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1.1 Introduction

Our starting point is a particular ‘canvas’ aimed to ‘draw’ theories of physics,

which has symmetric monoidal categories as its mathematical backbone. In this

paper we consider the conceptual foundations for this canvas, and how these can

then be converted into mathematical structure.

With very little structural effort (i.e. in very abstract terms) and in a very

short time span the categorical quantum mechanics (CQM) research program,

initiated by Abramsky and the author in [6], has reproduced a surprisingly large

fragment of quantum theory [45, 171, 180, 61, 57, 62, 49, 3, 63]. It also provides

new insights both in quantum foundations and in quantum information, for

example in [59, 60, 50, 51, 80, 65, 52, 81], and has even resulted in automated

reasoning software called quantomatic [76, 77, 75] which exploits the deductive

power of CQM, which is indeed a categorical quantum logic [78].

In this paper we complement the available material by not requiring prior

knowledge of category theory, and by pointing at connections to previous and

current developments in the foundations of physics.

This research program is also in close synergy with developments elsewhere,

for example in representation theory [73], quantum algebra [177], knot theory

[188], topological quantum field theory [133] and several other areas.
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Philosophically speaking, this framework achieves the following:

• It shifts the conceptual focus from ‘material carriers’ such as particles,

fields, or other ‘material stuff’, to ‘logical flows of information’, by mainly

encoding how things stand in relation to each other.

• Consequently, it privileges processes over states. The chief structural in-

gredient of the framework is the interaction structure on processes.

• In contrast to other ongoing operational approaches ([56, and references

therein], [110], [67] etc.), we do not take probabilities, nor properties, nor

experiments as a priori, nor as generators of structure, but everything is

encoded within the interaction of processes.

• In contrast to other ongoing structural approaches ([56, and references

therein],[19], [9, 10, 118, 72, 114] etc.), we do not start from a notion of

system, systems now being ‘plugs’ within a web of interacting processes.

Hence systems are organized within a structure for which compoundness

is a player and not the structure of the system itself: a system is implicitly

defined in terms of its relation(ship)/interaction with other systems.

So for us, composition of relation(ship)s is the carrier of all structure, that

is, how several relations make up one whole. For example, if x1, x2, x3, a are in

relation(ship) R1 and y1, y2, y3, a are in relation(ship) R2 then this induces a

relation(ship) between x1, x2, x3, y1, y2, y3.

R1 R2

a

a

⇒
R1

R2

a

x1 x2

x3

y1

y2 y3

x1 x2

x3 y1

y2 y3

These relation(ship)s are much more general than the usual mathematical no-

tion of a relation. A mathematical relation only tells us whether or not a thing

relates to another thing, while for us also ‘the manner in which’ a thing relates

to another thing matters.

Processes are special kinds of relations, which make up the actual ‘happen-

ings’. Classicality is an attribute of certain processes, and measurements are

special kinds of processes, defined in terms of their capabilities to correlate

other processes to these classical attributes.

So rather than quantization, what we do is classicization within a universe

of processes. For a certain theory, classicality and measurements may or may
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not exist, since they are not a priori. For example, in analogy to ‘non-quantized

field theories’, one could consider non-classicized theories within our setting.

Our attempt to spell out conceptual foundations is particularly timely given

that other work in quantum foundations and ours are converging, most notably

Hardy’s recent work [108, 109, 110] and Chiribella, D’Ariano and Perinotti’s

even more recent work [68, 41]. Also proponents of the ‘convex set approach’

[19, 20, and references therein] as well as those of the more traditional ‘Birkhoff-

von Neumann style quantum logic’ [28, 145, 121, 159] have meanwhile adopted

an essential component of our framework [22, 18, 104, 113, 112, 116].

The mathematical flexibility of our framework allows one to craft hypothet-

ical non-physical universes, a practice which turns out to provide important

insights in the theories of physics that we know, and which recently gained

popularity, e.g. [42, 174, 23, 19]. Such approaches provide an arena to explore

how many physical phenomena arise within a theory from very few assumptions.

Our approach has been particularly successful in this context, not only by pro-

ducing many phenomena from little assumptions, but also by casting theories

that initially were defined within distinct mathematical frameworks within a

single one. For example, it unifies quantum theory as well as Spekkens’ toy

theory [174] within a single framework [50], which enabled to identify the key

differences [51], and also substantially simplified the presentation of the latter.

This chapter is structured as follows. Section 1.2 briefly sketches some earlier

developments, be it because they provided ideas, or because they exposed cer-

tain sources of failure. Section 1.3 introduces the primitives of our framework:

systems, relations (and processes) and their composition. We show how these

can be used to encode identical systems, symmetries and dynamics, variable

causal structure, and an environment. Section 1.4 shows that in mathematical

terms these concepts give rise to symmetric monoidal categories. Next, in 1.5,

we define classicality and measurement processes.

As the author is not a professional philosopher but a hell of a barfly, the

philosophical remarks throughout this chapter, of which there are plenty, should

be taken with a grain of salt.

We will purposely be somewhat vague on many fronts, in order to leave

several options available for the future; the reader is invited to fill in the blanks.

1.2 Some (idiosyncratic) lessons from the past

We will in particular focus on the role of operationalism in quantum theory

reconstructions, the formal definition of a physical property as proposed by the

Geneva School (e.g. [123, 152]), the role of processes therein and, forefront role
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of processes in quantum information, the manner in which algebraic quantum

field theory [101, 100] retains the notion of a system, the modern logical view

on the different guises of the connective ‘and’ for systems, ideas of relationalism

in physics [17, 168], the options of discreteness and pointlessness in quantum

gravity, and the status of foundations of mathematics in all of this.

While we will make some reference to mathematical concepts in category

theory, order theory, C*-algebra, quantum logic, linear logic and quantum in-

formation, neither of these are prerequisites for the remainder of this paper.

To measure or not to measure

While nature hasn’t been created by us, the theories which describe it have

been, and hence, unavoidably these will have to rely on concepts that make

reference to our senses, or some easy to grasp generalizations thereof. For

example, as humans we experience a three-dimensional space around us, hence

the important role of geometry in physics. Similarly, the symmetries which we

observe around us have led to the importance of group theory in physics.

A fairly radical stance in this light is that of the typical operationalist.

His/her take on quantum theory (and physics in general) is that measurement

apparatuses constitute our window on nature. Different ‘schools’ of operational-

ists each isolate an aspect of the measurement processes which they think causes

the apparent non-classicality of quantum theory, be it the structure of the space

of probabilities, or the structure of the verifiable propositions, etc.

This practice traces back to the early days of Hilbert space quantum me-

chanics. In Mathematische Grundlagen der Quantenmechanik [183] von Neu-

mann stressed that it are the projectors which make up self-adjoint operators

that should be the fundamental ingredient of whatever formalism that describes

the quantum world. Indeed, while he himself crafted Hilbert space quantum

mechanics, he was also the first to denounce it in a letter to Birkhoff [27, 166]:

“I would like to make a confession which may seem immoral: I do

not believe absolutely in Hilbert space any more.”

This focus on projectors, led to a sharp contrast with happenings in logic [28]:

“... whereas for logicians the orthocomplementation properties of

negation were the ones least able to withstand a critical analysis,

the study of mechanics points to the distributive identities as the

weakest link in the algebra of logic.” ,

and ultimately resulted in Birkhoff-von Neumann quantum logic [28].

Via Mackey [144, 145] several structural paradigms emerged: the Geneva

School [123, 159] inherited its lattice theoretic paradigm directly from Birkhoff
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and von Neumann, the Ludwig School [141, 142] associated the convex structure

of state spaces attributed to experimental situations, and the Foulis-Randall

School [89, 90, 185] considered the intersection structure of outcome spaces.

But this key role of the measurement process is rejected by many realists

for whom physical properties of a system exist independent of any form of

observation. E.g. a star still obeys quantum theory even when not (directly)

observed, and, a red pencil does not stop being red when we are not observing

it. More boldly put: Who measures the (entirely quantum) universe?1

The realist and operationalist views are typically seen as somewhat conflict-

ing. But attributing properties to systems which are not being observed, while

still subscribing to a clear operational meaning of basic concepts, was already

explicitly realized within the Geneva School Mark II [11, 152]. While its formal

guise was still quite similar to Birkhoff-von Neumann quantum logic, the lattice

structure is derived from an in-operational-terms precisely stated conception of

‘what it means for a system to possess a property’.

The following example is due to Aerts [11], and its pure classicality makes it

intriguing in its own right. Consider a block of wood and the properties ‘floating’

and ‘burning’. If, with certainty, we want to know whether the block of wood

possesses either of these properties, then we need to, respectively, throw it in

the water and observe whether it floats, or, set it on fire and observe whether

it burns. But obviously, if we observed either, we altered the block of wood in

such a manner that we won’t be able anymore to observe the other. Still, it

makes perfect sense for a block of wood to both be burnable and floatable.

In the Geneva School, one considers a systemA and the ‘yes/no’-experiments

{αi}i one can perform thereon. These experiments are related to each other in

terms of a preordering: for experiments α and β we have that α � β if and only

if, when we would perform α and obtain a ‘yes’-answer with certainty, then we

would also have obtained a ‘yes’-answer with certainty when performing β. A

property is then defined as an equivalence class for this preordering. The lattice

structure on the induced partial ordering follows from the existence of certain

product experiments.2 Such a property is called actual if the physical system

possesses it, and potential otherwise.

1This utterance is regularly heard as a motivation for various histories interpretations

[99, 94, 117], which, in turns, motivated the so-called topos approach to quantum theory

[118, 72, 114] – we briefly discuss this approach at the end of this section.
2The meet of a collection of properties arises from the experiment consisting of choosing

among experiments which correspond to these properties [11, 152]. Since these are arbitrary

meets, it also follows that the lattice has arbitrary joins (see e.g. [54]).
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Measurement among other processes

So in the Geneva School Mark II properties are a secondary notion emerging

from considering experimental procedures on a given system A. The Geneva

School Mark III emphasized the role of processes [66, 87, 43, 55, 64]. Faure,

Moore and Piron were able to derive unitarity of quantum evolution by cleverly

exploiting the definition of a physical property.3 Also the (in)famous orthomod-

ular law of quantum logic is about how properties propagate in measurement

processes.4 These results were a key motivation to organize physical processes

within certain categories, which lift the operationally motivated lattice structure

from systems to processes [55].

The crucial mathematical concept in the above is Galois adjunctions,5 the

order-theoretic counterpart to adjoint functors between categories [129]. These

are by many category-theoreticains considered as the most important concept

provided by category theory, in that almost all known mathematical construc-

tions can be formulated in a very succinct manner in terms of these. Galois

adjunctions were already implicitly present in the work by Pool in the late 1960s

[161], which arguably was the first attempt to replace the quantum formalism

by a formalism in which processes are the key players.6

From a more conceptual perspective, the idea that the structure of processes

might help us to get a better understanding of nature was already present in

the work of Whitehead in the 1950s [186] and the work of Bohr in the early

1960’s [34]. It became more prominent in the work of Bohm in the 1980s and

later also in Hiley’s [31, 32, 33], who is still pursuing this line of research [115].

So why did Pool’s work nor that by the Geneva School Mark III had ever

any real impact? As discussed in great detail in [152], the entire Geneva School

3Roughly, this argument goes as follows: if α2 is an experiment at time t2 and U is the

unitary operation which describes how the system evolves from time t1 to time t2, then we can

consider the experiment α1 at time t1 which consists of first evolving the system according

to U and then performing α2. More generally, U induces a mapping from experiments at

time t2 to experiments at time t1, and one can show that from the definition of a property

it follows that this map must preserve all infima. Using the theory of Galois adjoints it then

follows that the map which describes how properties propagate during U must preserve all

suprema. The final purely technical step then involves using Wigner’s theorem [184] and a

modern category-theoretic account on projective geometry [86, 178].
4Explicitly, for L the lattice of closed subspaces of a Hilbert space H and Pa the projector

on the subspace a lifted to an operation on L, we have

[Pa : L→ L :: b 7→ a ∧ (a⊥ ∨ b) :] a [(a→Sasaki −) : L→ L :: b 7→ a⊥ ∨ (a ∧ b)] ,

with (− →Sasaki −) the (in)famous Sasaki hook [64]. In the light of the above argument, Pa

now plays the role of how properties propagate in quantum measurements, while (a→Sasaki −)

is that map which assigns to each property after the measurement one before the measurement.
5A survey in the light of the Geneva School approach is in [54]
6More details on this are in [153].
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program only makes sense when considering ‘isolated systems’ on which we can

perform the experiments. This immediately makes it inappropriate to describe

a system in interaction with another one. This is a notorious flaw of most

quantum logic programs, which all drastically failed in providing a convincing

abstract counterpart to the Hilbert space tensor product. In the approach

outlined in this paper, we will consider an abstract counterpart to the Hilbert

space tensor product as primitive. It encodes how systems interact with other

systems, so rather than explicitly given, its character is implicitly encoded in

the structure on processes.

Today, the measurement-based quantum computational model (MBQC) poses

a clear challenge for a theory of processes. MBQC is one of the most fascinating

quantum computational architectures, which relies on the dynamics of the mea-

surement process for transforming the quantum state.7 By modeling quantum

process interaction in a dagger compact closed category, in [6, 44] Abramsky and

the author trivialized computations within the Gottesman-Chuang logic-gate

teleportation MBQC model [98]. The more sophisticated Raussendorf-Briegel

one-way MBQC model [165, 164] was accounted for within a more refined cat-

egorical setting, by Duncan, Perdrix and the author [49, 80, 63, 81].

Systems from processes

Less structurally adventurous than the Ludwig School, the Foulis-Randall School,

and the Geneva School, are the C*-algebra disciples, who prefer to stick some-

what closer to good old Hilbert space quantum mechanics. This path was

again initiated by von Neumann after denouncing Birkhoff-von Neumann style

quantum logic.8 A highlight of the C*-algebraic approach is algebraic quantum

field theory (AQFT) [101, 100, 103], mainly due to Haag and Kastler. In con-

trast with most other presentations of quantum field theory, not only is AQFT

mathematically solid, but it also has a clear conceptual foundation.

This approach takes as its starting point that every experiment takes place

within some region of space-time. Hence to each space time region R9 we assign

the C*-algebra A(R) of all observables associated to the experiments that po-

tentially could take place in that region.10 While, quantum field theory does not

7Recently, Rau realized a reconstruction of Hilbert space based on a set of axioms which

takes the fact that the one-way measurement-based quantum computational model can realize

arbitrary evolutions as its key axiom [163], and proposes this dynamics-from-measurement-

processes as a new paradigm for quantum foundations.
8For a discussion of the what and the why of this we refer the reader to [166].
9Which is typically restricted to open diamonds in Minkowski space-time.

10It is a natural requirement that inclusion of regions R ⊆ R′ carries over to C*-algebra

embeddings A(R) ↪→ A(R′), since any experiment that can be performed within a certain

region of space-time can also be performed within a larger region of space-time. The key
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support the quantum mechanical notion of system due to the creation and anni-

hilation of particles, AQFT re-introduces by means of regions of space-time and

associated algebras of observables a meaningful notion of system (R,A(R)).11

In [42] C*-algebras also provided an arena for Clifton, Bub and Halvor-

son’s to address Fuchs’ and Brassard’s challenge to reconstruct the quantum

mechanical formalism in terms of information-theoretic constraints [92, 39, 93].

Meanwhile it has been recognized by at least one of the authors that most of

the work in this argument is done by the C*-algebra structure rather than by

axioms [102], hence a more abstract mathematical arena is required.

The logic of interacting processes

What does it mean to have two or more systems? I.e. what is “A and B”:

1. I have a choice between A and B.

2. I have both A and B.

3. I have an unlimited availability of both A and B.

Developments in logic have started to take account of these sorts of issues.

In particular, Girard’s linear logic [95, 179, 1, 8] (which originated in the late

1980s) makes the difference between either having the availability of one out of

two alternatives, or having both alternatives available.12 The first of the two

conjunctions in linear logic, the non-linear conjunction, is denoted by &, while

the second one, the linear conjunction, is denoted by ⊗. The difference is:

A ` A&A A&B ` A while A 6` A⊗A A⊗B 6` A .

That is, in words, from the fact that A (resp. A&B) holds we can derive that

also A&A (resp. A) holds, but from the fact that A (resp. A ⊗ B) holds we

axiom of algebraic quantum field theory is that space-like separated regions correspond to

commuting C*-algebras. All these C*-algebras are then combined in a certain manner to

form a giant C*-algebra A. The connection with space-time is retained by a mapping which

sends each space-time region on the corresponding sub-C*-algebra of A, and the embeddings

of C*-algebras now become themselves inclusions.
11Compact closed categories play a key role within AQFT [73, 74, 103], but their role in

AQFT is conceptually totally different from this role in our framework. The natural manner

to recast AQFT as a monoidal category, somewhat more in the spirit of the developments of

this paper, would be to replace the C*-algebra A by a monoidal category with the sub-C*-

algebras of A as the objects, and completely positive maps as morphisms, subject to some

technical issues to do with the non-uniqueness of the tensor product of C*-algebras.
12Since its birth, linear logic did not only radically change the area of logic, but has im-

mediately played a very important role in computer science, and still does [83]. The first

occurrence of linear logic in the scientific literature was in Lambek’s mathematical model for

the grammar of natural languages [137] in the 1950s.
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cannot derive that also A ⊗ A (resp. A) holds. Hence, the linear conjunction

treats its arguments as genuine resources, that is, they cannot freely be copied

nor discarded. It is a resource sensitive connective.

From a naive truth-based view on logic, where A merely stands for the fact

that this particular proposition holds, the failure of the last two entailments

might look weird. However, a more modern view on logic is obtained in terms

of proof theory. In this perspective A stands for the fact that one possesses a

proof of A, A ⊗ B stands for the fact that one possesses a proof of A and a

proof of B, and A⊗A stands for the fact that one possesses two proofs of A.

In proof theory propositions mainly play a supporting role. What is of

particular interest in proof theory is the dynamics of proofs: how to turn a

long proof into a short one, how to eliminate lemmas etc. In other words, the

derivation process (i.e. proof) is the key player, and it is all about how proofs

compose to make up another proof. The mathematical arena where all of this

takes place is that of closed symmetric monoidal categories e.g. [170].

One indeed can take the view that ‘states’ stand to ‘systems’ in physics

as ‘proofs’ stand to ‘propositions’ in logic. ‘Physical processes’ which turn a

system into another in physics then correspond to ‘derivation processes’ of one

proposition into another in logic. In this view, systems mainly serve as things

along which physical processes can be composed, a view that we shall adopt

here.

Processes as relations

Once one considers processes and their interactions as more fundamental than

systems themselves one enters the realm of relationalism.

One well-known recent example of relationalism is Barbour and Bertotti’s

take on relativity theory in terms of Mach’s principle [17], which states that

inertia of a material system is only meaningful in relation to its interaction with

other material systems [143]. Rovelli’s relational interpretation of quantum

theory [168] considers all systems as equivalent, hence not subscribing to a

classical-quantum divide, and all information carried by systems as relative to

other systems. Here we will also adopt this relational view on physics.

One thing that relationalism provides is an alternative to the dominant

“matter in space-time”-view on physical reality, by taking space-time to be a

secondary construct. What it also does, is that it relaxes the constrains imposed

by no-go theorems on accounts of the measurement problem [96, 122, 132].13

13It is a common misconception that the Kochen-Specker theorem [132, (1967)] would be

in any way the first result of its kind. It is in fact a straightforward corollary of Gleason’s

theorem [96, (1957)], and a crisp direct no-go theorem was already provided by Jauch and
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For example, if a systems’ character is defined by its relation to other systems,

contextuality, rather than being something weird, becomes not just perfectly

normal, but a fundamental requirement for a theory not to be trivial.14

The main problem with relationalism seems to be that, while it is intuitively

appealing, there is no clear formal conception. This is where category theory

[84] provides a natural arena, in that it abstracts over the internal structure of

objects (cf. the properties of a single physical system), and instead considers the

structure of morphisms between systems (cf. how systems relate to each other).

Monoidal categories [25, 146] moreover come with an intrinsic notion of com-

pound system. In their diagrammatic incarnation, these categories translate

‘being related’ into the topological notion of ‘connectedness’. The ‘non-free’

part of the structure then provides the modes in which things can be related.

It seems to us that the dagger compact symmetric monoidal structure [7, 171]

in particular provides a formal counterpart to the relational intuition. A more

detailed and formal discussion of this issue is in Section 1.4.3.

Mathematical rigor

One of the favorite activities of operationalists is to reconstruct quantum theory

by imposing reasonable axioms on families of experimental situations. Some

recent examples of such reconstructions are [105, 67, 163].

This tradition was initiated by Mackey [144] around 1957, with Piron’s 1964

theorem as the first success [158]. The different attempts vary substantially in

terms of their mathematical guise, in that some reconstructions start from the

very foundations of mathematics, e.g. [158, 159, 176], while others will take

things like the real continuum as God-given in order to state the axioms in a

very simple language, e.g. [105]. Quoting Lucien Hardy on this [105]:

“Various authors have set up axiomatic formulations of quantum

theory, [...] The advantage of the present work is that there are a

small number of simple axioms, [...] and the mathematical meth-

ods required to obtain quantum theory from these axioms are very

straightforward (essentially just linear algebra).”

Quoting Tom Yorke, singer of the Oxford based band Radiohead [162]:

“Karma Police, arrest this man. He talks in Maths.”

Piron [122, (1963)]. A discussion of this is in Belinfante’s book [24].
14Obviously this paragraph may be for many the most controversial, challenging or inter-

esting one in this paper. They would have probably liked to see more on it. We expect to do

this in future writings once we have obtained some more formal support for our claims.
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It is an undeniable fact that mathematical rigor is one of the key cornerstones

of science. But on the other hand, very important science has been developed

long before there existed anything like a foundation of mathematics. Even

in recent history scientific progress was only possible by not subscribing to

mathematical rigor, of which the problem of renormalization in quantum field

theory is the most prominent witness, even leading to a Nobel Prize.

Ultimately this boils down to the respect one gives to mathematics. Roughly

put, is mathematics an a priori given thing which we can use to formulate our

theories of physics, or, is it something secondary that intends to organize our

experiences, be it when reasoning, exploring nature, or whatever, and that

should be adjusted to cope with our evolving spectrum of experiences? Simpler

put, do we serve mathematics or does mathematics serves us?

Our approach will be to assume a physical reality, with the things ‘out there’

truly happening. We will consider certain physical primitives, namely relations

and composition thereof. These primitives come with a notion of ‘sameness’

which will play the role of equality, i.e. it will tell us when compositions of

relations are equal.15 As a second step, we will try to match these physical

primitives with a mathematical structure, namely particular kinds of categories.

This, despite the great flexibility of category theory, will come at a certain cost.

In our view, Hilbert’s proposal to axiomatize physics 16 is a very different

ball game than axiomatizing mathematics,17 something which also proved to be

a far more delicate business than one imagined at first.

Our goal is also quite different from the reconstructionists. Rather than

reproducing quantum theory with a set of reasonable axioms, our goal is rather

to reproduce as much as possible physical phenomena with as little as possible

‘structural effort’ or ‘axiomatic compromise’, hence providing a very flexible

setting that may be better adjusted to the theories of the future.

The continuous or the discrete?

In the light of future theories of quantum gravity it has been argued that we

may have to abandon our reliance on the continuum, be it either with respect

15Let us mention that currently, even within the foundations of mathematics we don’t really

know what the sign ‘=’ stands for. In universal algebra it is a binary predicate, but once one

goes beyond classical logic this breaks down. In first order logic equality is a distinguished

binary relation. In higher-order logic it is given by Leibniz identity which identifies things

with the same properties [138]. In Martin-Löf type theory [151] and Bishop-style constructive

mathematics [29] one uses yet again other notions of equality. In categorical logic [120] several

options are still being explored. Credits for this concise summary go to Phil J. Scott.
16Cf. Hilbert’s 6th problem [167].
17Cf. Hilbert’s 2nd problem on the consistency of axiomatic arithmetic [167]. Gödel later

showed that this issue cannot be settled within arithmetic itself [97].
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to the structure of the space of states, spectra of observables, space-time, or

even probability valuation. Quoting Isham and Butterfield [119]:

“... the succes of [the edifice of physics] only shows the ‘instrumen-

talist utility’ of the continuum — and not that physical quantities

have real-number values ... there is no good a priori reason why

space should be a continuum; similarly, mutatis mutandis for time.”

“... limiting relative frequency interpretation seems problematic in

the quantum gravity regime ... for the other main interpretations of

probability — subjective, logical or propensity — there seems to us

to be no compelling a priori reason why it should be real numbers.”

Once one abandons the continuum as a mathematical default we need a paradigm

and/or mechanism to either reproduce it or replace it by.

One option are ‘spaces without points’, which both have a topological and

geometric incarnation, respectively called locales and frames [124].18 These

spaces have been used both to model spectra as well as truth-values in the so-

called topos approach to physical theories, which rose to prominence some ten

years ago with the still ongoing work of Isham, collaborators and followers.19

Both the locales/frames as well as topos theory also provide a mathematical

foundation for intuitionistic logic [182, 125]. In all of their guises they have

been particularly popular among computer scientists.

Also popular among computer scientists are discrete combinatorial spaces.

In fact, computer scientists proposed various discrete space-time structures [139,

157] well before physicists did so (e.g. Sorkin et al. [35]).

Our setting is flexible enough to accommodate both perspectives. For ex-

ample, a topos gives rise to a so-called alegory of generalized relations [91], and

similar, categories arise when organizing combinatorial species [126, 127, 88].

In fact, even at a much more basic level categories abstract over concrete

well-pointed spaces, by abstracting over the actual structure of objects. They

obviously also immediately provide a rich variety of combinatorial structures,

in that they themselves always form a graph.

18Locales and frames are a beautiful example of how the nature of a mathematical structure

can change merely by changing the nature of its relation to other structures of the same kind,

rather than by changing the structure itself: in category theoretic terms, locales and frames

are exactly the same objects, but live in a different category; one obtains the category of

locales simply by reversing the direction of the arrows in the category of frames.
19The first work in this area seems to be by Adelman and Corbett in the 1993’s [9, 10].
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1.3 Systems ← relations ← composition

We mentioned that operational approaches appeal to our everyday experiences,

or some easy to grasp generalization thereof. Also here we will make some

reference to our perceptions, but at a much more abstract level than in all of

the above mentioned examples. Not measurement devices, nor probabilities,

nor propositions, nor classical mechanics concepts such as 3D space, concrete

observables such as position, nor the real continuum will play any role.

We assume as primitive a flexible notion of system, a very general notion of

relation between these, and two modes of composition of the latter, one which

typically imposes dependencies between the processes that one composes and

one which excludes dependencies. In graphical terms these will correspond with

the primal topological distinction between ‘connected’ and ‘disconnected’, cf.:

connected ∼
g

f
disconnected ∼ 1f ff2

Within our approach, which models how relations compose to make up other

relations, systems play the role of the ‘plugs’ by means of which we can create

dependencies between relations in one of the two modes of composition.

So while it is in ‘bottom-up’ order in which we introduce the basic concepts:

systems → relations → composition

in order to appeal to the reader’s intuition, the most important concept is

composition. Relations are then those things that we can compose, and systems

the things along which we can compose these relations in a dependent manner.

This top-down view may seem to go in the opposite direction of a physi-

cists’ reductionist intuition. Nonetheless it is something the physicist is well

acquainted with. For symmetry groups, it is not the elements of the group that

are essential, but the way in which they multiply (∼ compose), since the same

set of elements may in fact carry many different group structures. In a similar

manner that group structure conveys the shape of a space, the composition

structure on relations will convey the ‘shape’ of the ‘universe of processes’.

In support of the reader’s intuition we refer to ‘properties’ of a system

when discussing concepts, but this has no defining status whatsoever. For this

discussion, we will inherit the ‘actual’ versus ‘potential’ terminology from the

Geneva School, the first saying something about the state of the system, while

the second says something about the system itself.
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1.3.1 Systems

So the prime purpose of a notion of system is to support the notion of a relation,

systems being those things along which relations can be composed.

More intuitively, by a system we mean something identifiable about which

we can pose questions, and hence about which it makes sense to speak about

‘properties’. It is the latter which are usually stated relative to our world of ex-

periences. This however does not mean that a system is completely determined

by that what we consider to be its actual properties, nor that necessarily there

exists an experiment by means of which we can verify these.20 An example of a

system that is not completely determined by its actual properties is one which

is part of a larger system, that is, when considering ‘parts of a larger whole’.

We denote systems by A, B, C, ...

Example: quantum systems. Quantum systems are the entities that we

describe in Hilbert space quantum theory e.g. position, momentum or spin.

Here, systems that are not completely determined by their actual properties are

those described by density operators, which arise due to a lack of knowledge as

well as by tracing out part of a compound system. The need for a concept of

system which is not characterized in terms of its actual properties becomes even

more important in the case of quantum field theory, where we want to be able

to consider what is relevant about the field for a certain region of space-time.

Example: AQFT and beyond. In AQFT the systems are the C*-algebras

associated to a region of space-time [100, 103]. So a system is a pair (R,A(R))

whereR is a region of space-time andA(R) represents the observables attributed

to that region. This idea of a pair consisting of a space-time region and another

mathematical object which encodes observables can be generalized to other

manners of encoding observables, for example, in terms of observable structures

i.e. special commutative dagger Frobenius algebras (see below) on an object

in a dagger symmetric monoidal category (see below) as is done in categorical

quantum mechanics [61, 62, 59]. These two perspectives are not that far apart,

given that Vicary has shown in [181] that finite dimensional C*-algebras are

precisely the non-commutative generalizations of observables structures in the

dagger symmetric monoidal category FHilb (see below).

20There are many things we can speak about without being able to set up an experiment, for

example, simply because the technology is not (yet) available. One could consider speaking

in terms of hypothetical or idealized experiments, but we don’t know the technologies of the

future yet. These will be based on theories of the future, and since crafting these theories of

the future is exactly the purpose of this framework, guessing would lead to a circularity.
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By I we denote the system which represents everything that we do not ex-

plicitly consider within our theory. One may refer to this as the environment,

i.e. what is not part of our domain of consideration. Intuitively put, it is the

system which represents everything to which we do not attribute any properties

whatsoever. Formally it will play the role of the ‘trivial system’ in that compos-

ing it with any other system A will yield that system A itself. Obviously, what

will be considered as I may in part be a cognitive decision, or a technological

constraint, or maybe a fundamental physical principle.21 Here these interpre-

tational issues won’t matter. What does matter is that there is a domain of

consideration, and that everything else falls under the umbrella of I.

Example: open systems. In open systems theory (e.g. [69, 134]) I stands for

the environment. In quantum theory it is I which is responsible for decoherence.

Sections 1.4.4 and 1.5 elaborate on this issue in great detail.

Our account on systems as ‘a bag of things’ may sound naive and it indeed

is. A more realistic account which involves the notion of subsystem is discussed

in Section 1.3.4. This will require that we first introduce some other concepts.

We denote “system A and system B” by A ⊗ B. The precise meaning of

A⊗B will become clear below from what we mean by composition of processes.

In particular, we will see that A and B in A ⊗ B will always be independent

and hence distinct i.e. we cannot conjoin a systems with itself.

The notation A1⊗A2 (wrongly) indicates that A1 and A2 are ordered. This

is an unavoidable artifact of the 1 dimensional linear notation which is employed

in most natural languages as well as in the majority of mathematical notation.

Hence A1 ⊗ A2 is to be conceived as ‘a set of two systems’ rather than as ‘an

ordered pair of two systems’.

Example: AQFT and beyond. AQFT considers an inclusion order on

diamond-shaped regions which carries over on inclusion for C*-algebras. In-

tuitively, the joint system would consist of the union of the two regions and

the corresponding union of C*-algebras, at least in the case that the regions

are space-like separated. But two regions do not make up a diamond anymore,

so this naive notion of system A and system B would already take one beyond

the AQFT framework. A paper on this subject is in preparation with Samson

Abramsky, Rick Blute, Marc Comeau, Timothy Porter and Jamie Vicary [4].

21For example, the disciples of the so-called ‘Church of the larger Hilbert space’ seem to

believe that system I could always be eliminated from any situation in quantum theory.
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1.3.2 Processes and their composition

Processes are relations that carry the ‘genuine physical substance’ of a theory.

It are those entities we think of as actually ‘happening’ or ‘taking place’ (as

opposed to the symmetry relations discussed below in Sec. 1.3.5). They arise

by ‘orienting’ a relation, that is, by assigning input/output-roles to the systems

it relates, i.e. it is a relation that ‘happens’ within a by us perceived causal

structure – cf. a partial ordering, or more generally, a directed graph.

Intuitively, a process embodies how properties of system A are transformed

into those of system B. The environment may play an important role in this.

The type of a process is the specification of the input system A and the

output system B, and is denoted as A → B. We call A the input and B the

output of the process. Processes themselves are denoted as f : A→ B.

Example: operations. Processes can be the result of performing an oper-

ation on a system A in order to produce system B, e.g. measuring, imposing

evolution, or any other kind of experimental setup. Our whole framework could

be given a more radical operational connotation, by restricting to processes aris-

ing from operations. It would then match Hardy’s recent proposal [109].

Example: quantum processes. These include state preparations, evolu-

tions, demolition and non-demolition measurement processes etc.

Example: de-instrumentalizing Geneva School Mark II. One can mod-

ify the Geneva School Mark II approach by replacing the experimental projects

with any process f that may cause a particular other process fyes to happen

thereafter. Roughly put: a property of a system would then be an equivalence

class of those processes which cause fyes to happen with certainty.

The trivial process from system A to itself is denoted by 1A : A → A. It

‘happens’ in the sense that it asserts the existence of system A, and it trivially

obeys causal order. These trivial processes are useful in that they provide a

bridge between systems and processes, by associating to each system a process.

For all other non-trivial processes the input and the output are taken to be

non-equal i.e. if the type of a process is A→ A then it is (equal to) 1A.

By a state we mean a process of type I → A, and by an effect we mean a

process of type A→ I. What is important for a state is indeed what it is, and

not its origin, which can consequently be comprehended within I.

By a weight we mean a process of type I→ I.
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Sequential composition. The sequential or causal or dependent composition

of processes f : A→ B and g : B → C is the process which relates input system

A to output system C. We denote it by:

g ◦ f : A→ C .

We will also refer to g ◦ f as “g after f” or as “first f and then g”.

Example: operations. For processes resulting from operations, g ◦ f is the

result of first performing operation f and then performing operation g. The

operations corresponding to states are preparation procedures.

Example: weights as probabilities. When we compose a state ψ : I→ A

and an effect π : A→ I then the resulting weight π◦ψ : I→ I can be interpreted

as the probability of the sequence “π after ψ” to happen. That a projective

measurement effect in quantum theory may be impossible for certain states and

certain for others boils down to 〈φ| ◦ |ψ〉 = 0 while 〈φ| ◦ |φ〉 6= 0 for |ψ〉 ⊥ |φ〉.
More generally, these weights can articulate likeliness of processes.

Separate composition. The separate or acausal or independent composition

of processes f1 : A1 → B1 and f2 : A2 → B2 is the process which relates input

system A1 ⊗A2 to output system B1 ⊗B2. We denote it by:

f1 ⊗ f2 : A1 ⊗A2 → B1 ⊗B2 .

The key distinction between sequential and separate composition in terms

of ‘dependencies’ between processes is imposed by the following constraint.

Independence constraint on separate composition. A process is inde-

pendent from any process to which it is not ‘connected via sequential compo-

sition’, and the same holds for the systems that make up the types of these

processes, with the exception of the environment I. In particular, within the

compound process f ⊗ g the processes f and g are independent.

We will precisely define what we mean by ‘connected via sequential compo-

sition’ in Section 1.3.3, by relying on the topological notion of ‘connectedness’.

The spirit of this constraint is that causal connections can only be established

via dependent composition, not by means of separate composition.

Example: operations. When considering processes resulting from opera-

tions, f1 and f2 in f1 ⊗ f2 are realized by two independent operations. This
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means that the setup in which one realizes one operation should be sufficiently

isolated from the one that realizes the other operation.

The independence of f1 and f2 in f1 ⊗ f2 imposes independence of A1 and

A2 in A1⊗A2 and of B1 and B2 in B1⊗B2, which indeed forces A1 and A2 in

A1 ⊗A2 and B1 and B2 in B1 ⊗B2 to always be distinct.

Example: AQFT. For intersecting regions R and R′ the systems (R,A(R))

and (R′, A(R′)) are obviously not independent. Neither are they for regions R

and R′ that are causally related.

While in f1⊗f2 the two processes have to be independent, this does not ex-

clude that via causal composition with other processes dependencies can emerge:

Example: quantum entanglement. Although two quantum processes f1 :

A1 → B1 and f2 : A2 → B2 are independent in f1⊗ f2, it may of course be the

case that due to common causes in the past measurements on their respective

output systems B1 and B2 may expose correlations. In that case we are in fact

considering (f1 ⊗ f2) ◦ |Ψ〉 where |Ψ〉 : I → B1 ⊗ B2. In this case, as we shall

see below, B1 and B2 are connected via sequential composition.

Note that the exception of I in the independence constraint allows for:

A⊗ I = A ,

which affirms that the environment may always play a certain role in a process.

On a more philosophical note, within our setting the independence con-

straint replaces the usual conception of sufficient isolation within the scientific

method [160, 152]: we do not assume that systems or processes are sufficiently

isolated, but our formal vehicle which represents when we compose them im-

plicitly requires that they are independent, the environment excluded.

Now consider the four processes:

f1 : A1 → B1 f2 : A2 → B2 g1 : B1 → C1 g2 : B2 → C2 (1.1)

Note that causal composition of the processes f1 ⊗ f2 and g1 ⊗ g2 resulting

from separate composition, which implies matching intermediate types, is well-

defined since B1 and B2 will always be taken to be distinct in B1 ⊗B2. But

there is another manner in which we can compose these processes to make up a

whole of type A1⊗A2 → C1⊗C2, namely by separate composition of g1◦f1 and

g2 ◦ f2. While symbolically these two compounds are represented differently,

physically they represent the same overall relation, and hence:
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Interaction rule for compositions. For processes (1.1) we have:

(g1 ◦ f1)⊗ (g2 ◦ f2) = (g1 ⊗ g2) ◦ (f1 ⊗ f2) .

Similarly, for systems A1 and A2 we also have:

1A1
⊗ 1A2

= 1A1⊗A2
.

Non-isolated systems and probabilistic weights of states

The natural way to assert inclusion of non-isolated (or open) systems within a

theory of processes is in terms of a particular kind of process:

>A : A→ I

that ‘feeds’ a system into the environment I, and hence explicitly realizes such a

non-isolated system. Feeding a system A into the environment can be achieved

by taking a process f : A→ B and by then ‘deciding’ to consider B as part of

the environment I. So as was the case for I, these feeding-into-the-environment

processes may involve a cognitive component.

What characterizes such a feed-into-environment process? Firstly, it is easily

seen that we can always set:

>A⊗B := >A ⊗>B and >I := 1I .

Secondly, it should be allowed to happen with certainty, independently on the

state of the system, as opposed to, for example, the projective measurement

effects in quantum theory discussed above. Denoting weights by W, given a

measure that assigns weights to each process, and in particular to states S:

| − | : S→W ,

a feed-into-environment process >A should be such that applying it leaves the

weight of the state it is applied to invariant, i.e. concretely:

>A ◦ ψ = |>A ◦ ψ| = |ψ| (1.2)

for all states ψ : I → A, where the first equality merely says the weight of

a weight is itself. But (1.2) can now also be dually interpreted: feed-into-

environment processes are characterized in that they provide the measure for

assigning weights to states, by post-composing states with them.

Example: traces and probabilities in quantum theory. In quantum

theory, the completely positive maps that trace out spaces play the role of the

feed-into-environment processes:

trH :: ρH 7→
∑
i

〈i|ρH|i〉 .
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These indeed stand for ignoring part of a system as well as for measuring the

overall probability of a non-normalized density matrix. Note in particular that

these are the only completely positive maps which satisfy (1.2) for every possible

state. In the language of [41], trH is the unique deterministic effect on H.

1.3.3 Graphical representation of processes

The data specified above can be given a diagrammatic representation:

f ≡ f g ◦ f ≡
g

f
f1 ⊗ f2 ≡ 1f ff2

That is:

• a process is represented by a box with inputs and outputs ;

• − ◦ − is represented by connecting outputs to inputs ;

• − ⊗− is represented by not connecting boxes.

The object I will be represented by ‘no wire’, and:

ψ ≡ ψ : I→ A π ≡ π : A→ I ω ≡ ω : I→ I

What is particularly nice in this graphical representation is that the inter-

action rule automatically holds, since translating both its left-hand-side and its

right-hand-side into the graphical calculus both result in the same:

(g1◦f1)⊗(g2◦f2) = (g1⊗g2)◦(f1⊗f2) ⇔

=

1f f2

1
g g

2

1f f2

1
g g

2

This shows that also the interaction rule is in fact nothing more than an artifact

of one-dimensional symbolic notation!

Here is the definition we promised earlier:

Definition. Two processes are connected via sequential composition if in the

graphical representation they are topologically connected.

There also is a direct translation of this graphical representation of processes

to directed graphs and vice versa. The rules to do this are:

• processes (i.e. boxes, triangles, diamonds etc.) become the nodes ;



Deep Beauty—Coecke (rev. yyyy Mmm dd) 21

• systems (i.e. wires between boxes) become directed edges, with the direc-

tion pointing from what used to be an output to an input.

Such a directed graph makes the underlying causal structure on processes ex-

plicit. Here’s an example of this:

f h

g

z

x

_~

z

x

hf

g

In this example all processes are connected via sequential composition as the

picture is as a whole connected.

Special processes can be give special notations, for example, a feed-into-

environment process >C : C → I could be denoted as:

>C ≡ so (1B ⊗>C) ◦ f ≡ f

for f : A→ B ⊗ C.

In two-dimensional graphical language, as it is the case for symbolic no-

tation, systems appear in a certain order (cf. from-left-to-right) which has no

direct ontological counterpart. However, in the graphical notation this order

can be exploited to identify distinct systems in terms of their position within

the order, hence in part omitting the necessity to label the wires. More on this

will follow below. One can of course also think of these pictures as living in 3

dimensions rather than in 2 dimensions, or some even more abstract variation

thereof. One calls graphs which exploit a third dimension non-planar [172].

Planar graphs are subject to Kuratowski’s characterization theorem [135].

1.3.4 Physical scenarios, snapshots and subsystems

A physical scenario is a collection of processes together with the composition

structure in which they happen. By the resolution of a scenario we mean the

resulting overall process. A scenario comprises more information than its reso-

lution, in that it also comprehends the manner in which the overall process is

decomposed in subprocesses. Obviously, the selection of a particular scenario

which has a given process as its resolution has no actual physical content, but

is merely a subjective choice of what to consider as the parts of a whole.

Given such a physical scenario, one can consider a subset of the systems

appearing within it, neither of which are causally related, e.g. those connected
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by the hand-drawn line in the following picture:

f h

g

z

x

_~

z

x

hf

g
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l

l

l

We call such a collection of systems appearing in a scenario a snapshot.

Note that it is not excluded that snapshots resulting from distinct scenarios

are the same, for example, the hand-drawn line:

f h

g

z

x

k

l

X X X

X

X X

X

represents a snapshot both for the restriction of the boxes to those with a white

cross as well as for the restriction to those with a black cross.

Example: relativistic causal histories. These snapshots are Hardy’s ‘sys-

tems’ within his instrumental framework [109, 110]. In turns, these general-

ize Blute, Panangaden and Ivanov’s ‘locative slices’ within their framework

which endows standard quantum mechanical operations with a causal ordering

[26, 154]. A dual point of view was earlier put forward by Markopoulou [149].

These snapshots are indeed systems as much as any other system. But as

mentioned at the very beginning of this chapter, they are not anymore the

primal physical concept, but things along we ‘decide’ to decompose processes.

It is the resolution of the snapshot which is physically the only primal concept.

Note that there exists a partial order on systems in terms of inclusion of

snapshots. For example,

f

h

g

z

x

k

l

A

B

C
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A B C

D FE

G

⇒



Deep Beauty—Coecke (rev. yyyy Mmm dd) 23

This in particular implies that ‘being non-equal’ for systems, as for example in

A ⊗ B, does not capture independence. In mathematical terms, it should be

replaced by disjointness within the Boolean algebra structure arising from these

snapshots. A formal account on this is being developed with Ray Lal in [53].

1.3.5 Symmetry relations

Unlike processes, symmetry relations do not represent actual ‘happenings’, nor

do they have to respect any by us perceived causal structure. Rather, they

will enable one to express structural properties (i.e. symmetries) of the pro-

cesses which make up the physical universe, in a manner similar to how the

Galileo/Lorentz group conveys the shape of space-time. But rather than being

a structure on processes, in our approach they will interact with processes in

the same manner as processes interact with each other, in terms of ◦ and ⊗,

so that we can treat them as ‘virtual processes’ within an ‘extended universe’

which does not only consist of processes but also of symmetry relations, as well

as the relations arising when composing these. The interaction of processes and

symmetry relations would for example embody how usually dynamics is derived

in terms of representations of the Galileo/Lorentz group. Here, such a virtual

process could for example be a Lorentz boost along a space-like curve.

Intuitively, symmetry relations relate properties of one system to those of

another system, and since the content carried by a process is how properties of

system A are transformed in those of system B, it indeed makes perfect sense

to treat processes and symmetry relations on the same footing. Consequently,

we can extend dependent composition to symmetry relations, but it obviously

loses its causal connotation. Also separate composition can evidently be ex-

tended to symmetry relations, separation now merely referring to some formal

independence. Consequently we can also still speak of scenarios and snapshots.

For some the distinction between process and symmetry relation might seem

somewhat artificial. But this would in fact even more advocate our framework.

Example: active and passive rotations in classical mechanics. In clas-

sical mechanics rotations of a rigid body are ‘processes’ modeled in SO(3), while

the SO(3) fragment of the Gallilei group consists of ‘symmetry relations’ which

assert the rotational symmetry of three-dimensional Euclidean space.

Example: inverses to processes. We define an inverse to a process f :

A→ B as the symmetry relation f−1 : B → A which satisfies:

f−1 ◦ f = 1A and f ◦ f−1 = 1B . (1.3)



Deep Beauty—Coecke (rev. yyyy Mmm dd) 24

It immediately follows that such an inverse, if it exists, is unique.

Example: identical systems. How can we describe distinct but ‘identical’

systems? A pair of systems A1 and A2 is identical if it comes with a pair of

mutually inverse relations 1A1,A2
: A1 → A2 and 1A2,A1

: A2 → A1. Explicitly:

1A2,A1 ◦ 1A1,A2 = 1A1 and 1A1,A2 ◦ 1A2,A1 = 1A2 .

Let f : C → A1 and g : A1 → C be any processes. We set:

FA1,A2
f := 1A1,A2

◦ f and GA1,A2
g := g ◦ 1A2,A1

(1.4)

These can also be represented in a commutative diagram [147, 148]:

D

A1
1A1,A2

11

g
>>}}}}}}}}

A2

1A2,A1
qq

GA1,A2
g

``AAAAAAAA

C

f

``AAAAAAAA FA1,A2
f

>>}}}}}}}}

i.e. a diagram in which any two paths which take you from one system to another

are equal. It also follows that:

FA2,A1
FA1,A2

f = f and GA2,A1
GA1,A2

g = g .

Intuitively, the relations 1A1,A2
and 1A2,A1

identify the potential properties

of systems A1 and A2, and do this in a mutually inverse manner due to

1A1,A2 ◦ 1A2,A1 = 1A2 and 1A2,A1 ◦ 1A1,A2 = 1A1 . The assignments FA1,A2(−)

(respectively GA1,A2
(−)) and FA2,A1

(−) (respectively GA2,A1
(−)) identify pro-

cesses involving A1 and A2 as output (resp. input) in a similar manner.

Example: identical processes. We leave it to the reader to combine the

notion of inverse and that of identical systems into identical processes.

Example: bosonic states. The symmetric states

Ψ : I→ A1 ⊗ . . .⊗An

which describe non-isolated bosons can now be defined. For any permutation

σ : {1, . . . , n} → {1, . . . , n}

we have:

(1A1,Aσ(1) ⊗ . . .⊗ 1An,Aσ(n)
) ◦Ψ = Ψ , (1.5)
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i.e. when permuting the roles of the (identical) systems that make up the joint

system, then that state should remain invariant. Graphically, we represent the

symmetry relation 1A1,Aσ(1) ⊗ . . .⊗ 1An,Aσ(n)
induced by the permutation σ as

‘re-wiring’ according to σ, e.g.:

1A1,A3
⊗ 1A2,A1

⊗ 1A3,A4
⊗ 1A4,A2

≡ _~

The dotted box and the ‘'’-sign refer to the fact that the wires are different

from those we have seen so far, which represented systems. Here they encode a

relation which changes systems. Equation (1.5) now becomes:

=
Ψ Ψ

_~

We indeed now truly exploit the fact that in the graphical language systems

appear in a certain order, which can be used to identify systems. Symmetry re-

lations which identify distinct identical systems now identify different positions

within the order. More on this ordering and identity of systems is in §1.4.

We now combine symmetry relations representing identical systems with the

notion of a process, to derive the crucial notion of an evolution:

Example: evolutions. By an evolution we mean a scenario only involving

causal composition and for which all maximal snapshots are identical in the

above sense. Consider such a scenario with the process f : A0 → B as its

resolution, and let Aη be a maximal snapshot distinct from A0. Now consider

the scenario that one obtains by restricting to those processes that happen

before Aη, including Aη itself, let the process fη : A0 → Aη be its resolution,

and now consider the symmetry relation:

eη := 1Aη,A ◦ fη : A0 → A0 .

If the collection of all labels η carries the structure of the real continuum we

obtain a generalization of the standard notion of an evolution in terms of a

one-parameter family of ‘things’, here symmetry relations, which, intuitively,

relate potential properties of a system at time η, here A0, to those at time 0.

Example: symmetry groups. The maps eη : A0 → A0 in the previous ex-

ample are special in that they relate a system to itself, while typically not being

identities. One could associate to each system a collection of such symmetry

endo-relations which are closed under ◦ and each of which comes with an in-

verse, i.e. for f : A→ A there is f−1 : A→ A such that f ◦f−1 = f−1 ◦f = 1A .
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Such a collection plays the role of the symmetry groups in existing theories. It

follows that a symmetry group of a system carries over to a symmetry group of

an identical, and that evolutions respect symmetries.

Example: variable causal structure. This example addresses a particular

challenge posed by Lucien Hardy at a lecture in Barbados, spring 2008 [107].

Thus far processes were required to respect some perceived causal structure.

However, several authors argue that a framework that stands a chance to be of

any use for describing quantum gravity should allow for variable causal structure

e.g. [106, 108]. Once we ‘solved’ Einstein’s equations in general relativity then

the causal structure is of course fixed, so varying causal structure doesn’t boil

down to merely dropping it, but rather to allow for a variety of causal structures.

This is what we will establish here, namely to introduce processes which have

the potential to adopt many different causal incarnations, while still maintaining

the key role of composition within the theory. In other words, a certain causal

incarnation becomes something like potential property.

For each system we introduce two symmetry relations:

x

A : I→ A∗ ⊗A and yA : A⊗A∗ → I ,

to which we respectively refer to as input-output reversal and output-input re-

versal. These are subject to the following equations:

(yA ⊗1A) ◦ (1A ⊗ x

A) = 1A and (1A∗⊗yA) ◦ ( x

A ⊗ 1A∗) = 1A∗ (1.6)

which state that reversing twice yields no reversal. For a process f : C ⊗A→ B

(resp. g : A → B ⊗ C) we can use reversal to produce a variation on it where

the input C (resp. output C) has become an output (resp. input) C∗ :

f̃ = (1C∗ ⊗ f) ◦ ( x

C ⊗ 1A) : A→ C∗ ⊗B

g̃ = (1B⊗yC) ◦ (g ⊗ 1C∗) : A⊗ C∗ → B

Here, the ‘∗’ tells us that while A was an input (resp. output) for process f

(resp. g) that it is now converted into an output (resp. input). This is crucial

when composing f (resp. g) with other processes.

Putting this in pictures we set:

x

A ≡ and yA ≡

where the directions of the arrows represent the ∗’s. The equations then become:

=

and =
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and the converted processes depict as:

f̃ ≡ f and g̃ ≡ g

By a pre-causal process we mean a collection of potential processes which is

closed under reversal of all inputs and outputs. For example, graphically: f

 :=

 f , f , f , f


is such a pre-causal process. Similarly to how composition of processes could

be represented by directed graphs, one can show that composition of pre-causal

processes can be represented by undirected graphs:

z

x

hf

g

Indeed, by considering a node as representing a pre-causal process, that is, all

of its potential causal incarnations, we obtain:

f

g

=_~
g

f g

f

= g

f

~

~
_~

g~

f~

Consequently, the directions on arrows carry no content.

While the presentation of scenarios as nodes of undirected graphs is of course

more concise than as collections of causal incarnations, the latter has the con-

ceptual advantage that causal structure is attributed to processes. Since in our

setup these are the things that really ‘happen’, whereas systems only play a

supporting role, it is the processes which should carry the causal structure.

1.3.6 Vacuous relations: correcting denotational artifacts

Both processes and symmetry relations carry structural content of the theory

under consideration. We mention one more kind of relation of which the sole

purpose is to correct artifacts due to a particular choice of denotation. Above

we already pointed at the fact that when we denote separate composition either
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symbolically or diagrammatically this unavoidably comes with some ordering

due to the fact that the points of a line are totally ordered.

To undo this, we need to state that all orderings are equivalent. Therefore

we introduce for each pair of systems A1 and A2 an invertible relation σA1,A2

which exchanges the order:

σA1,A2 : A1 ⊗A2 → A2 ⊗A1 with σA2,A1 ◦ σA1,A2 = 1A1⊗A2 .

These relations then generate arbitrary permutations e.g.:22

: A1 ⊗A2 ⊗A3 ⊗A4 → A2 ⊗A4 ⊗A1 ⊗A3 .

To state that these exchanges of order are indeed vacuous we have to assert

that they do not affect the structural content of the theory, that is, the two

compositions. Firstly, separate compositions should be preserved:

σB1,B2 ◦ (f1 ⊗ f2) = (f2 ⊗ f1) ◦ σA1,A2 .

For example, for the above permutation of four systems we have:

f f f f2 4 1 3

f f f f1 2 3 4

=
That causal composition is also preserved then trivially follows:

σC1,C2
◦(g1⊗g2)◦(f1⊗f2) = (g1⊗g2)◦σB1,B2

◦(f2⊗f1) = (g1⊗g2)◦(f2⊗f1)◦σA1,A2
.

1.3.7 Summary of this section

Within the proposed framework a physical theory has the following ingredients:

• a collection of relations with two compositions ◦ and ⊗ thereon, subject

to an independence constraint, as well as additional equations that specify

for which scenarios the corresponding resolutions are equal ;

• certain relations called potential (or candidate) processes which will act as

the ‘actual physical substance’ of the theory, according to:

actual process

actual property
·
·

might happen

might be
;

Examples of processes are:

22Note the difference with the example of bosonic states earlier in this paper in that now

the wires relate a system with itself, just like identities do. They just shift the order. Hence:

_~ = _~

where the straight wires in the dotted box stand for change of system.
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– states, effects and weights ,

– processes resulting from performing an operation ,

– feed-in-environment processes witnessing non-isolation, etc.

• certain relations called symmetry relations which carry additional struc-

ture of the theory ; examples of symmetry relations are:

– those that identify symmetries ,

– those that identify identical systems ,

– those that vary the causal structure, etc.

• certain relations called vacuous relations that carry no physical content

whatsoever but undo artifacts that are merely due to denotation.

Further below we will identify some more ingredients but first we will see how

we can cast these ones within standard mathematical structures.

1.4 The mathematical guise of physical theories

In set theory [38, 70] a class is a collection of which the members are defined by

a predicate which they all obey. For example, the class of groups is defined as

sets that come equipped with a binary and a unary operation which obey the

usual axioms of groups. By Russell’s paradox, which can restated as the fact

that the collection of all sets itself does not form a set, it immediately follows

that the collection of all groups together do not form a set, but a proper class.

Modeling concession 1. The collection of all systems together forms a class

and the collection of all relations of the same type forms a set.

This concession reflects standard mathematical practice,23 and hence is es-

sential when trying to provide the ‘informal’ ideas in the previous section with

a more standard formal backbone, either in terms of axiomatics or in terms of

more concrete models obeying this axiomatics.24

1.4.1 Axiomatics

The physical framework outlined above, when subjected to the stated mod-

elling concession 1, can be represented as a so-called strict symmetric monoidal

category. For a more detailed discussion we refer the reader again to [58].

23There exist proposals to generalize this, e.g. the universes as in [36]§1.1.
24We refer the reader to [58] for a more detailed discussion of the sense in which we use

‘axiomatics’ and ‘concrete models’, where rather than ‘axiomatics’ we used the term ‘abstract’.
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Definition. A strict symmetric monoidal category C consists of a class of

objects |C|, for each pair of objects A,B ∈ |C| a set of morphisms C(A,B),25

a privileged unit object I ∈ |C|, for each object A ∈ |C| a privileged identity

morphism 1A ∈ C(A,A), and the following operations and axioms:

• an associative binary operation ⊗ on |C| with unit I ;

• an associative binary operation ⊗ on
⋃
A,B C(A,B) with unit 1I, and with

f1 ⊗ f2 ∈ C(A1 ⊗A2, B1 ⊗B2) for f1 ∈ C(A1, B1) and f2 ∈ C(A2, B2) ;

• a partial associative binary operation ◦ on
⋃
A,B C(A,B) restricted to

pairs in C(B,C)×C(A,B) where A,B,C ∈ |C| are arbitrary, and for all

A,B ∈ |C|, all f ∈ C(A,B) have right identity 1A and left identity 1B .

Moreover, for all A,B,A1, B1, C1, A2, B2, C2 ∈ |C|, f1 ∈ C(A1, B1), g1 ∈
C(B1, C1), f2 ∈ C(A2, B2) and g2 ∈ C(B2, C2) we have:

(g1 ◦ f1)⊗ (g2 ◦ f2) = (g1 ⊗ g2) ◦ (f1 ⊗ f2) and 1A1
⊗ 1A2

= 1A1⊗A2
.

Finally, for all A1, A2 ∈ |C| there is a privileged morphism

σA1,A2 ∈ C(A1 ⊗A2, A2 ⊗A1) with σA2,A1 ◦ σA1,A2 = 1A1⊗A2

such that for all A1, A2, B1, B2 ∈ |C|, f1 ∈ C(A1, B1), f2 ∈ C(A2, B2) we have:

σB1,B2
◦ (f1 ⊗ f2) = (f2 ⊗ f1) ◦ σA1,A2

. (1.7)

This is quite a mouthful but there are very short more elegant ways to say

this which rely on higher-level category theory.26 It is also a well-known fact

that these strict monoidal categories are in exact correspondence with the kind

of graphical calculi that we introduced to describe relations [128]. While the

use of this calculi traces back to Penrose’s work in the early seventies [156],

they only became a genuine formal discipline within the context of monoidal

categories with the work of Joyal and Street [128] in the nineties. However, the

first comprehensive detailed account on them was only produced this year by

Selinger [172], which provides an even nicer presentation. We say something

more about these graphical presentations below in Section 1.4.3.

We now show how the above discussed framework, subject to the modeling

concession, can be interpreted in the language of strict symmetric monoidal

25Such a set C(A,B) of morphisms is usually referred to as a homset.
26For example, a (not-necessarily strict) symmetric monoidal category, which takes a lot

more space to explicitly define than a strict one (see [147, 8, 16] for the usual definition and

[58] for a discussion), is an internal commutative monoid in the category of all categories.
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categories. Recall here that an isomorphism in a category is a morphism f :

A→ B which has an inverse, precisely in the sense of (1.3).

Systems are represented by objects of the symmetric monoidal category,

relations by morphisms, and the compositions have been given matching nota-

tions. We discuss the role of some of the privileged morphisms:

• The symmetry natural isomorphism27

{σA1,A2
: A1 ⊗A2 → A2 ⊗A1 | A1, A2 ∈ |C|} .

plays the role of the symmetry relation that undoes the unavoidable a

priori ordering on systems when composing them with ⊗.

• There may be several occurrences of the same object within a string of

tensored objects e.g. A ⊗ A. To align this with the fact that all systems

occurring in such an expression must we independent, we either:

c1 not assign any meaning to all objects and morphisms of the symmet-

ric monoidal category, but rather consider a subcategory of it with

a partial tensor, an approach which is currently developed in [53];

c2 represent distinct identical systems by the same object, which allows

for the two A’s in A⊗A to be interpreted as independent.

Above, c1 and c2 can also be seen as modeling concessions.

Example: compactness models variable causal structure. A compact

(closed) category [130, 131] is a symmetric monoidal category in which every

object A has a dual A∗, that is, there are morphisms x

A : I → A∗ ⊗ A and

yA : A ⊗ A∗ → I satisfying equations (1.6). Equivalence classes of morphism

then enable to model variable causal structure as indicated above.

Example: symmetry and compactness in communication protocols.

Above, the ‘symmetry’ and ‘compact’ structure represented relations which re-

spectively undo the order on systems within scenarios or a causal structure.

These morphisms can also play a more constructive role as special kinds of

communication processes. It was this which initially motivated the use of com-

pact closed categories to model quantum protocols in [6]. To this end we will

treat the ordering of objects relative to the tensor as genuine locations in space-

time, represented by two agents, respectively named Ali and Bob. Then the

morphism: σA1,A2
: A1 ⊗ A2 → A2 ⊗ A1 means that the agents exchange their

27The significance of the word ‘natural’ here precisely boils down to validity of (1.7).
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physical systems. We can represent the agents by regions in the plane which

extend vertically i.e. in the direction of causal composition:

(︷ ︸︸ ︷) ⊗ (︷ ︸︸ ︷)
Ali Bob

If the category is moreover compact closed then by the axioms of compact

closure we have the following equation between scenarios:

BobAli

=

Bob Ali

which can be interpreted as a correctness proof of post-selected quantum tele-

portation. Here, x

A : I→ A∗⊗A represents a Bell-state and yA : A⊗A∗ → I

represents a post-selected Bell-effect. A more detailed analysis as well as more

sophisticated variations on the same theme which involve varying the entangled

state and allowing for non-determinism of the effects are in [6, 44, 48, 60, 59, 65].

Example: explicit agents. While the previous example gives a very concise

presentations of protocols, it is not completely consistent with our earlier inter-

pretation of symmetry and compactness as symmetry relations. One possible

manner to accommodate the use of these morphisms both as symmetry rela-

tions as well as processes is by explicitly introducing agents. To model agents,

respectively named Ali and Bob, we take objects to be pairs consisting of an

entry which represents the physical system together with an entry which rep-

resents the agent that possesses that system for that snapshot. Morphisms will

be pairs consisting of the manner in which physical systems are processed, as

well as specification of which agents possess it at the beginning and the end

of the processes. We provide a rough idea of how naively this can formally be

established, skimming over certain technical details. Take the product category :

C× FSMAgents

of the symmetric monoidal category C in which we model physical systems, and

the free symmetric monoidal category over a category Agents,28 which has two

28An overview of free constructions for the categories which we consider here is in [2].

The objects of the free symmetric monoidal category FSMD over a category D are finite

lists of objects of D and the morphisms are finite lists of morphisms of D together with a

permutation of objects. Concretely we can write these as σπ ◦ (f : A1 → B1, . . . , An → Bn) :

(A1, . . . , An) → (Bπ(1), . . . , Bπ(n)) where π : {1, . . . , n} → {1, . . . , n} is a permutation. The

permutation component alone provides the symmetry natural isomorphism.
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objects Ali and Bob and only identities as morphisms:

Agents(Ali, Ali) = {1Ali} Agents(Ali,Bob) = ∅

Agents(Bob,Bob) = {1Bob} Agents(Bob,Ali) = ∅

The category C×FSMAgents inherits symmetric monoidal structure component-

wise from C and FSMAgents, with a symmetry morphism now of the form:

(σA1,A2
, σπ) : (A1, Ali)⊗ (A2, Bob)→ (A2, Bob)⊗ (A1, Ali) ,

where π is the (only) non-trivial permutation of two elements. This now repre-

sents the symmetry relation that undoes the ordering on objects. On the other

hand, the exchange process can now be differently represented, namely by:

(σA1,A2
, 1Ali⊗Bob) : (A1, Ali)⊗ (A2, Bob)→ (A2, Ali)⊗ (A1, Bob) ,

So we have distinct morphisms representing both symmetry relations and pro-

cesses, and the same can be done for post-selected quantum teleportation.

1.4.2 Concrete models

Thus far we treated categories as a structure in their own right, and conse-

quently, also the diagrammatic calculi. However, to realize existing theories

such as quantum theory, we need to consider concrete models of these. That is,

the objects constitute some kind of mathematical strucure, for example Hilbert

spaces, while the morphisms constitute mappings between these, for example

linear maps. The monoidal tensor is then a binary construction on these.

But what we obtain in this manner are not strict symmetric monoidal cat-

egories, but strict——— symmetric monoidal categories. In particular, we lose

(strict) associativity and (strict) unitality of the tensor:

A⊗ (B ⊗ C) 6= (A⊗B)⊗ C I⊗A 6= A A⊗ I 6= A

f ⊗ (g ⊗ h) 6= (f ⊗ g)⊗ h 1I ⊗ f 6= f f ⊗ 1I 6= f .

This is a consequence of the fact that in set-theory:

(x, (y, z)) 6= ((x, y), z) (∗, x) 6= x (x, ∗) 6= x .

For a detailed discussion of this issue we refer to [58]. We mention here that the

main consequence of this is the fact that in any standard textbook the definition

of a symmetric monoidal category may stretch many pages. The reason is that

in one way or another we need to articulate that A⊗ (B⊗C) and (A⊗B)⊗C
are in a very special way related, similarly to how A⊗B and B ⊗A relate was

captured above by the symmetry ‘natural isomorphisms’.

Five examples of models of symmetric monoidal categories are:
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• (F)Set:=

– Objects:= (finite) sets

– Morphisms:= functions between these

– Tensor:= the Cartesian product of sets

• (F)Rel:=

– Objects:= (finite) sets

– Morphisms:= (ordinary mathematical) relations between these

– Tensor:= the Cartesian product of sets

• (F)Hilb:=

– Objects:= (finite dimensional) Hilbert spaces

– Morphisms:= linear maps between these

– Tensor:= the Hilbert space tensor product

• WP(F)Hilb:=

– Objects:= (finite dimensional) Hilbert spaces

– Morphisms:= linear maps between these up to a global phase

– Tensor:= the Hilbert space tensor product

• CP(F)Hilb:=

– Objects:= (finite dimensional) Hilbert spaces

– Morphisms:= completely positive maps between these29

– Tensor:= the Hilbert space tensor product

The reason for restricting to finite sets/dimensions is explained in Section 1.4.3.

Mappings from one of these models, which take each object A ∈ |C| to an

object FA ∈ |C| and which take each morphism f ∈ C(A,B) to a morphism

Ff ∈ C(FA,FB), and which preserve the full symmetric monoidal structure,

are called strict monoidal functors. If a strict monoidal functor is injective on

homsets it is called faithful. These strict monoidal functors allow one to relate

29These can for example be defined in terms of the Kraus representation f :: ρ 7→
∑
i A

†
iρAi

on the space of density matrices, where each Ai is an n× n-matrix [69, 134].
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different models to each other. For example, there are the identity-on-objects

faithful strict monoidal functors:30

Ffunc : Set ↪→ Rel Fpure : WPFHilb ↪→ CPFHilb (1.8)

as well as object-squaring (i.e. H 7→ H⊗H) faithful strict monoidal functors:31

Fcp : CPFHilb ↪→ FHilb Fcp ◦ Fpure : WPFHilb ↪→ FHilb . (1.9)

But in our view the physical theories should primarily be formulated ax-

iomatically rather than in terms of these models, since it is at the axiomatic

level that the conceptually meaningful entities live, and hence it is on those that

structures should be imposed, rather than providing concrete presentations of

them which typically would carry more information than necessary/meaningful.

Ultimately, one would like to equip a strict symmetric monoidal category with

enough structure so that we can derive all observable physical phenomena,

without the necessity to provide a concrete model.

Then, the choice of a particular model such as WPFHilb can be seen as a

choice of coordinate system which might enable one to solve a certain problem

better than other coordinate systems. Hence for us the non-strictness of the

mathematical models is an unfortunate artifact, while the strictness which we

took for granted when setting up the formalism, which is also implicitly present

in the diagrammatic calculi, reflect the true state of affairs.

The category FHilb is the one that we typically have in mind in relation to

quantum mechanics. But other models may provide the same features. These

other models, in particular those of a more combinatorial nature, might give

some useful guidance towards, say, a theory of quantum gravity. Also, discrete

models are also extremely useful for computer simulations.

1.4.3 Where axioms and models meet: a theorem

Consider the following four devices:

(1) Axiomatically described strict symmetric monoidal categories, possibly

equipped with additional structure.

(2) Axiomatically described strict——— symmetric monoidal categories (for which

we refer to the many available textbooks and survey papers [147, 8, 16])

possibly equipped with additional structure.

30To see this for WPFHilb ↪→ CPFHilb, note that WPFHilb can be presented as a

category with the same objects as FHilb but with maps of the form f⊗ f̄ : H⊗H → H′⊗H′

(where f : H → H′ is any linear map) as the morphisms in WPFHilb(H,H′) [45]. Similarly,

also CPFHilb can be presented as a category with the homset CPFHilb(H,H′) containing

maps of type H⊗H → H′ ⊗H′, but now more general ones [171].
31This again relies on the presentations mentioned in the previous footnote.
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(3) The diagrammatical calculus of strict symmetric monoidal categories (of

which precise descriptions can be found in [128, 171, 172]) possibly equipped

with additional graphical elements.

(4) The concrete category FHilb.

If we establish an equation in one of these, what do we know about the validity

of equations in one of the others?

Theorem. An equation between two scenarios in the language of symmetric

monoidal categories follows from the axioms of symmetric monoidal categories,

if and only if, the corresponding equation between two scenarios in the lan-

guage of strict symmetric monoidal categories follows from the axioms of strict

symmetric monoidal categories, if and only if, the corresponding equation in

the graphical language follows from isomorphisms of diagrams.

The reader who wants to understand the nitty-gritty of this statement can

consult [172]. The main point that we wish to make here is that for all practical

purposes, strict symmetric monoidal categories, general symmetric monoidal

categories, and the corresponding graphical language, are essentially one-and-

the-same thing! The first ‘if and only if’ is either referred to as MacLane’s

strictification theorem or coherence for symmetric monoidal categories [147, 58].

So what about the concrete category FHilb? As it is an example of a

symmetric monoidal category, by the above result, whatever we prove about a

strict one, or within the diagrammatic language, will automatically also hold

for FHilb. Obviously, one would expect the converse not to hold since we are

only considering about a very particular symmetric monoidal category.

However, recently Selinger [173] elaborated on an existing result due to

Hasegawa, Hofmann and Plotkin [111] to show that there is in fact a converse

statement, provided one adds some extra structure.

Definition. A dagger compact (closed) category32 [6, 7, 171] is a compact

(closed) category C together with a dagger functor, that is, for all A,B ∈ |C|
a mapping

†A,B : C(A,B)→ C(B,A) ,

which is such that †A,B and †B,A are mutually inverse, and which moreover pre-

serves the composition and the tensor structure, including units and identities.

32Strict dagger compact (closed) categories appeared in the work of Baez and Dolan [15]

as a special case for n = 1 and k = 3 of k-tuply monoidal n-categories with duals.
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Graphically, the dagger functor merely flips things upside-down [171, 48]:

f h

g

z

x

_~

z

x

hf

g

†

z

x

h

†

†

†

f

g

†

†

z

g

h

x

f _~

†

In the representation on the left we made the boxes asymmetric to distinguish

between a morphism and its dagger. In the one on the right, since nodes have no

a priori orientation in the plane, we used an explicit involution on the symbols.

Theorem. An equation between two scenarios in the language of dagger com-

pact categories follows from the axioms of dagger compact categories, if and

only if, the corresponding equation in the graphical language follows from iso-

morphisms of diagrams, if and only if, an equation between two scenarios in

the language of dagger compact (closed) categories holds in FHilb.

Since there are faithful strict monoidal functors which embed WPFHilb

as well as CPFHilb within FHilb the correspondence with the diagrammatic

language also carries over to these models.

The question whether we can carry this through for richer languages than

that of dagger compact categories remains open. Still, the language of dagger

compact categories already captures many important concepts: trace, trans-

pose, conjugate, adjoint, inner-product, unitarity, (complete) positivity [48].

While admittedly, the conceptual significance of the dagger is still being

discussed,33 besides compactness, the dagger is what truly gives a theory it’s

relational character. In particular, it is a key property of the category FRel

which the category FSet fails to admit: each relation has a converse relation.

This is also the reason why FRel and FHilb are so alike in terms of their

33Also mathematically, there are some issues with the dagger to which some refer as ‘Evil’.

The main problem is that the structure of the dagger, in particular its strict action on objects,

is not preserved under so-called categorical equivalences. This has been the subject of a recent

long discussion on the categories mailing list involving all the big shots of the area.
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categorical structure, while FRel and FSet are very different in terms of cate-

gorical structure, despite the fact that FRel and FSet have the same objects,

the same compositions, and that the morphisms of FSet are a subset of those

of FRel.34 Intuitively, the reason for this is that linear maps (when conceived

as matrices) can be seen as some kind of generalized relations, in that they do

not just encode whether two things relate, but also in which manner that they

relate, by means of a complex number. In contrast to the many who conceive

quantum theory as a generalized probability theory, for us it is rather a theory

of generalized relations, the latter now to be taken in its mathematical sense.

Example: Spekkens’ toy qubit theory. In [175] Spekkens suggested dag-

ger duality as an axiom for a class of theories which would generalize his toy

qubit theory [174]. The concrete presentation of Spekkens’ qubit theory as a

dagger compact category Spek is in [50, 51, 82]. This presentation enabled a

clear comparison with a dagger compact category Stab which encodes stabilizer

qubit theory, from which it emerged that the only difference between the toy

qubit theory and stabilizer qubit theory is the different group structure of the

phase groups [51],35 a concept introduced by Duncan and the author in [49].

We are also in a position explain why we restricted to finite sets/dimensions.

While Rel is compact closed and has a dagger structure, Hilb is neither com-

pact closed nor has a dagger.36 While some may take this as an objection to the

dagger compact structure, we think that the fact that Hilb fails to be dagger

compact may be an artifact of the Hilbert space structure, rather than a feature

of nature. Having said this, we do agree that dagger compactness surely isn’t

the end of the story. In particular, we would like to conceive also the dagger as

some kind of relation, rather than as an operation on a category as a whole.37

1.4.4 Non-isolation in the von Neumann quantum model

In order to assert that a physical theory includes non-isolated (i.e open) systems

for every system A ∈ |C| we considered a designated process >A : A→ I with:

>A ⊗>B = >A⊗B and >I = 1I , (1.10)

34A detailed analysis of the similarities between FRel and FHilb and the differences be-

tween FRel and FSet is in [58]. To mention one difference: in FSet the Cartesian product

behaves like a non-linear conjunction while in FRel it behaves like a linear conjunction.
35These correspond to the two available four-element Abelian groups, the four-element

cyclic group for stabilizer qubit theory and the Klein four group for the toy qubit theory.
36We do obtain a dagger when restricting to bounded linear maps and there are also

category-theoretic technical tricks to have something very similar to compact structure [5].
37There are manners to do this but we won’t go into them here.
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which are such that for all A ∈ |C| the mappings:

>A ◦ − : C(I, A)→ C(I, I)

assign the weights of each of these states. We now present a result which

characterizes an additional condition that these processes have to satisfy relative

to a collection of isolated (or closed) processes in order that:

open processes

closed processes
·
·

mixed state quantum theory

pure state quantum theory
·
·

CPFHilb

WPFHilb
.

That is, in words, if we know that our theory of closed systems is ordinary

quantum theory of closed systems, what do we have to require from the feed-

into-environment processes such that the whole theory corresponds to quantum

theory of open systems? This condition turns out to be non-trival.

Consider a symmetric monoidal category C with feed-into-environment pro-

cesses, that is, for each A ∈ |C| a designated morphism >A : A → I satisfying

(1.10). Assume that it contains a sub symmetric monoidal category Cpure, and

we will refer to the morphisms in it as pure. By a purification of a morphism of

f : A→ B in C we mean a morphism fpure : A→ B ⊗ C in Cpure such that:

(1B ⊗>C) ◦ fpure = f . (1.11)

We say that Cpure generates C whenever each morphism in C can be purified.

Example: purification in probabilistic theories. The power of purifica-

tion as a postulate is exploited by Chiribella, D’Ariano and Perinotti in [41].

By combining the results in [171] with those of [47] we obtain:

Theorem. If Cpure ' WPFHilb generates C, and if for the usual dagger

functor on WPFHilb we have for all f : C → A and g : C → B in WPFHilb:

>A ◦ f = >B ◦ g ⇐⇒ f† ◦ f = g† ◦ g , (1.12)

then C ' CPFHilb.

More generally, for any pair C and Cpure the conditions (1.10, 1.11) and a

slight generalization of (1.12) together allow one to construct the whole category

C from morphisms in Cpure by only using the dagger symmetric monoidal

structure, together with a canonical inclusion of in Cpure within C, a result

which is obtained by combining the results in [171], [47] and [46]. If the category

C is compact closed, as it is the case for WPFHilb, then (1.12) does suffice.
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In this case, following Selinger in [171], the open processes in the constructed

category CPC all take the form:

puref fpure

for some fpure : A→ B ⊗ C in Cpure, where the left-right reflection represents

the composite of the dagger and transposition, explicitly:

=

fpure

puref

In WPFHilb this is nothing but complex conjugation (see [48] for more details

on this). The subcategory of pure processes consists of those of the form:

puref fpure

Graphically, condition (1.12) can then be rewritten as:

fpure

=

gpure ⇔ fpure

=

gpure

fpure gpure

and from it immediately follows, setting g := 1A, that:

fpure

= ⇔ fpure

=fpure

Calling processes fpure which obey

f†pure ◦ fpure = 1A

isometries, it then follows that isometries are exactly those processes which

leave the feed-into-environment processes invariant.

Condition (1.12) can in the compact case be equivalently presented as:

=

puref fpure pureg g
pure

fpure

=

gpure ⇔
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which provides a direct translation between Selinger’s presentation of WPFHilb

and one which relies on the feed-into-environment processes. The more general

form of the non-compact case mentioned above is now obtained by ‘undoing’

all compact morphisms which requires introduction of symmetry morphisms:

=

puref

fpure

=

gpure ⇔
puref

pureg

pureg
.

Importantly, both (WP)C and CPC are symmetric monoidal (and compact)

if C is, so CPC admits a graphical language in its own right without reference

to the underlying symmetric monoidal category C.

1.4.5 Non-isolation and causality

If we restrict to processes that ‘happen with certainty’ then, as shown by

Chiriballa, D’Ariano and Perinotti, uniqueness of a deterministic effect en-

forces causality in the sense that states of compound systems have well-defined

marginals [41]. In category-theoretic terms, this uniqueness means that I is

terminal, that is, for each object A there is a unique morphism of type A→ I,

which will then play the role of >A. It then immediately follows that

>A⊗B = >A ⊗>B ,

and hence, that there are no entangled effects. The manner in which:

• connectedness in graphical calculus as expressing causal connections, and

• this notion of causality in terms of a terminal object

are related is currently being explored in collaboration with Ray Lal [53].

1.5 Classicality and measurement

For us, a classicality entity is one for which there are no limitations for to be

shared among many parties, that is, using quantum information terminology,

which can be broadcast [21]. It is witnessed by a collection of processes which

establish this sharing/broadcasting. To give an example, while an unknown

quantum state cannot be cloned [71, 187], this scientific fact itself is of course

available to every individual of the scientific community, by means of writing a

paper about it and distributing copies of the journal in which it appears.
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So our notion of classicality makes no direct reference to anything ‘material’,

but to the ability of a logical flow of information to admit ‘branching’. In

relational terms, it will be witnessed by the relation that identifies the branches

as being identical. The power of this idea for describing quantum information

tasks is discussed in a paper with Simon Perdrix [63], where it is also discussed

that decoherence can be seen as a material embodiment of this idea.

Our explorations have indeed made us realize that rather than starting from

a classical theory which one subjects to a quantization procedure in order to

produce a theory which can describe quantum systems, one obtains an elegant

compositional mathematical framework when, starting from a ‘quantum’ uni-

verse of processes, one identifies classicality in this manner. Put in slightly more

mathematical terms, citing John Baez in TWF 268 [14] on our work:

“Mathematicians in particular are used to thinking of the quantum

world as a mathematical structure resting on foundations of classical

logic: first comes set theory, then Hilbert spaces on top of that.

But what if it’s really the other way around? What if classical

mathematics is somehow sitting inside quantum theory? The world

is quantum, after all.”

This idea of “classical objects living in a quantum world governed by quantum

rules” was introduced by Pavlovic and myself in [61] and further elaborated on

in [62, 57, 59]. In terms of symmetric monoidal categories, we are speaking

the language of certain kinds of so-called internal Frobenius algebras [40, 61,

62]. Interestingly, these Frobenius algebras appeared first in the literature in

Carboni and Walter’s axiomatization of the category Rel [40].

1.5.1 Classicality

Below, when we (slightly abusively) denote several systems by the same symbol,

we think of them as distinct identical systems and not as the same one.

The processes which establishes the shareability that is characteristic for

classicality implements an ‘equality’ between the distinct instances of that en-

tity, and we depict them in a ‘spider-like’ manner:

Ξn,m ≡

m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

: X ⊗ . . .⊗X︸ ︷︷ ︸
n

→ X ⊗ . . .⊗X︸ ︷︷ ︸
m
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By transitivity of equality it immediately follows that:

....
....

....
....

....
....

....=

.

One may distinguish two kinds of classicality. The more restrictive first kind,

called controlled (or closed or pure) requires sharing to be within the domain of

consideration. This is explicitly realized by:

Ξ1,1 = 1X i.e.

=

,

The second kind of classicality, called uncontrolled (or open or mixed) allows

sharing to be outside our domain of consideration, which in the light of the

above composition rule is realized by:

Ξo1,0 = >X i.e.

=

,

since then we obain:

(>X ⊗ 1X⊗...⊗X) ◦Ξon,m = Ξon,m−1 i.e.

....
.... =

....

....
,

i.e. uncontrolled sharing is invariant under feed-into-environment processes.

These two forms of classicality may be naturally related to each other by

introducing feed-into-environment processes within the closed spiders, or dually

put, by considering closed spiders as purifications of the open ones:

(>X ⊗ 1X⊗...⊗X) ◦Ξn,m = Ξon,m−1 i.e.

....
.... =

....

....
.

which can in fact be summarized as the following two equations:

= =

We can identify some special examples:

• erasing := Ξ1,0 ≡
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• cloning := Ξ1,2 ≡

• correlating := Ξ0,2 ≡

• comparing := Ξ2,0 ≡

• matching := Ξ2,1 ≡

• either := Ξ0,1 ≡

Conceptually, it is more than fair to cast doubt on physical meaningfulness

of closed spiders. To see this it suffices to consider the erasing operation in

the light of Landauer’s principle [140, 150]. Also, when thinking of a cloning

operation then one usually would assume some ancillary state onto which one

clones, and this ancillary state by the very definition of state is an open process:

U

=

ψ

Still it is useful to retain the closed spiders as an idealized concept given that

their behavioral specifications, exactly matches the well-understood mathemat-

ical gadget of commutative Frobenius algebras (see Section 1.5.4).

A particularly relevant open spider is the purification of copying:

• broadcasting := Ξo1,1 ≡

While it has the type of an identity it is genuinely non-trivial.

Example: cloning and broadcasting in quantum information. A hint

why the above may indeed characterize classicality on-the-nose comes from the

no-cloning theorem [71, 187] which states that the only quantum states which

can be copied by a single operation have to be orthogonal. Maximal sets of these

jointly copy-able states make up an orthonormal basis i.e. a (pure) classical

‘slice’ of quantum theory. Similarly, the no-broadcasting theorem [21] states

that the only quantum states which can be broadcast by a single operation

correspond to a collection of density matrices that are diagonal in the same

orthonormal basis. This table summarizes cloneability/broadcastability:

pure classical mixed classical pure quantum mixed quantum

broadcastable: yes YES no no

cloneable: yes NO no no



Deep Beauty—Coecke (rev. yyyy Mmm dd) 45

Conversely, for an orthonormal basis {|i〉}i of H the corresponding broadcast

operation is the following completely positive map:

|i〉〈j| 7→ δij |i〉〈i| .

Clearly, this completely positive map totally destroys coherence, hence broad-

casting is physically embodied by decoherence. Decoherence can indeed be seen

as ‘sharing with (cf. coupling to) the environment’.

Given that in quantum information both copying and broadcasting enable

to characterize an orthonormal basis, the question then remains to define can-

didate cloning/broadcasting operations in a manner that there is a one-to-one

correspondence between such operations and orthonormal bases. That is ex-

actly what we did above, as the theorem stated below confirms.

Theorem. In (WP)FHilb the above defined families

X = {Ξn,m | n,m ∈ N}

of closed spiders are in bijective correspondence with orthogonal bases. If we

moreover have that Ξn,m = Ξ†m,n for all n,m then this basis is orthonormal.

To show this we need to combine Steve Lack’s (highly abstract) account on

spiders [136] (of which a more accessible direct presentation is in [57]) with a

result obtained by Pavlovic, Vicary and myself [62] (see Section 1.5.4).

This result states that all non-degenerate observables can indeed be bijec-

tively represented by these sharing processes. Now we establish that spiders

are also expressive enough to associate a corresponding ‘classical slice’ of the

universe of all processes to each family X . We assert classicality of a process

by imposing invariance under broadcasting/decoherences [59].38 The copyabil-

ity of pure classical data can be used to assert deterministic processes. We

conveniently set oX = Ξo1,1 ∈ X and δX = Ξ1,2 ∈ X .

Definition. A classical process is a process of the form:

oY ◦ f ◦ oX ≡ f

38This is akin to Blume-Kohout and Zurek’s quantum Darwinism [30, 189].
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where f : X → Y can be an arbitrary process. Evidently, classical processes

can be equivalently defined as processes f : X → Y which satisfy:

oY ◦ f ◦ oX = f that is f

=

f .

Such a classical process is normalized or stochastic if we have:

>Y ◦ f = >X that is f

= .

and it is deterministic if we moreover have that:

δY ◦ f = (f ⊗ f) ◦ δX that is

=

f
ff

.

Theorem. In CPFHilb normalized classical processes exactly correspond to

the usual notion of stochastic maps, that is, matrices with positive real entries

such that all columns add up to one, and deterministic processes correspond to

functions, that is, matrices with exactly one 1-entry in each column.

This result was shown by Paquette, Pavlovic and myself in [59] where many

other species of classical processes (doubly stochastic, partial processes, rela-

tions, ...) are defined in a similar manner.39

Challenge. Develop the above without any reference to closed spiders.

1.5.2 Measurement

Once we have identified these classical entities (provided they exist at all), we

may wish to represent general processes relative to this entity. This is obviously

what observables (or measurements) in quantum theory aim to do. One thing

we know for a fact is that it is not possible to represent the whole universe of

processes by means of such an entity. So what is the best we could aim for?

By a probe we mean a process

(1B ⊗ oX ) ◦m : A→ B ⊗X that is .

39We adopted Carboni and Walters’ axiomatization of the category of relations [40], which

also involved introducing the Frobenius law, to the probabilistic and the quantum case.
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We call it a non-demolition probe if A and B are identical systems, which we

denote by setting A = B, and we call it a demolition probe if B is I. By a von

Neumann probe we mean a non-demolition one which is such that:

(m⊗ 1X) ◦m = (1A ⊗ δX ) ◦m that is
=

(1.13)

where we used colors to distinguish the systems A and X for the reader’s con-

venience. There is a very straightforward interpretation to (1.13):

• Applying the same probe twice, is equal to applying it once and then

copying the output. More intuitively put, the A-output after the first

application is such that the probe produces the same X-output (and also

the same A-output) after a second application. This means that there is

strict relationship between the A-output and the X-output for that probe.

Set aX= Ξ2,0 ∈ X and eX = Ξ1,0 ∈ X .

Theorem. In (WP)FHilb von Neumann probes exactly correspond with spec-

tra of mutually orthogonal idempotents {Pi}, that is:

Pi ◦ Pj = δij · Pi .

If we moreover have that this probe is self-adjoint :

m† = (1A ⊗ δX ) ◦ (1A⊗ aX ) that is
=

(1.14)

then these idempotents are orthogonal projectors, that is:

P†i = Pi ,

and if:

(1A ⊗ eX ) ◦m = 1A that is

=

(1.15)

then this spectrum is exhaustive i.e.
∑
i Pi = 1H.

This result was shown by Pavlovic and myself in [61].

Challenge. Develop the above without any reference to closed spiders.

Challenge. Express the Geneva School’s properties within this framework.
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1.5.3 Classicality in the von Neumann quantum model

We now discuss how classicality fits within the model of the environment (i.e. open

systems) of Section 1.4.4. First note that classicality in the above sense auto-

matically yields self-dual (i.e. X = X∗) compactness:

= =

In CPC decoherences oX take the following shape:

=

and consequently classical operations take the shape:

=

puref fpure
g

pure

for some process g : X → Y . Hence we obtain:

classical

non-classical
·
·

one wire

two wires
.

This fact seems to be closely related to Hardy’s axiom K = N2 [105], which in

turn is closely related to Barrett’s local tomography assumption [23].

The interpretation of (1.15) in the light of (1.13) and (1.14) is intriguing:

BOBALI

=

=

CP

= = = =
=

CP

BOB

The left upper picture articulates a protocol where Ali and Bob share a Bell-

state and Ali performs a measurement on it. We are interested in the resulting

state at Bob’s end, and therefore we feed Ali’s outputs into the environment.

Using (1.13), (1.14) and in particular also (1.15) within the CP-representation it
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then follows that what Bob sees is the dagger of a feed-into-environment process,

that is, a maximally mixed state. Hence this protocol provides Bob with no

knowledge whatsoever, hence not violating no-faster-than-light-signaling.

Challenge. Develop the above without any reference to closed spiders. Then

relate this to Hardy’s and D’Arianio’s research programs.

1.5.4 The algebra of classical behaviors

The above seems to have very little to do with the structures we usually en-

counter in mathematics, and quantum theory in particular. We will now relate

it to ‘semi-familiar’ mathematical structures, which are the ones that enable to

establish the relation with orthonormal bases mentioned above.

Commutative monoids and commutative comonoids

A commutative monoid is a set A with a binary map

− • − : A×A→ A

which is commutative, associative and unital i.e

(a • b) • c = a • (b • c) a • b = b • a a • 1 = a .

In other words, which may appeal more to the physicist, it is a group without

inverses. Note that we could also define a monoid as a one object category.

Slightly changing the •-notation to

µ : A×A→ A

for which we now have

µ(µ(a, b), c) = µ(a, µ(b, c)) µ(a, b) = µ(b, a) µ(a, 1) = a ,

enables us to write these conditions in a manner that makes no reference any-

more to the elements a, b, c ∈ A, namely:

µ ◦ (µ× 1A) = µ ◦ (1A × µ) µ = µ ◦ σ µ ◦ (1A × u) = 1A

with:

σ : A×A→ A×A :: (a, b) 7→ (b, a) u : {∗} → A :: ∗ 7→ 1

where {∗} is any singleton. This perspective emphasizes how the map µ ‘inter-

acts’ with itself, as opposed to how it ‘acts’ on elements, which clearly brings

us closer to the process view advocated in this paper.
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This change of perspective also allows us to define a new concept merely by

reversing the order of all compositions and types. Concretely, a cocommutative

comonoid is a set A with two maps:

δ : A→ A×A and e : A→ {∗}

which is cocommutative, coassociative and counital i.e.:

(δ × 1A) ◦ δ = (1A × δ) ◦ δ δ = σ ◦ δ (1A × e) ◦ δ = 1A .

Obviously there are many well-known examples of monoids, typically monoids

with additional structure e.g. groups. Another one is the two-element set {0, 1}
equipped with the ‘and’-monoid:

∧ : {0, 1} × {0, 1} → {0, 1} ::


(0, 0) 7→ 0

(0, 1) 7→ 0

(1, 0) 7→ 0

(1, 1) 7→ 1

u∧ : {∗} → {0, 1} :: ∗ 7→ 1 .

Given that from the above perspective monoids and comonoids are very similar

things, why do we never encounter comonoids in a standard algebra textbook?

Let us first look at an example of such a comonoid, just to show that such

things do exists. Let X be a any set and

δ : X → X ×X :: x 7→ (x, x) e : X → {∗} :: x 7→ ∗ .

The map δ copies the elements of X, while e erases them. Here coassociativity

means that if we wish obtain three copies of something, then after first making

two copies it doesn’t matter which of these two we copy again. Cocommutativity

tells us that after copying we exchange the two copies we still have the same.

Counitality tells us that if we first copy and then erase one of the copies, this

is the same as doing nothing.

Now, the reason why you won’t encounter any comonoids in a standard

algebra textbook is simply because this example is the only example of a com-

mutative comonoid, and hence it carries no real content, i.e. it freely arises

from the underlying set. But the reason for the trivial nature of commutative

comonoids is the fact of the following being functions:

µ : A×A→ A δ : A→ A×A u : {∗} → A e : A→ {∗} .

In other words, µ and δ are morphisms in the category FSet. While the con-

cept of a commutative monoid is interesting in FSet, that of a cocommutative

comonoid isn’t in FSet. However, if we put the above definition in the language

of monoidal categories and pass to other categories than FSet, then the situa-

tion changes. In fact, if this category has a †-functor, then to each commutative
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monoid corresponds a cocommutative comonoid. This already happens when

we relax the condition that µ and δ are functions to µ and δ being relations.

Let C be any symmetric monoidal category. A commutative C-monoid is

an object A ∈ |C| with morphisms:

µ : A⊗A→ A u : I→ A

which is commutative, associative and unital i.e.:

µ ◦ (µ⊗ 1A) = µ ◦ (1A ⊗ µ) µ = µ ◦ σ µ ◦ (1A ⊗ u) = 1A .

Similarly, a cocommutative C-comonoid is an object A with morphisms

δ : A→ A⊗A e : A→ I

which is cocommutative, coassociative and counital i.e.:

(δ ⊗ 1A) ◦ δ = (1A ⊗ δ) ◦ δ δ = σ ◦ δ (1A ⊗ e) ◦ δ = 1A

Now putting all of this diagrammatically, a commutative C-monoid is a pair:

: A⊗A→ A : I→A

satisfying:

= ==
and a cocommutative C-comonoid is a pair:

: A→ A⊗A : A→I

satisfying:

= ==

Recall here also that it is a general fact in algebra that if a binary operation

− • − both has a left unit 1l and right unit 1r, then these must be equal:

1l = 1l • 1r = 1r .

It then also follows that a commutative multiplication can only have one unit,

i.e. if it has a unit then it is completely determined by the multiplication. This

fact straightforwardly lifts to the more general kinds of monoids and comonoids
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that we discussed above, and therefore, we will at several occasions omit spec-

ification of the (co)unit.

Here is an example of commutative monoids and corresponding cocommu-

tative comonoids in FHilb on a two-dimensional Hilbert space:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉

::

{
|0〉 7→ |00〉+ |01〉+ |10〉
|1〉 7→ |11〉

The first monoid has the ‘and’-operation applied to the {|0〉, |1〉}-basis as its

multiplication. The comultiplication is the corresponding adjoint.

Commutative dagger Frobenius algebras

Now consider the following three comultiplications:

µZ = Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉

δZ = Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

µX = X ::

{
|+ +〉 7→ |+〉
| − −〉 7→ |−〉

δX = X ::

{
|+〉 7→ |+ +〉
|−〉 7→ | − −〉

µY = Y ::

{
| ] ] 〉 7→ | ] 〉
|= =〉 7→ |=〉

δY = Y ::

{
| ] 〉 7→ | ] ] 〉
|=〉 7→ |= =〉

Each of these is defined as a copying operation of some basis, respectively

Z = {|0〉, |1〉} X = {|+〉 = |0〉+ |1〉, |−〉 = |0〉 − |1〉}

Y = {|]〉 = |0〉+ i|1〉, |=〉 = |0〉 − i|1〉} ,

that is, the eigenstates for the usual Pauli operators. Each of these encodes a

basis in the sense that we can recover the basis from the comultiplication as

those vectors that satisfy:

δ(|ψ〉) = |ψ〉 ⊗ |ψ〉 .

The fact that no other vector besides those that we by definition copy are in fact

copied is a consequence of the above mentioned no-cloning theorem [71, 187].

The corresponding multiplications are again their adjoints. These last ex-

amples embody the reason why we are interested in commutative comonoids.

What is already remarkable at this stage is that each of these encodes an or-

thonormal basis in a language only involving composition and tensor. There
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is no reference whatsoever to either sums or scalar multiples in contrast to the

usual definition of an orthonormal basis {|i〉} on a Hilbert space:

∀|ψ〉 ∈ H,∃(ci)i ∈ Cn : |ψ〉 =
∑
i

ci|i〉 ∀i, j : 〈i|j〉 = δij .

But there is more. In fact, one can endow these monoids and comonoids with

some additional properties, expressible in a language only involving composi-

tion, tensor and now also adjoint, such that they are in bijective correspondence

with orthonormal bases.

Definition. A commutative algebra in a symmetric monoidal category is a

pair consisting of a commutative monoid and a cocommutative comonoid on

the same object. A special commutative Frobenius algebra is a commutative

algebra which is moreover special and satisfies the Frobenius law, respectively:

= =

.

A special commutative dagger Frobenius algebra or classical structure or basis

structure in a dagger symmetric monoidal category is a special commutative

Frobenius algebra for which the monoid is the dagger of the comonoid.

Think of an orthonormal basis B = {|bi〉}i for a Hilbert space H as the

pair (H,B) consisting of the Hilbert space which carries this basis as additional

structure. Since the multiplication and the comultiplication are related by the

dagger, and since having a unit is rather a property than a structure, we denote

a special commutative dagger Frobenius algebra on an object A as (A, δ).

Theorem. There is a bijective correspondence between orthogonal bases for

finite dimensional Hilbert spaces and special commutative Frobenius algebras

in FHilb. This correspondence is realized by the mutually inverse mappings:

• Each special commutative Frobenius algebra (H, δ) is mapped on (H,Bδ)
where Bδ consists of the set of vectors that are copied by δ.

• Each orthonormal basis (H,B) is mapped on (H, δB : H → H⊗H) where

δB is the linear map which copies the vectors of B.

Restricting to orthonormal bases corresponds to restricting to special commu-

tative dagger Frobenius algebras.

This result was shown by Pavlovic, Vicary and myself in [62].
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That classicality boils down to families of spiders is a consequence of the

fact that special commutative dagger Frobenius algebras are in bijective corre-

spondence with spiders, as our notation already indicated. This was shown by

Lack [136], but in a manner which is so abstract that it may not be accessible

to the reader. A more direct presentation of the proof is in [57].

Varying the coordinate system

But what if we change the category? It turns out that this mathematical

concept, when we look through coordinate systems other than FHilb, allows

us to discover important quantum mechanical concepts in places where one

doesn’t expect it, most notably ‘complementarity’ or ‘unbiasedness’ [169].

In [49] the author and Duncan defined complementarity in terms of special

commutative dagger Frobenius algebras, i.e. still in terms of a language only

involving composition, tensor and adjoint, in a manner which yields the usual

notion in FHilb. Concretely, it was shown that classical structures:(
H , δG =

)
and

(
H , δR =

)
in FHilb are complementary if and only if we have:

=

where is a normalizing scalar and is a so-called dualizer [60, 49], which

both are obtained by composing δ†g, δr, ug and u†r in a certain manner.40

The quite astonishing fact discovered by Edwards and the author in [50]

was that even in FRel one encounters such complementary classical structures,

even already on the two-element set {0, 1}:
40Their explicit definition is not of importance here; it suffices to know that formally it

witnesses the role played by complex conjugation in adjoints, in the sense that it becomes

trivial (i.e. identity) when only real coefficients are involved, which is for example the case

for the Z- and X-classical structures for which we have:

=

Z Z

X X

Those acquainted with the field of quantum algebra [177] might recognize here the defining

equation of a Hopf-algebra, with the dualizer playing the role of the antipode. The apparent

non-symmetrical left-hand-side picture becomes symmetric if we represent the bases in terms

of the unitary operations which transform a chosen standard basis into them [65].
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Z ::

{
(0, 0) 7→ 0

(1, 1) 7→ 1 Z ::

{
0 7→ (0, 0)

1 7→ (1, 1)

::

{
(0, 0), (1, 1) 7→ 0

(0, 1), (1, 0) 7→ 1
::

{
0 7→ (0, 0), (1, 1)

1 7→ (0, 1), (1, 0)

Meanwhile, Pavlovic, Duncan and Edwards, and Evans et al., have classified all

classical structures and complementarity situations in FRel [155, 79, 85].

Example: Spekkens’ toy qubit theory. It is a particular case of these

complementarity situations in FRel which gives rise to Spekkens’ toy qubit

theory discussed above and hence its striking resemblance to quantum the-

ory. This exploration of FRel is still an unfinished story. While, for example

Spekkens’ toy theory is a local theory, we strongly suspect that we can discover

non-locality (in the sense of [51]) somewhere within FRel.41
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in Mathematics 42, 1–82.

[127] A. Joyal (1986) Foncteurs analytiques et espc̀es de structures. In: Combi-
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[160] H. Poincaré (1905) La Science et l’Hypothèse. Flammarion.
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[166] M. Rédei (1997) Why John von Neumann did not like the Hilbert space

formalism of quantum mechanics (and what he liked instead). Studies in

History and Philosophy of Modern Physics 27, 493–510.

[167] C. Reid (1970) Hilbert. Springer-Verlag

http://pirsa.org/09060029/
http://arxiv.org/abs/0812.2266
http://arxiv.org/abs/0909.1036
http://arxiv.org/abs/quant-ph/0301052


Deep Beauty—Coecke (rev. yyyy Mmm dd) 69

[168] C. Rovelli (1996) Relational quantum mechanics. International Journal of

Theoretical Physics 35, 1637–1678. arXiv:quant-ph/9609002

[169] J. Schwinger (1960) Unitary operator bases. Proceedings of the National

Academy of Sciences of the U.S.A. 46, 570–579.

[170] R. A. G. Seely (1998) Linear logic, ∗-autonomous categories and cofree

algebras. Contemporary Mathematics 92, 371–382.

[171] P. Selinger (2007) Dagger compact closed categories and completely posi-

tive maps. Electronic Notes in Theoretical Computer Science 170, 139–163.

[172] P. Selinger (2009) A survey of graphical languages for monoidal categories.

In: New Structures for Physics, B. Coecke (ed), pages 289–356. Lecture

Notes in Physics 813, Springer-Verlag. arXiv:0908.3347

[173] P. Selinger (2010) Finite dimensional Hilbert spaces are complete for dag-

ger compact closed categories. Electronic Notes in Theoretical Computer

Science, to appear.

[174] R. W. Spekkens (2007) Evidence for the epistemic view of quantum states:

A toy theory. Physical Review A 75, 032110. arXiv:quant-ph/0401052

[175] R. W. Spekkens (2007) Axiomatization through foil theories. Talk, July

5, University of Cambridge.
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