divergences computed on
the parameter space.

3 Case of exponential families

Many common statistical distributions are handled in the unified framework of exponential families [12, 11].
A distribution is said to belong to an exponential family EF , if its parametric density can be canonically
rewritten as
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pF (x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)), (40)

where θ describes the member of the exponential family EF = {pF (x; θ) |θ ∈ Θ}, characterized by the
log-normalizer F (θ), a convex differentiable function. 〈x, y〉 denotes the inner-product (e.g., xT y for vectors,
etc. – see [12, 11]). t(x) is the sufficient statistic.

Discrete d-dimensional distributions (corresponding to frequency histograms with d bins in visual appli-
cations) are multinomials, an exponential family with the dimension of the natural space Θ being d− 1 (the
order of the family). In information retrieval, one often needs to perform clustering on frequency histograms
for building a codebook to perform efficiently retrieval queries (eg., bag of words method [6]).

The Kullback-Leibler divergence of members p ∼ EF (θp) and q ∼ EF (θq) of the same exponential family
EF is equivalent to a Bregman divergence on the natural parameters [2]:

KL(pF (x; θp) : pF (x; θq)) = BF (θq : θp) (41)

The Jeffreys J-divergence on members of the same exponential family can be computed as a symmetrized
Bregman divergence, yielding a calculation on the natural parameter space:

J(pF (x; θp), pF (x; θq)) = (θp − θq)T (∇F (θp)−∇F (θq)) (42)

Note that although the product of two exponential families is an exponential family, it is not the case for
the mixture of two exponential families. Indeed, the mixture (1−α)p+αq does not in general belong to EF .
Therefore, the Jensen-Shannon divergence on members of the same exponential family cannot be computed
directly from the natural parameters, since it requires to compute the entropy of the mixture distribution
(with no known generic closed form):

JS(p = pF (x; θp), q = pF (x; θq)) = H

(
p+ q

2

)
− H(p) +H(q)

2
, (43)

In fact, Eq. 41 is the limit case of the property that α-skew Bhattacharrya divergence B(α) of members
p = pF (x; θp) and q = pF (x; θq) of the same exponential family EF is equivalent to a α-Jensen divergence
on the natural parameters [11]:

B(α)(pF (x; θp) : pF (x; θq)) = − log

∫
pF (x; θp)

αpF (x; θq)
1−αdx, (44)

= J
(α)
F (θp : θq) (45)

We can therefore symmetrize α-skew Bhattacharrya divergences:

sB(α)(pF (x; θp), pF (x; θq)) =
1

2
(B(α)(pF (x; θp) : pF (x; θq)) +B(α)(pF (x; θq) : pF (x; θp))), (46)

= −1

2
log

(∫
pα(x)q1−α(x)dx

)(∫
p1−α(x)qα(x)dx

)
(47)

= α(1− α)sJ
(α)
F (θp, θq), (48)

and obtain equivalently a symmetrized skew Jensen divergence on the natural parameters.

Theorem 2 The symmetrized skew α-Bhattacharyya divergence on members of the same exponential family
is equivalent to a symmetrized skew α-Jensen divergence defined for the log-normalizer and computed in the
natural parameter space.

Let us now consider computing centers (say, for k-means clustering applications [2]).
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4 Symmetrized skew α-Jensen centroids

Consider the discrete symmetrized α-Jensen divergences (not any more on distributions but on d-dimensional
parameter points). In particular, we get for separable divergences:

sJ
(α)
F (x, y) =

1

2α(1− α)

d∑
i=1

(F (xi) + F (yi)− F (αxi + (1− α)yi)− F ((1− α)xi + αyi) . (49)

This family of discrete measures includes the extended Kullback-Leibler divergence for unnormalized dis-
tributions by setting F (x) = x log x. The barycenter b of n points p1, ..., pn is defined as the (unique) point
that minimizes the weighted average distance:

b = arg min
c

n∑
i=1

wi × sJ
(α)
F (pi, c), (50)

for w = (w1, ..., wn) a normalized weight vector (∀i, wi > 0 and
∑
i wi = 1). In particular, choosing wi = 1

n
for all i yields the centroid. Note that the multiplicative factor in the energy function of Eq. 50 does not
impact the minimum. Thus we need to minimize:

min
c
E(c) = min

c

n∑
i=1

wi(F (pi) + F (c)− F (αpi + (1− α)c)− F (αc+ (1− α)pi)). (51)

Removing the constant terms (i.e., independent of c), this amounts to minimize the following energy
functional (

∑
i wi = 1):

minE(c) ≡ min
c
E′(c) = min

c
F (c)−

∑
i

wi(F (αpi + (1− α)c) + F (αc+ (1− α)pi)). (52)

Since F is convex, E is the minimization of a sum of a convex function plus a concave function. Therefore,
we can apply the ConCave-Convex Procedure [14] (CCCP) that guarantees to converge to a minimum.
We thus bypass using a gradient steepest descent numerical optimization that requires to tune a learning
parameter.

Initializing

c0 =

n∑
i=1

wipi (53)

to the Euclidean barycenter, we iteratively update as follows:

∇F (ct+1) =

n∑
i=1

wi((1− α)∇F (αpi + (1− α)ct) + α∇F (αct + (1− α)pi)), (54)

or

ct+1 = (∇F )−1

(
n∑
i=1

wi((1− α)∇F (αpi + (1− α)ct) + α∇F (αct + (1− α)pi))

)
(55)

(Observe that since F is strictly convex, its Hessian ∇2F is positive-definite, and ∇F is strictly increasing,
so that ∇F−1 is well-defined.)

In the limit case, we get the following fixed point equation:

c∗ = (∇F )−1

(
n∑
i=1

wi((1− α)∇F (αpi + (1− α)c∗) + α∇F (αc∗ + (1− α)pi))

)
. (56)
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This rule is a quasi-arithmetic mean, and can alternatively be initialized using c′0 = ∇F−1(
∑n
i=1 wi∇F (pi)).

Let us instantiate this updating rule for α = 1
2 and wi = 1

n on Shannon and Burg information functions:

Shannon information F (x) = x log x− x Burg information F (x) = − log x
∇F (x) = log x, (∇F )−1(x) = expx ∇F (x) = −1/x, (∇F )−1(x) = −1/x

ct+1 =
(∏n

i=1
ct+pi

2

) 1
n ct+1 = n∑n

i=1
2

ct+pi

→ Geometric update → Harmonic update

A Java(TM) source code implementing this CCCP centroid method with respect to symmetrized α-Jensen
divergences is available online at:
http://www.informationgeometry.org/sJS/

Note that for Jeffreys (α = 0) and Jensen-Shannon (α = 1
2 ) divergences, the energy function is convex,

and therefore the minimum is necessarily unique. (In fact, both Jeffreys and Jensen-Shannon are two
instances of the class of convex Ali-Silvey-Csiszár divergences [5, 1].)

Since α-JS divergences are φ-divergences (convex in both arguments), the barycenter with respect to α-JS
is unique, and can be computed using any convex optimization technique. Ben-Tal et al. [3] called those
center points entropic means; They consider scalar values that can be extended to dimension-wise separable
divergences, but not to normalized nor continuous distributions.

Theorem 3 The centroid of members of the same exponential family with respect to the symmetrized α-
Bhattacharyya divergence can be computed equivalently as the centroid of their natural parameters with
respect to the symmetrized α-Jensen divergence using the concave-convex procedure.

Note that for members of the same exponential family, both c0 or c′0 initializations are interpreted as
left-sided or right-sided Kullback-Leibler centroids [12].

5 Concluding remarks

We have introduced a novel parametric family of symmetric divergences based on Jensen’s inequality called
symmetrized α-skew Jensen divergences. Instantiating this family for the Shannon information generator,
we have exhibited a one-parameter family of symmetrized Kullback-Leibler divergences. Furthermore, we
showed that for distributions belonging to the same exponential family, the symmetrized α-Bhattacharyya
divergence amounts to compute a symmetrized α-Jensen divergence defined on the parameter space, thus
yielding a closed-form formula.

For applications requiring symmetric statistical distances, the choice is therefore not whether to decide
between Jeffreys or Jensen-Shannon divergences, but rather to choose or tune the best α parameter according
to the application and input data. It would be interesting to study the impact of α in the performance of
information retrieval applications.
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