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We study in detail the structure of phase space in the neighborhood of stable periodic orbits in a
rotating 3D potential of galactic type. We have used the color and rotation method to investigate
the properties of the invariant tori in the 4D spaces of section. We compare our results with
those of previous works and we describe the morphology of the rotational, as well as of the tube
tori in the 4D space. We find sticky chaotic orbits in the immediate neighborhood of sets of
invariant tori surrounding 3D stable periodic orbits. Particularly useful for galactic dynamics
is the behavior of chaotic orbits trapped for long time between 4D invariant tori. We find that
they support during this time the same structure as the quasi-periodic orbits around the stable
periodic orbits, contributing however to a local increase of the dispersion of velocities. Finally
we find that the tube tori do not appear in the 3D projections of the spaces of section in the
axisymmetric Hamiltonian we examined.
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1. Introduction

The method of surfaces of section for the study of
dynamical systems dates back to Poincaré (1892)
and has many applications to Dynamical Astron-
omy (for a review see e.g. Contopoulos 2002). A
basic problem in Hamiltonian Systems of three de-
grees of freedom is the visualization of the 4D1 sur-
faces of section. Let us assume the phase space of an
autonomous Hamiltonian system, that has 6 dimen-
sions, e.g. in Cartesian coordinates, (x, y, z, ẋ, ẏ, ż).
For a given value of the Hamiltonian a trajectory
lies on a 5D manifold. In this manifold a surface of
section is 4D. This does not allow us to visualize
it directly. Several methods have been applied to
overcome this problem in the past and we summa-
rize them below.

The structure of the 4D space phase space was
examined for the first time in the pioneer work of
Froeschlé (1970, 1972). In that work he used stereo-
scopic views and the method of slices in order to
understand the structure of tori, that appeared at
the neighborhood of stable periodic orbits. Similar
methods have been applied by Martinet and Magne-
nat (1981), Contopoulos et al. (1982), and Magne-
nat (1982) for studying the 3D projections of invari-
ant tori in the 4D surface of section or in the phase
space of a 4D symplectic map. The 2D projections
of such invariant tori have been examined on var-
ious 2D planes in detail (e.g. Skokos, Contopoulos
and Polymilis 1997, 1999).

In the present paper we use the method of
color and rotation proposed by Patsis and Zachi-
las (1994). In this method we first consider 3D pro-
jections and rotate the 3D figures on a computer
screen to observe the figure from all its sides. Then
we use colors to indicate the 4th dimension. For this
purpose we make use of the “Mathematica” package
(Wolfram 1999) and of its subroutines. Each point is
colored according to the value of its 4th coordinate
in the following way: Firstly we define the surface
of section that we will use, e.g. y = 0 with ẏ > 0.
Secondly we select a 3D subspace of the surface of
section, e.g. (x, ẋ, ż) and we determine the mini-
mum and maximum values of the 4th coordinate z.
Finally we normalize the resulting interval [min(z),
max(z)] into [0,1] from which interval the color func-
tions of “Mathematica” take values. In our figures
we give always the color function of “Mathemat-

1throughout the paper we will refer to “n-dimensional” as
“nD”; i.e. 3D, 4D etc.

ica” that we used in a color-coded bar. The point of
view of the observer of the figures is given in spher-
ical coordinates. This specifies the direction along
which the figure is projected. The unit for distance
d of the consequents of the surface of section from
the observer is given by “Mathematica” in a spe-
cial scaled coordinate system in which the longest
side of the bounding box, which surrounds the fig-
ure, has length 1. For all figures we use d = 1. The
method associates the smooth distribution or the
mixing of colors, with specific types of dynamical
behavior in the 4th dimension (Patsis and Zachilas
1994).

In order to study the structure of phase space at
the neighborhood of a periodic orbit (p.o.), we first
locate it by means of an iterative method and cal-
culate its stability. The calculation of the linear sta-
bility of a periodic orbit is based on the method of
Broucke (1969) and Hadjidemetriou (1975). We first
consider small deviations from its initial conditions
and then integrate the orbit again to the next up-
ward intersection. In this way a 4D map (Poincaré
map) is established, which is unique (Abraham and
Marsden 1978 p. 521) and relates the initial with
the final point. The relation of the final deviations
of this neighboring orbit from the periodic one, with
the initially introduced deviations can be written in
vector form as ξ = M ξ0. Here ξ is the final devia-
tion, ξ0 is the initial deviation M is a 4× 4 matrix,
called the monodromy matrix. This matrix satis-
fies the symplectic identity and the map is called
symplectic (Arnold and Givental 2000). It can be
shown that the characteristic equation can be writ-
ten in the form λ4 + aλ3 + βλ2 + aλ + 1 = 0. Its
solutions λi, i = 1, 2, 3, 4, due to the symplectic
identity of the monodromy matrix, that obey the
relations λ1λ2 = 1 and λ3λ4 = 1 can be written as

λ1,
1

λ1

=
−b1 ±

√

b2
1
− 4

2

λ3,
1

λ3

=
−b2 ±

√

b2
2
− 4

2

(1)

where

b1,2 =
a±

√
∆

2
(2)

and

∆ = a2 − 4(β − 2) (3)
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The quantities b1 and b2 are called the stability
indices. Following the notation of Contopoulos and
Magnenat (1985) if ∆ > 0, |b1| < 2 and |b2| < 2, all
four eigenvalues are complex on the unit circle and
the periodic orbit is called ”stable” (S). If ∆ > 0
and |b1| > 2, |b2| < 2 or |b1| < 2, |b2| > 2, the
periodic orbit is called ”simple unstable” (U). In
this case two eigenvalues are on the real axis and
two are complex on the unit circle. If ∆ > 0 and
|b1| > 2 and |b2| > 2, the periodic orbit is called
”double unstable” (DU) and the four eigenvalues
are on the real axis. Finally if ∆ < 0 the peri-
odic orbit is called “complex unstable” (∆). In this
case the four eigenvalues are complex numbers and
they are off the unit circle. For the generalization of
this kind of instability in Hamiltonian systems of N
degrees of freedom the reader may refer to Skokos
(2001). When two eigenvalues collide at (1, 0) of the
unit circle the parent family becomes simple unsta-
ble (U) and a new family of p.o. is born. In this
paper we examine the evolution of the phase space
at the transition from stability to simple instability
(S → U). The parent family in our example has an
orbital plane, i.e. it is 2D, and by becoming sim-
ple unstable as the energy increases, it generates by
bifurcation a stable 3D family of p.o..

According to the KAM theorem (Kolmogorov
1954, Moser 1962, Arnold 1963) in an almost In-
tegrable Hamiltonian system of N degrees of free-
dom there are orbits that lie on N-dimensional
tori. The KAM theorem has been extended to 2n-
dimensional almost integrable symplectic maps by
Wiggins (2003, p.225) and by Kuksin and Pöschel
(1994). This means that in a 2n-dimensional almost
integrable symplectic map there are orbits that lie
on n-dimensional tori. In our 3D Hamiltonian sys-
tem a 4D Poincaré map is defined on the surface of
section. In specific cases this 4D Poincaré map is al-
most integrable. Then, according to Wiggins (2003,
p.225), we have orbits that lie on 2D invariant tori
in the 4D space of section. The structure of these
tori, is the subject of our present, rather descriptive,
paper.

In order to facilitate the discussion of the figures
in the paper, we give some useful definitions related
to a torus. In the 3D space, a torus is a surface that
is generated when we rotate a circle on the x-z (or
y-z) plane around the axis z (Fig. 1). The definition
of the angles u and υ are also noted in Fig. 1. The
internal surface of the torus is defined as the set of
points of the torus, where we have 90o ≤ u ≤ 270o.
The external surface of torus is defined as the set of

points of the torus, where we have 0o ≤ u ≤ 90o and
270o ≤ u ≤ 360o. We will call “tori” the objects we
study in this paper, despite the fact that they seem
to be generated by an ellipse instead of a circle i.e.
they are elliptic tori.

Fig. 1. The definition of the υ and u angles on a torus.
Arrows indicate the direction along which the angles u,υ in-
crease from zero towards larger values.

The purpose of this paper is to study the struc-
ture of the phase space in the neighborhood of sta-
ble periodic orbits in 3D galactic potentials. We
want to understand how the phase space is struc-
tured and how it evolves as the stability of the x1,
2D central family of our system on the equatorial
plane, changes from stable to simple unstable. We
want also to understand how the phase space struc-
ture evolves as the main parameters of our system
vary. In section 2 we describe our Hamiltonian sys-
tem, while in section 3 we present the morpholog-
ical evolution of the families of periodic orbits in-
volved in our study. Section 4 discusses the struc-
ture of the phase space when we perturb the initial
conditions of our stable periodic orbits in the x-
direction. We study successively the dynamical be-
havior close to the periodic orbit before (Sect. 4.1)
and after (Sect. 4.2 ) the transition of the central
family from stability to instability. We discuss as
well the “rotation numbers” we define on the tori
we have found (Sect. 4.3). Then, we increase the en-
ergy and we describe the changes we observe in the
spaces of section in Sect. 4,4. The perturbations in
the z-direction are presented in Sect. 5, which has a
similar structure as Sect. 4. In Sect. 6 we vary the
perturbation of our system. Finally in section 7 we
discuss our results and we enumerate our conclu-
sions.
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2. The Hamiltonian System

The system we use for our applications rotates
around its z-axis with angular velocity Ωb . The
Hamiltonian of the system in Cartesian coordinates
is :

H(x, y, z, ẋ, ẏ, ż) =

1

2
(ẋ2 + ẏ2 + ż2) + Φ(x, y, z)

−1

2
Ω2
b(x

2 + y2) (4)

where Φ(x, y, z) is the potential we used in our
applications, i.e.:

Φ(x, y, z) =

− GM1

(x2 + y2

q2a
+ [a1 + (z

2

q2
b

+ b2
1
)1/2]2)1/2

−

GM2

(x2 + y2

q2a
+ [a2 + (z

2

q2
b

+ b2
2
)1/2]2)1/2

(5)

The potential in it’s axisymmetric form (qa =
1, qb = 1) can de considered as a representa-
tion of the potential for the Milky Way approx-
imated by two Miyamoto disks with masses M1

and M2 respectively (Miyamoto and Nagai 1975).
In our units, distance R=1 corresponds to 1 kpc.
For the Jacobi constant (hereafter called the “en-
ergy”) Ej=1 corresponds to 43950 (km/sec)2. We
have used the following values for the parameters:
a1 = 0 kpc, b1 = 0.495 kpc, M1 = 2.05 ×
1010 M⊙, a2 = 7.258 kpc, b2 = 0.520 kpc, M2 =
25.47 × 1010 M⊙, qa = 1.2, qb = 0.9 and Ωb =
60 km s−1 kpc−1. The parameters qa, qb determine
the geometry of the disks, while a, b are scaling fac-
tors (Binney & Tremaine 2008, p.73-74). The chosen
Ωb value puts corotation at R=4kpc and has been
used by Englmaier and Gerhard (1999).

In Fig. 2 we give the (Ej , x) Zero Velocity Curve
“ZVC” (see e.g. Contopoulos 2002 p.391). It refers
to orbits on the equatorial plane z=0 and sepa-
rates the regions where motion is allowed from those
where it is forbidden.

3. The orbital evolution along a

S → U transition

A method to follow the stability of a family of peri-
odic orbits in a system is by means of the ”stability

Fig. 2. The (Ej,x) Zero Velocity Curve (ZVC), for orbits
on the z =0 plane, in our Hamiltonian system (4), with Φ
as in (5) and parameter values given in the text. Motion is
forbidden in the grey areas. L4 and L5 are the Lagrangian
points on the minor axis of the galaxy.
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b2

x1v1
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Fig. 3. Stability diagram for −5.5 < Ej < −4.5, that shows
the stability of the family x1 (black lines for its b1,b2 indices)
and its bifurcating families of p.o. x1v1 (red) and x1v2 (blue).
The two indices of the family x1v1 join at Ej=−4.62 and the
family becomes complex unstable.

diagram” (Contopoulos & Barbanis 1985; Pfenniger
1985a). The stability diagram gives the evolution of
the stability of a family of periodic orbits in a sys-
tem as one parameter varies, by means of the evo-
lution of the stability indices b1, b2. In our case the
parameter that varies is the energy Ej. Fig. 3 gives
the evolution of the stability of the central family of
periodic orbits in our system, x1 (Contopoulos and
Papayannopoulos 1980), and its bifurcations at the
interval −5.5 <Ej< −4.5. We observe that x1 (black
lines for its indices b1 and b2) is initially stable and
at Ej=−5.1644 it becomes simple unstable. There
we have a S → U transition and a new family, x1v1
(red lines), is bifurcated and is stable. We call the
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Fig. 4. Periodic orbits of x1 at a) Ej= −5.624726 (before
“A”), b) Ej= −5.010526 (between “A” and “B”) and c) Ej=
−4.732626 (beyond “B”).
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Fig. 5. A typical orbit of x1v1 at Ej = −5.125377 (between
“A” and “B”). The (x, z) and (y, z) projections are given
in enlarged scale, in order to better view the corresponding
morphology.

transition point “A”. The family x1 becomes sta-
ble again at Ej = −4.98, point “B”, where we have
an U → S transition for x1. At “B”, is introduced
the family x1v2 (blue line), which is initially simple
unstable.

In Fig. 4 we present the morphological evolu-
tion of x1 as it appears before “A”, between “A”
and “B”, and beyond “B”. Point “A” is associated
with the vertical 2/1 resonance (for a definition see
e.g. Contopoulos 2002 p. 379). The importance of
the 3D bifurcating family introduced at the vertical
2/1 resonance for the structure of galactic disks has
been underlined in several studies (Pfenniger 1985b;
Patsis and Grosbøl 1996; Skokos et al 2002a,b; Pat-
sis et al 2002). Here we adopt the nomenclature
of Skokos et al 2002a,b and we call the bifurcating
families at Ej = −5.1644 and Ej = −4.98 x1v1 and
x1v2 respectively. In Fig. 5 we give the morphology
of x1v1 in a typical orbit at energies between “A”
and “B”.

4. Perturbations parallel to the

equatorial plane

4.1. Spaces of section before the
S → U transition

First we examine the surfaces of section for our sys-
tem at energies before “A”. Figs. 6a and 6b de-
scribe the surface of section for Ej=−5.207 (before
“A”). Despite the fact that the system we investi-

gate is of galactic type, the main goal of the present
study is to understand the structure of the phase
space in various cases in a 3D autonomous Hamil-
tonian system. In that sense we integrate our orbits
for times necessary to obtain a clear view of the
dynamical phenomenon we study, regardless of the
physical meaning of the integration time interval,
which can be more than a Hubble time. In Fig. 6a
we observe the invariant curves around periodic or-
bits of two 2D families located on the equatorial
plane z=0, in the (x, ẋ) space with initial conditions
(x0 + ∆x0, ẋ0, z0, ż0) = (0.18312784 + ∆x0, 0, 0, 0)
with ∆x0 = 0.1, . . . , 0.8 and (x0+∆x0, ẋ0, z0, ż0) =
(−0.59595941+∆x, 0, 0, 0) with ∆x0 = 0.1, . . . , 0.4.
Every invariant curve consists of 103 consequents.
The diagram describes a typical situation in ro-
tating galactic potentials. The stable periodic or-
bit for x > 0 belongs to x1 (initial conditions
(x0, ẋ0, z0, ż0) = (0.18312784, 0, 0, 0)) and the stable
periodic for x < 0 to the retrograde family x4 (see
Contopoulos 2002, p.391), which has initial con-
ditions (x0, ẋ0, z0, ż0) = (−0.59595941, 0, 0, 0). The
extent of the invariant curves is limited by the ZVC.
Varying the initial condition x0 above the upper and
below the lower limit of the ZVC at this Ej, always
considering the plane of section y = 0 (cf. Fig. 2),
we find the expected bell-type curves (103 points
in the surface of section), which are related with
escape orbits, as found by Contopoulos & Patsis
(2006) (Fig. 6b).

4.2. Spaces of section after the
S → U transition

Proceeding beyond “A”, between “A” and “B”, e.g.
at Ej=−5.1574, we encounter, always for the surface
of section y = 0, ẏ > 0, two simple periodic or-
bits with positive x0. They are x1 (U), with initial
conditions (x0, ẋ0, z, ż0) =(0.18958522, 0, 0, 0) and
x1v1 (S), with initial conditions (x0, ẋ0, z0, ż0) =
(0.18939859, 0, 0.030236585, 0). We investigate the
phase space structure close to these two periodic
orbits, firstly by perturbing only the x initial con-
ditions of x1 and x1v1 by ∆x = 0.1, 0.2 . . . 0.7 suc-
cessively. The 2D simple unstable periodic orbit x1
lies on the equatorial (x, y) plane of our galactic
model. By perturbing the initial conditions only in
x and keeping the rest equal to 0, we encounter
non-periodic orbits that remain on the (x, y) plane.
Nevertheless, the surface of section of our 3D au-
tonomous Hamiltonian system is 4D, (x0, ẋ0, z0, ż0),
and we can consider the (x, ẋ, z) projection. For
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Fig. 6. The (x, ẋ) surface of section for Ej=−5.207. (a) The
invariant curves are around the p.o. x1 (positive x) and x4
(negative x). (b) The surface of section considering initial
conditions with x above the upper and below the lower limit
of the ZVC at this Ej. We observe the appearance of “bell-
type” curves (Contopoulos & Patsis 2006).

the simple unstable (U) periodic orbit x1, we have
z = 0 always, thus the (x, ẋ, z) is identical with the
(x, ẋ) projection. This projection can be observed in
Fig. 7, where we have seven invariant curves, sur-
rounding the fixed point with the initial conditions
of x1. Each invariant curve has about 103 conse-
quents. We name these curves S1a, S2a, . . . , S7a for
the (x0 +∆x0) perturbation of the x0 initial condi-
tion with ∆x0 = 0.1, 0.2, . . . 0.7 respectively.

In a way this is a counterintuitive result, since
at this Ej x1 is characterized as simple unstable2,
having two of its eigenvalues on the real axis. We
have also calculated the Lyapunov Characteristic

2Broucke (1969) characterizes this type of instability as
“semi-instability”, subdividing it to even- and odd- semi-
instability, depending on whether the eigenvalues on the real
axis are positive or negative respectively. In our case the
eigenvalues are positive (even- semi-instability).

Number (LCN) and we found it positive, equal
to 0.025958. The Lyapunov Characteristic Number
(LCN)3 of the periodic orbits is defined as the max-
imum σi, where: σi = 1

τ ln(|λi|), τ is the period
of the periodic orbit and λi the eigenvalues of the
monodromy matrix of the Poincaré map (e.g. Licht-
enberg and Lieberman 1992 p.302, Skokos 2010).
Figure 7, underlines the fact, that the dynamical
behavior close to a simple unstable orbit in a 3D
Hamiltonian system can be similar to that at the
neighborhood of a stable periodic orbit if the per-
turbation is restricted in one direction (in our case
it is the radial one).

Applying the same seven perturbations to the
x0 initial conditions of x1v1 we encounter in the
(x, ẋ, z) space seven tori. The projection of the fig-
ure is given in Fig. 8. For this projection we use the
point of view which is determined in spherical coor-
dinates by the angles4 (θ, φ) = (17o, 20o) (see also
introduction). We observe seven tori drawn with
red color surrounding the x1v1 periodic orbit and
we name them S1, S2, S3, S4, S5, S6 and S7 starting
with the closest to the periodic one. We also plot
with green color the S1a, S2a, S3a, S4a, S5a, S6a and
S7a invariant curves. Each torus consists of 104 con-
sequents. Being just after the bifurcation point, the
x initial conditions of x1 and x1v1 are almost iden-
tical. Thus, both the Si tori and the Sia invariant
curves surround the “common” initial x value. On
the (x, ẋ) projection the Si tori and the Sia invari-
ant curves practically overlap.

The Si tori are 3D projections of the invariant
tori of our 4D Poincaré map. Their structure, except
that of S4, resembles the morphology of the objects
defined as “rotational tori” by Vrahatis et al. (1996,
1997). These authors found the same kind of tori in
a 4D symplectic map related with the problem of
beam stability in circular particle accelerators. Even
S2, which seems to have its own internal structure
(Fig. 8), becomes a typical rotational torus if we
integrate for time giving 4 × 105 consequents (Fig.
9). An exception from this morphology is the torus
S4, which has a thin, complicated, ribbon-like struc-
ture. Fig. 10 presents S4 in the 3D (x, ẋ, z) space.
The figure helps us understand that S4 intersects
itself at five places, namely A,B,C,D and E. In prac-

3When we use the term Lyapunov Characteristic Number we
mean the maximal Lyapunov Characteristic Number.
4The (0o, 0o) projection brings the x-axis and y-axis horizon-
tally and vertically on the plane of the paper respectively and
the z-axis perpendicular to them.
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Fig. 7. The (x, ẋ) projection of the (x, ẋ, z, ż) cross-section space at the neighborhood of the 2D family x1 for Ej = −5.1574.
The x1 periodic orbit at (0.18958522, 0, 0, 0) is simple unstable. We name the invariant curves as S1a, S2a, S3a, S4a, S5a, S6a, S7a

starting with the one closest to the periodic orbit.

Fig. 8. The (x, ẋ, z) 3D projection of the (x, ẋ, z, ż) 4D surface of section at Ej=−5.1574. Our point of view is (θ, φ) =
(17o, 20o). The Si tori around x1v1 (see text) are drawn with red color, while the Sia invariant curves around the x1 periodic
are given with green lines.
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Fig. 9. The (x, ẋ, z) projection of torus S2 in the (x, ẋ, z, ż)
4D surface of section for Ej=−5.1574. Our point of view in
spherical coordinates is now (θ, φ) = (40o, 15o). This is a
typical morphology of a 3D projection of a rotational torus.
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Fig. 10. 3D projection of torus S4 from the point of view
(θ, φ) = (40o, 264o). A,B,C,D and E are the five intersections
of S4 by itself.

tice this can be realized only by rotating the figure
on the screen of our computer to understand its
detailed morphology. The structure of our S4 tori
resembles the morphology of the objects defined as
“tube tori” again by Vrahatis et al. (1997).

Let us have now a closer look at the 4D struc-
ture of the rotational Si tori by applying the method
of color and rotation. The tori occupy a subspace
of the 4D space of section bounded by [x1, x2] ×
[ẋ1, ẋ2]× [z1, z2]× [ż1, ż2] = [−0.154927, 0.890256]×
[−1.79387, 1.77590] × [−0.0302, 0.0302]×
[−0.096, 0.096]. As an example of the 4D structure
of a rotational torus we depict in Fig. 11 the first
4× 105 consequents of the S2 torus. This torus has

a small thickness, as it is generated by rotation
around the ẋ-axis of a thin ellipse. We have cho-
sen to plot the consequents in the (ẋ, z, ż) projec-
tion and color them according to their values in the
x-dimension. With the help of a graphic software
we have rotated S2 in our computer screen in order
to view it from all different perspectives and better
understand its internal structure. We observed that
there is no mixing of colors on the surface of S2.
On the contrary, we find that the color variation
on it follows some rules. This property of the “rota-
tional tori” was already known by Patsis & Zachilas
(1994). However, the details, presented here for the
first time, indicate a generic behavior that charac-
terizes this class of objects.

Moving along the υ-direction of the torus for
constant u (see Fig. 1) the consequents keep their
color by changing from the external to the internal
side of the torus and vice versa when they reach
certain four lines along the directions labeled with
A, B, C and D in Fig. 11.

The details of the color variation close to these
lines as we move along the υ- direction for constant
u, is shown in Fig. 12. This is an enlargement of the
right part of Fig. 11, where e.g. red colored conse-
quents on the external side of the torus change side
sliding to the internal one, along the line indicated
with “A” (upper left side in Fig. 12). If we continue
moving clockwise on the υ-direction the red conse-
quents, now on the internal side of the torus, con-
tinue until we reach area “D”. There, they change
again side and turn to the external side. This al-
lows us very clearly to observe the way that the
transition from one side to the other happens. At
the lower side of the figure we can observe how the
red points slide behind the blue, forming a net. The
“red net” is filled with red if we continue the cal-
culation for longer time. Similarly the “blue net”
on the inner side of the torus will be filled by blue
after a long time and so do the red consequents at
the lower left part of Fig. 12 will be covered by the
blue. In our example we started moving along the
υ-direction from a red point. In general, the suc-
cession of colors in the υ-direction with constant u
angles can be understood by looking at the color-
coded bar given at the right of the figures with the
colored tori, e.g. in Fig.11. At the change of side
of colors, red is combined with violet-blue (above
or below it), orange with blue, yellow with light-
blue etc. and finally at u = 90o and u = 270o the
consequents have the shade of green (middle of the
color-code bar).
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Fig. 11. The torus S2 in the (x, ẋ, z, ż) 4D surface of section for Ej=−5.1574. The location of the consequents is given in
the (ẋ, z, ż) projection and are colored according to their value in the x coordinate. Our point of view in spherical coordinates
is (θ, φ) = (180o, 9o).

Fig. 12. The right part of the torus in Fig. 11 in enlargement. We observe how consequents of a certain color change from
one side of the torus to the other.

Besides the color variation in the υ-direction,
there is also color variation along u (constant υ). If
we examine e.g. a “red-dominated” area on the S2

torus in Fig. 11 we observe, that we get a red (x = 0)
in the middle of the torus (u = 0). At first for
u : 0o → 90o we observe a color variation from red
to yellow and then to green, for values ẋ = 0 → 1
(Fig. 11). Secondly for u : 90o → 180o, at the inter-

nal side of the torus, the colors change from green
to light blue, then to blue and finally to violet (now
for values ẋ = 1 → 0). Then, for u : 180o → 270o

the colors change from violet to green (for values
ẋ = 0 → −1) and finally for u : 270o → 360o, at the
external side of the torus, we can observe a smooth
color succession from green to yellow and then to
red for values ẋ = −1 → 0. In conclusion we observe
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a cyclic variation of colors (values of x) along the
u-direction. This means that the color variation is
also smooth along ẋ, as described above. The color
variation is similar for all rotational Si tori.

In other cases of our system we find elliptic tori
with considerable smaller ellipticity. We give an ex-
ample not belonging to the S → U transition we use
in our presentation. By perturbing the x initial con-
dition of a stable periodic orbit with initial condi-
tions (x0, ẋ0, z, ż0) =(0.6765982, 0, 0.254816, 0) for
Ej=−4.3 (family x1v3, Skokos et al. 2002a,b) with
∆x = 10−5 we observe a torus which we name Sa

(Fig. 13). In Figs. 13 and 14 torus Sa is depicted in
the 3D subspace (x, z, ż) of the 4D surface of sec-
tion and is colored according to the values of the
4th dimension ẋ. In Fig. 13 we observe that at the
upper region of the external surface of the Sa dom-
inate blue shades. Along the υ-direction we observe
a smooth color variation from blue to light blue, to
green and to yellow. At a region indicated with an
arrow labeled “A”, we observe that yellow meets
the blue. At this region we have an intersection of
the external surface with the internal surface of the
torus Sa. The details of the 4D structure of the torus
close to the intersection is described in Fig. 14. The
color continues from a yellow shade on the exter-
nal surface (indicated with “Ext”) of the torus Sa

to orange and then to red on the internal surface
of the torus (indicated with “Int” in Fig. 14). We
observe a smooth variation of colors from red to the
orange on the internal surface of the torus Sa (see
also Fig. 13) until a region where orange meets the
blue. At this region, indicated with arrow “B”, we
have in the 3D (x, z, ż) projection again an inter-
section of the external surface of the Sa with the
internal surface of the torus Sa along a line.

We want to apply now the color and rotation
method to the other kind of tori we found around
x1v1 in Fig. 8. As we already remarked, S4 has a dif-
ferent morphology than the rest of the Si’s, i.e. it is
a tube torus. In the 3D projection (x, ẋ, z) (Fig. 10)
we have realized that S4, intersects itself in five re-
gions (A, B, C, D and E). In Fig. 15 the S4 torus is
colored according to the ż values. In this figure we
observe a smooth color variation at the areas be-
tween two successive intersections. For example we
examine the area between the intersections A and B
on the internal surface of the torus along the arrow
“1”. If we move from A as indicated with the ar-
row“1” (Fig. 15), for constant u, and starting with
blue colored points, we can see a smooth color vari-
ation from blue to light blue, to green, to yellow, to

orange at the intersection B. Now if we move from
the intersection A along the direction indicated with
the second arrow, “2” we have drawn at the “cross-
road” A in Fig. 15, we observe that the succession
of colors starting from red, at constant u, is red →
orange → yellow → green → light blue → blue at
the intersection B. In all cases we observe at the in-
tersections of S4 in the space (x, ẋ, z) two different
tubes, coming from different directions and having
different colors. For example at the intersections A
red meets blue and at the intersection B blue meets
orange. Between two intersections of S4 we observe
a smooth color variation and in all cases at the in-
tersections meet different colors. This means that
the points have different values at the 4th dimen-
sion and the intersections are not intersections in
the 4D space but only in the 3D projections.

4.3. Rotation Numbers

A point that we want to investigate, is whether some
properties of the rotational and tube tori are re-
flected in quantities, that could be defined in corre-
spondence with the rotation numbers on the usual
invariant curves around stable periodic orbits of 2D
systems. Thus we have first to define a rotation
number in the 2D and 3D projections of a 4D torus.
If our 4D space of section is (x, z, ẋ, ż), with the p.o.
at (x0,z0,ẋ0,ż0) we can consider e.g. its 2D projec-
tion in (x,ẋ) and its 3D projection in (x, ẋ, z). Our
motivation for this is the observation, that succes-
sive consequents form an invariant torus by filling
its surface in different ways. Following the formation
of an invariant torus on a screen as the number of
consequents increases, one gets the impression that
wires are wrapped around the surface of the torus,
following different patterns for different tori. This
seems to be a straightforward counterpart of the
different angles at which an invariant curve is filled
by successive consequents in 2D systems, which is
described by the “rotation number” of an invariant
curve. We want to attribute a similar number to
each invariant torus. Let us assume that the projec-
tion of the torus on the (x, ẋ) plane gives an “invari-
ant curve”, in the same way that the Si tori appear
projected in Fig. 7. In such a diagram the rota-
tion number (rot) is defined as for a usual invariant
curve around a stable periodic orbit at (x0,ẋ0) on
a 2D surface of section. In fact “rot” is the average
rotation angle along the invariant curve. This quan-
tity is different for different invariant curves and the
variation of the rotation number as a function of the
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A
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1

Fig. 13. The torus Sa around a stable p.o. x1v3 in the (x, ẋ, z, ż) surface of section for Ej=−4.3. The consequents are colored
according to their value in the ẋ coordinate. Our point of view in spherical coordinates is (θ, φ) = (30o, 30o). We observe again
a smooth color variation on the surface of the torus. The color changes side along the lines indicated with arrows.

Fig. 14. The region of the intersection of the external surface with the internal surface of the torus Sa in the (x, ẋ, z, ż) 4D
surface of section for Ej=−4.3. The consequents are colored according to their value in the ẋ coordinate. Our point of view in
spherical coordinates is (θ, φ) = (30o, 30o). Arrows indicate the external and internal sides of the torus.

distance in the direction of a coordinate, e.g. the x-
coordinate, defines a “rotation” curve (Contopoulos
2002, pg. 139).

Accordingly, for the calculation of rot for the
torus in the (x, z, ẋ) projection,

(1) we define an initial rotation angle r̂0 for the
initial point of an orbit on the invariant torus
with coordinates (x1, ẋ1, z1) as the angle formed
by the vector joining this point with the central
periodic orbit (x0,ẋ0,z0) with the plane (x, ẋ).
More precisely:

r̂0 = arctan
z1 − z0

√

(x1 − x0)2 + (ẋ1 − ẋ0)2
(6)

(2) We compute the rotation angle r̂i
between two successive consequents. The i-th
consequent with coordinates (xi, ẋi, zi) and the
i+1-th with coordinates (xi+1, ẋi+1, zi+1) on an
invariant torus. We define the vectors X and
Y as X = (xi+1 − x0, ẋi+1 − ẋ0, zi+1 − z0) and
Y = (xi − x0, ẋi − ẋ0, zi − z0). respectively We
find the rotation angle from the inner product
of X and Y by means of the formula:
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Fig. 15. The (x, ẋ, z, ż) 4D surface of section of torus S4 for Ej=−5.1574. The consequents are colored according to their
value in the ż coordinate. Our view angles are (θ, φ) = (30o, 45o).
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Fig. 16. Rotation curves at Ej = −5.1574 for the invariant curves around the periodic orbit of the x1 in the 2D subspace
(x, ẋ) (green line), around the periodic orbit of the x1v1 in the 2D subspace (x, ẋ) (blue line), and around the periodic orbit of
the x1v1 in the 3D subspace (x, ẋ, z) (red line). We observe that the three curves have a very similar variation, and practically
overlap.

r̂i = arccos
XY

| X || Y | (7)

(3) we finally compute the average of all r̂i’s to get
rot for the torus.

The rotation curves along the x-direction,
for the invariant curves around the simple
unstable periodic orbit of the x1 family at
Ej=−5.1574, with initial conditions (x0,z0,ẋ0,ż0)
= (0.189585220, 0, 0, 0), is given in Fig. 16 (green
curve). Notice that x1 is stable as regards devia-
tions on the plane of symmetry, thus we can define

a rotation number for orbits close to x1, starting
on this plane. On the x-axis of Fig. 16 we give the
distance from the periodic orbit in the x-direction.
Similar curves are calculated for the tori around the
stable periodic orbit of the x1v1 family at the same
energy (Ej = −5.1574), which has initial conditions
(x0,z0,ẋ0,ż0)= (0.18939859, 0.030236585, 0, 0). Two
rotation curves for x1v1 are given also in Figs. 16
using the (x, ẋ) (blue line) and (x, ẋ, z) (red line)
projections respectively. For the calculation of the
rotation numbers in these rotation curves we fol-
lowed the definitions mentioned above. We observe
that in all cases we have a similar variation of the



September 13, 2010 0:34 katsanikas1

The structure of invariant tori in a 3D galactic potential 13

rotation numbers. The behavior of rotation curves
for the invariant tori around the stable periodic or-
bit of the x1v1 family has similar behavior with the
rotation curve for the invariant curves around the
simple unstable periodic orbit of the x1 family. We
realize that the rotation numbers of the tube tori,
follow the rotation curve and occupy the expected
position in this diagram without any kind of excep-
tional behavior.

Fig. 17. The invariant curves T1a, T2a, T4a, T5a, T6a and T7a
in the (x, ẋ) surface of section for Ej=−5.131377.

4.4. Energy variation

Coming back to the evolution of the stability of
the families x1 and x1v1, as described in Fig.3, we
study the changes introduced in the structure of
the phase space as the energy increases. At the bi-
furcating point the initial conditions of the fami-
lies x1 (parent family) and x1v1 (bifurcating fam-
ily) are identical. The x1v1 family comes in the
system with two representatives at each energy
(Skokos et al. 2002a). As Ej increases, we have one
branch with z > 0 and the other one symmetric
with z < 0. Let us consider here the z > 0 case.
Close to the bifurcating point, the x0 initial con-
dition of the stable x1v1 orbit remain close to the
z = 0 plane. Around the fixed point we find tori,
which are practically symmetric with respect to the
z = 0 plane. Away from the bifurcating point, for
larger values of the energy, the value z0 in the ini-
tial conditions of of x1v1 increases. Thus, beyond
a given energy, in the (x, ẋ, z) projection, the x0
initial value of the simple unstable periodic orbit
x1 is expected to be away from the tori around

Fig. 18. The 3D (x, z, ẋ) projection of the 4D surface of
section for Ej=−5.131377. Our point of view in spherical co-
ordinates is (θ, φ) = (18o, 23o). The invariant tori around the
initial condition of the stable p.o. x1v1 are colored red and
the invariant curves around the simple unstable p.o. of x1 on
the z = 0 plane are colored green. The initial conditions of x1
and x1v1 are given with green and red crosses respectively.

the stable periodic orbit x1v1, since these tori sur-
round the x1v1 initial condition away from the z=0
plane. Here we study as an example the case for Ej=
−5.131377, where the initial conditions of the sim-
ple unstable periodic orbit x1 are (x0, ẋ0, z0, ż0) =
(0.19317510, 0, 0, 0), while these of x1v1 are
(x0, ẋ0, z0, ż0) = (0.19221178, 0, 0.06769306, 0).
Firstly we explore the phase space around the pe-
riodic orbit x1, which, also at this energy, is simple
unstable. We do this by increasing the x0 initial
condition by ∆x0 = 0.1, 0.2, 0.3, ..., 0.7 and consid-
ering the (x, ẋ) surface of section (Fig. 17). The new
element in Fig. 17 with respect to the (x, ẋ) phase
space structure at Ej = −5.1574 (Fig. 7) is the
appearance of a chain of 5 islands of stability at
the location of the third invariant curve. These is-
lands correspond to the orbit with initial conditions
(x0 + 0.3, 0, 0, 0). Thus, one of the seven invariant
curves of Fig. 7 has been broken as a result of the
increase of Ej. We name the rest of the invariant
curves T1a, T2a, T4a, T5a, T6a, T7a, with T1a being the
closest to the initial conditions of x1.

As in the previous case we investigate the
neighborhood of the phase space around the 3D
stable x1v1 by applying the same perturbations.
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Fig. 19. The (x, ẋ) cross-section space at the neighborhood
of the 3D family x1v1 for Ej=−5.131377.
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Fig. 20. The (x, ẋ, z) 3D projection of the torus T4 from the
point view (θ, φ) = (41o, 91o) we consider 105 consequents.

That means we increase the x0 initial condition
of x1v1 by ∆x0 = 0.1, 0.2, . . . 0.7 and we consider
the distribution of the consequents in the (x, ẋ, z)
projection of the 4D space after 104 intersections
with the y=0 plane. We can observe the result in
Fig. 18. The red-colored invariant tori around the
initial condition of the stable p.o. x1v1 (red cross
at (0.19221178, 0, 0.06769306)) correspond to the
seven perturbed initial conditions we study. As in
the case of the perturbed orbits around x1, also for
x1v1 the third set of initial conditions, i.e. the one
with ∆x0 = 0.3, exhibits a conspicuously different
dynamical behavior. It forms a set of five small in-
variant tori, in correspondence to the five islands
of stability formed on the (x, ẋ) plane in the case

Fig. 21. 3D projections of torus T5 from the point view
(θ, φ) = (64o, 127o) (a) and (θ, φ) = (48o, 271o) (b).

of x1. Each one of the five small invariant tori has
a rotational torus structure. We name the remain-
ing six tori that surround the periodic orbit x1v1 as
T1, T2, T4, T5, T6, T7. The missing T3 has been sub-
stituted by the five small invariant tori. In Fig. 18
are given also the invariant curves around the p.o. of
x1, colored green. They lie on the (x, ẋ) plane. We
can observe that the tori are roughly projected on
the (x, ẋ) plane in the region occupied by the green
invariant curves. The projection of the 4D x1v1 sur-
face of section to the (x, ẋ) plane is given in Fig.19.
We observe that the 2D projection of the tori re-
sembles the morphology of the invariant curves. An-
other interesting feature of the Ti invariant tori at
the energy Ej= −5.131377 we study now, is that
the T4 torus to the right of the set of the 5 small
ones, as well as the tori T5 and T7 are of different
morphology than the rest of the Ti’s.

In particular the torus T4 (Fig. 18) has a thin,
ribbon-like structure. Fig. 20 presents T4 from a
different point of view ((θ, φ) = (41o, 91o)) in the
(x, ẋ, z) projection of the surface of section and
helps us understand that T4 indeed intersects it-
self in this projection at five places. The behavior
of the T4 is similar with the behavior of the S4 torus
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at the energy Ej=−5.1574 (Fig. 10).
T5 has also a thin, complicated, ribbon-like

structure (Fig. 21). This time the torus intersects it-
self only at one region in the (x, ẋ, z) 3D projection
as we can see in Fig. 21a and in Fig. 21b from differ-
ent points of view of the (x, ẋ, z) projection. Seven
intersections in the (x, ẋ, z) projection are also ob-
served in T7. T4, T5 and T7 are objects that satisfy
the definition of the tube tori given by Vrahatis et
al. (1997).

As we said, in the (x, ẋ) projection the differ-
ences in the morphology of T4, T5 and T7 from the
rest Ti’s cannot be seen (Fig. 19). Trying to under-
stand if the difference we observe in the morpholo-
gies of the 3D projections of the tori reflect some
morphological differences of the orbits in the config-
uration space we compare the orbits corresponding
to the T2 (rotational torus), with those of the tori T4

and T5 (tube tori) in Fig. 22. Their morphology is
the expected for quasiperiodic orbits trapped close
to a stable periodic orbit, in our case x1v1. The
(x, y) projections of T2, T4 and T5 are practically
identical with the T2a,T4a and T5a orbits around x1
for the same Ej. There is no obvious morphological
feature that distinguishes the three 3D orbits among
themselves also in the (x, z) and (y, z) projections.

T4 offers the opportunity to study in detail
the structure of one more tube torus in the 4D
space and compare it with the one depicted in
Fig. 15, which we called S4. Applying the color-
rotation method also in this case, we observe, that
the structure of T4 (Fig. 23) is similar with that
of S4 (Fig. 15). We observe in Fig. 23, that mov-
ing along the tube from A towards B, following the
directions indicated with arrows, we follow the suc-
cession of the colors of the color bar from one side to
the other. At the intersection regions, in the (x, ẋ, z)
projection, the red color meets blue. This means
that these regions are not intersections in the 4D
space. Again here the intersections appear only at
the 3D projections.

Different colors at the intersections character-
ize all tube tori we studied with the color-rotation
method. A final example is given for the case of T5.
As we said before the torus T5 is very thin, has al-
most a ribbon-like structure, and intersects itself at
one region (Fig. 21). In Fig. 24 we depict a pro-
jection in the 3D subspace (x, ẋ, z) and we color it
according to the values of the consequents in the 4th
dimension ż. By moving counterclockwise from the
region A we observe again the smooth color varia-
tion. The colors change from green to light blue and

then to blue until we reach the region C. At the re-
gion C T5 intersects itself in the projection (x, ẋ, z).
Then, moving always counterclockwise, the succes-
sion of the colors continues as blue → light blue
→ green at the region B and finally comes back to
the region C. At the region C we observe that blue
color meets red. This means that the points have
different values in the 4th dimension and C is not a
region that we have a real intersection of T5 in the
4D space. If we will continue our counterclockwise
journey along the thin tubes of T5 we will reach A
following always a smooth color variation. Of spe-
cial interest in this case is the folding of the thin,
ribbon-like torus at the regions A and B. At these
two regions the internal surface of the torus becomes
external surface and vice-versa. This warping is en-
countered along the tubes of several other tori we
studied. T7 intersects itself in the 3D projections at
7 regions, while the tubes warp in the journey from
one intersection to the other.

4.4.1. Rotation numbers

The rotation curves in the x-direction along the in-
variant curves around x1 and along the projected
tori around x1v1 in the (x, ẋ) section, as well as
the rotation curve from the tori around x1v1 in
the (x, ẋ, z) projection, calculated using the defini-
tion of Eq.(7), are very similar as in the case we
presented above at Ej = −5.1574. Also here, at
EJ = −5.131377, there is no special variation of the
rotation curve at the locations of the tube tori. The
variation of the rotation curves follows the general
rules of these curves (see Contopoulos 2002). The
main difference is that at the location of the sta-
bility islands around x1 and the tori-chains around
x1v1 we find tiny plateaus on the rotation curve as
expected.

5. Perturbations in the z- and

ż-direction

The radial perturbations we studied until now, gave
us an understanding of the structure of the tori in
the neighborhood of stable periodic orbits in our
galactic type Hamiltonian System. However, of par-
ticular interest is the evolution of the tori also un-
der vertical perturbations. Especially in 3D galac-
tic systems we want to know how, and in what ex-
tent, stars are trapped away from the equatorial
plane. This study is related with the investigation of
morphological features as boxy and peanut-shaped
bulges in disk galaxies (Patsis et al. 2002).
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Fig. 22. The orbits in the configuration space corresponding to the tori T2 (first row), T4 (second row) and T5 (third row).
Projections are indicated at the upper left corner of each panel. In the (x, z) and (y, z) projections the scales on the axes are
not equal, so that we can see the detailed of the orbits.

Fig. 23. The (x, ẋ, z, ż) 4D surface of section of the torus T4 for Ej=−5.131377. The consequents are colored according to
their value in the ż coordinate. Our view angles are (θ, φ) = (30o, 120o). The five intersections points of the tube torus by
itself in the (x, ẋ, z) are labeled with A,B,C,D and E.

5.1. Spaces of section before the
S → U transition

Going back to the stability diagram given in Fig. 3,
that describes the stability evolution of the fam-

ilies x1 and x1v1, we study first the phase space
at an energy before the S → U transition, i.e. at
Ej=−5.207. In this case, on the (x, ẋ) surface of
section the only 2D simple periodic orbit we have
with x > 0 is x1 and it is stable. Around x1, we find
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B

Fig. 24. The (x, ẋ, z, ż) 4D surface of section of torus T5 for Ej=−5.131377. The consequents are colored according to their
value in the ż coordinate. Our view angles are (θ, φ) = (30o, 72o).

invariant curves as expected, if we perturb its x0 ini-
tial condition. As an example we consider the invari-
ant curve, which results from the initial conditions
(x0 + ∆x0, ẋ0, z0, ż0) = (0.18312784 + ∆x0, 0, 0, 0),
with ∆x0=0.1. If we “perturb” this quasi-periodic
orbit, i.e. if we increase further the z0 = 0 initial
condition by ∆z0=0.1, 0.2 . . . , and integrate again
our initial conditions, we encounter tori around x1.
These are both rotational and tube tori. The tori,
for small ∆z0 surround the invariant curve we per-
turbed. For ∆z0 ≥0.3 the tori appear distorted and
inclined with respect to the z = 0 plane. However,
for ∆z0=0.41 the dynamical behavior at the neigh-
borhood of the quasi-periodic orbit changes. About
the first 900 consequents of this orbit form an ob-
ject that resembles a rotational torus. By this we
mean that initially the consequents stay approxi-
mately on a toroidal surface. However, the following
consequents diffuse in the phase space and occupy
a larger volume in it. In Fig. 25a we observe the
(x, ẋ, z) projection of the 4D surface of section for
this orbit, where the 4th dimension is represented
by the colors of the 4th ż coordinate. The num-
ber of consequents in Fig. 25a is 1100. They form
a (rotational) toroidal surface, with a smooth color
variation around it as we can see by comparing the
colors on its surface with the color bar to the right

of the figure. We note, that 900 consequents do not
suffice to fill densely the surface of the toroidal ob-
ject. Thus, on Fig. 25a we observe distinct points
rather than a toroidal object. However, starting e.g.
from upper left, we observe the succession of colors
from green → yellow → orange → red → orange
→ yellow → green → to blue shades. In Fig. 25a
some points have already started deviating from the
“torus” and soon they occupy a larger area of the
phase space. In Fig. 25b, the dense cluster of red
points corresponds to the 900 consequents we plot-
ted colored in Fig. 25a. The rest of the red points
that occupy a larger area of the phase space be-
long to the same orbit, which has been integrated
now for 1.2 × 104 consequents. In the same figure
we give as well the invariant curve around x1 at
this energy, drawn with green color. This dynamical
behavior indicates stickiness (Contopoulos & Har-
soula 2008). Qualitatively, we find similar results if
we increase ż0 instead of z0, in the initial condi-
tions (x0, ẋ0, z0, ż0) = (0.28312784, 0, 0, 0) following
the procedure described above.
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Fig. 25. The 3D (x, z, ẋ) projection of the 4D surface of section in the neighborhood of x1 for Ej=−5.207. The initial
conditions of the orbit are (x0, ẋ0, z0, ż0) = (0.28312784, 0, 0.41, 0) (see text). (a) the first 1100 consequents colored according
to their position in the 4th dimension ż. The point of view is (θ, φ) = (78o, 82o). (b) The first 1.2 ×104 consequents (red dots).
The initial condition of x1 is indicated with a green dot, while the green invariant curve around it correspond to the orbit with
initial conditions (0.28312784, 0, 0, 0). The red points diffuse in the phase space after staying on a toroidal surface for about
900 consequents.

5.2. Spaces of section after the
S → U transition

As we already have seen, after the S → U tran-
sition, x1 becomes simple unstable, while the 3D
stable family x1v1 has been bifurcated. The en-
ergy Ej=−5.131377 is already beyond the bifurcat-
ing point (Fig. 3). We have examined the phase
space structure in the neighborhood of x1 and x1v1
by perturbing their x0 initial conditions and the
result is depicted in Fig. 18. At energies not far
away from the bifurcating point A (Fig. 3), as is
Ej=−5.131377, we could always find a “±∆z0” per-
turbation of the quasi-periodic orbits, so that the
initial condition (x0+∆x0, 0,±∆z0, 0) gives a torus
surrounding the invariant curve (x0 + ∆x0, 0, 0, 0),
with (x0, 0, 0, 0) being the initial condition of x1.

However, at larger energies this was not always
possible. We could find invariant curves around x1,
that deviate in the phase space from the invariant
tori around x1v1 at the same energy. For example
at Ej=−4.98996, we find invariant curves around
x1 and invariant tori around x1v1 by perturbing
the x0 initial conditions of both families. In Fig. 26
we give in the 3D (x, z, ẋ) projection the invariant
curves around x1 for x0 + ∆x0 = 0.1, 0.2 and 0.3
(green curves) and the corresponding tori around
x1v1 applying the same perturbation to its initial
conditions. The invariant tori “float” above the in-
variant curves. We observe that as we depart from
the x1v1 initial condition the invariant tori become
thicker in z. Beyond a certain x0 + ∆x0 perturba-
tion there are invariant tori that intersect the (x, ẋ)
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Fig. 26. The 3D (x, z, ẋ) projection of the 4D surface of section at Ej=−4.98996 for three invariant tori around x1v1 and
three invariant curves around x1 (green lines). Our point of view is (θ, φ) = (56o, 280o). The initial condition of x1 is indicated
with a green star and the initial condition of x1v1 is given with a red “×”.

Fig. 27. (a) A chaotic orbit at Ej=−4.98996 in the 3D (x, z, ẋ) projection (point of view (θ, φ) = (55o, 263o)) of the 4D surface
of section is given with blue dots. We also give three rotational tori around x1v1 (red), and seven invariant curves around x1
in the (x, ẋ) plane. (b) The 4D surface of section of the cloud of blue points we give in (a) (point of view (θ, φ) = (60o, 45o)).
It is characterized by scattering of their colors in the 4th dimension. (c) The (x, ẋ) surface of section for the orbits in (a). We
see that the blue points extend inside as well as outside the innermost rotational torus. (d) The chaotic orbit (blue points)
together with the quasi-periodic x1v1 orbit corresponding to the innermost rotational torus in (a).

plane (not depicted in Fig. 26).
In the case depicted in Fig. 26 we succes-

sively “perturb” the initial conditions of the quasi-

periodic orbits that correspond to the red invariant
tori by−∆z0 trying to find other invariant tori, that
their projections in z reach the (x, ẋ) plane. Follow-
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Fig. 28. (a) The (y, z) profile of the orbit corresponding to the cloud of blue points in Fig. 27a. (b) The same orbit in the
configuration space from a point of view (θ, φ) = (63o, 280o).

ing this procedure we find a last invariant torus with
(x0 + 0.1, 0, z0 + ∆z0, 0) = (0.3160689, 0,−0.08, 0),
i.e. for ∆z0 = −0.08. For ∆z0 = −0.09 instead of a
torus we find a cloud of points at the area between
the invariant curves and the invariant tori. This
cloud is given in Fig. 27a with 1.2×104 blue points,
together with the three rotational tori around x1v1
depicted in Fig. 26 (colored red) and seven invariant
curves around x1 on the (x, ẋ) plane (black curves).
For about the first 3000 consequents, the cloud has
a vague toroidal structure in the (x, ẋ, z) projection.
In Fig. 27b we apply the color-rotation method in
the set of blue points of Fig. 27a, which we color
according to their value in the ż coordinate. It be-
comes clear that the points do not have a smooth
variation in the 4th dimension. The same color mix-
ing is also present in the figure with fewer conse-
quents. Particularly helpful is the (x, ẋ) projection
of Fig. 27a, given in Fig. 27c. In this projection we

can clearly observe, that blue points of the cloud
can be found inside, as well as outside of the red
innermost invariant rotational torus. The vast ma-
jority of the points diffuses outside the the (x, ẋ)
projection of that torus between 4×103 to 5×103

consequents, building a second ring at the outer
side of the torus of lower intensity than the ring in
its inner side. It is interesting to realize that such
chaotic orbits may contribute to the thickening of
observed structures as the peanut-shaped bulges of
disk galaxies. The backbone of such peanut-shaped
structures is the x1v1 family (Patsis et al. 2002).
In Fig.27d the trapped quasi-periodic orbit around
the stable p.o. x1v1 at this energy (Ej=−4.98996)
is plotted with red dots, while the blue points give
the chaotic orbit that we plot in Fig. 27b in the con-
figuration space ((x, z) projection). The blue orbit
in Fig.27 is integrated for a time corresponding to
0.2 Hubble times, i.e. in a time generally believed
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Fig. 29. The relative location of the consequents of the chaotic orbit of Fig. 28, with respect to the location of the tube torus
“X4” (see text). In (a) and (b) we give with a blue cross, the location of a single consequent that it is projected in the interior
of the (x, ẋ) and (z, ż) projections of “X4” respectively. In (c) and (d) we give all the 1.2×104 consequents of the orbit, clearly
showing that we have points inside and outside “X4”.

that morphological features as the galactic bars can
well survive (see e.g. Debattista et al. 2006).

For longer times, of the order of 0.7 of a Hub-
ble Time, the shape of the “blue” orbit still fol-
lows the peanut morphology, having populated both
branches of the stable p.o. x1v1 (Patsis et al. 2002)
at this energy. Thus, the peanut shape is fully devel-
oped, despite the fact that the orbit reaches z values
1.5 times larger than the quasi periodic orbit in the
neighborhood of x1v1 (innermost rotational torus).
In Fig. 28a we give the (y, z) projection for compari-
son with the models of periodic orbits in Patsis et al.
(2002), while in Fig. 28b we give the same orbit from
the point of view ((θ, φ) = (63o, 280o)), so that it
becomes clear the relation between the peanut side-
on profile of the orbit and its “pencil-sharpener” 3D
morphology. This class of orbits may be very impor-
tant for the kinematics of peanut-shaped bulges of
disk galaxies, as they increase the dispersion of the
velocities of the stars, participating in this struc-
ture without destroying its morphological profile.
These orbits are chaotic, but for times important
for Galactic Dynamics have consequents that stay

close to the invariant tori of x1v1 in the phase space.
However, for larger times they diffuse away from the
invariant tori in the phase space.

None of the blue consequents presented in the
(x, ẋ) projection (Fig. 27c) inside the innermost red
torus could be found projected simultaneously in
the interior of the torus in the (z, ż) projection.
However, this was not true for the location of con-
sequents relative to tori at larger distances from the
periodic orbits than the three rotational tori we con-
sidered in Figs. 26 and 27. An example is given for
the torus we obtained by perturbing by ∆x0=0.4
the x1v1 initial conditions. This is a tube torus and
let us call it “X4”. In Fig. 29 we give with a blue
cross the position of a consequent which is simul-
taneously projected in the interior of “X4” of the
(x, ẋ) (Fig. 29a) as well as of the (z, ż) projection
(Fig. 29b). It is one of the consequents depicted in
Figs. 29c and Fig. 29d, where we clearly observe
that we have consequents of the “blue” orbit in-
side and outside the tube torus “X4”. This tells
us that in this case takes place the phenomenon
of Arnold diffusion (see e.g. Contopoulos 2002, pg.
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1, qb = 1).

344). Nevertheless the time scale for this exceeds
one Hubble Time. Thus, in this particular case the
consequences for the dynamics in the neighborhood
of x1v1 are negligible. However, in a forthcoming
paper we investigate in detail this as well as other
cases of Arnold diffusion in the Hamiltonian system
of Eq. 4 and Eq. 5.

Before closing this section we want to underline
that the same procedure can be repeated by per-
turbing the ż0 initial condition, reaching the same
results as regards the appearance and the foliation
of the tori in the 4D space.

6. The evolution of the tube tori as

the perturbation increases

Finally we examine the evolution of the invariant
tori as the perturbation of our system increases,
starting from the axisymmetric case (qa = 1 and
qb = 1). In our model we increase the perturbation
by increasing the triaxiality of the system through
the parameters qa and qb. At first we examine the
axisymmetric case and then we introduce a small
perturbation (qa = 1.01 and qb = 1), in order to
study possible qualitative differences that are in-
troduced in the system by the perturbation.

6.1. The Axisymmetric case
(qa = 1, qb = 1)

In 3D axisymmetric potentials the stability index
of the central family, which is related with pertur-

Fig. 31. (x, ẋ, z) 3D projections of the 4D surface of section
in the axisymmetric case, for Ej=−4.4461, at the neighbor-
hood of the marginally stable p.o. x1v1. (a) The first 8 invari-
ant tori V1. . . V8 (point of view (θ, φ) = (38o, 211o)). (b) The
invariant tori V9. . . V15, (point of view (θ, φ) = (36o, 244o)).
(c) The last six tori of our sample, V16. . . V21, (point of view
(θ, φ) = (49o, 195o)). We observe the deformation of the last
torus V21.

bations vertical to the equatorial plane, becomes
tangent to the b=−2 axis at the vertical resonances
(e.g. Patsis & Grosbøl 1996). Fig. 30 gives the evolu-
tion of the stability of the central family of periodic
orbits of our system, x1, and its vertical bifurcation
(x1v1) for −4.5 <Ej< −4.37. We observe that x1
(b1, b2 indices with black lines) is initially stable
and at Ej=−4.4472 we have a tangency of b1 with
the −2 axis. This tangency corresponds to the ver-
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Fig. 32. The (x, ẋ, z) 3D projection of the 4D surface of
section in the neighborhood of the p.o. x1v1 for Ej=−4.39.
Our point of view is (θ, φ) = (27o, 316o).

tical 2/1 resonance. At this point it is bifurcated a
new family (x1v1) (the two stability indices of x1v1
are drawn with red lines), which remains marginally
stable, since we find that one of its stability indices
stays on the −2 axis.

We have taken several surfaces of section and
we studied the structure of the phase space at the
neighborhood of the marginally stable p.o. x1v1.
We first studied the phase space structure close to
x1v1 for Ej=−4.4461, just after the tangency of
the b1 index with the b=−2 axis. We integrated
21 initial conditions at the neighborhood of x1v1
(x0, z0, ẋ0, ż0) ≈ (1.298965, 0.041883918,
−.0036186582, 0.026639957), by perturbing the x0
initial condition of x1v1 by ∆x0 = 0.02, 0.04 . . . 0.42
successively. Fig. 31 gives the (x, ẋ, z) 3D pro-
jections of the tori we found around x1v1. In
Fig. 31a we observe the first eight rotational tori
V1, V2, . . . V8 and in Fig. 31b the rotational tori
V9 . . . V15. Finally in 31c we give the last six tori
V16 . . . V20 and V21, of our sample. Each torus con-
sists of 104 consequents. In this dense coverage of
the ∆x0 = 0.4 space away from the x0 initial con-
dition of the x1v1 p.o., we encountered only rota-
tional tori nested around x1v1, until we reached
V21. There, perturbing x0 by ∆x0 = 0.42, the mor-
phology of the torus changes. The V21 torus has a
larger projection on the z-axis and does not follow
anymore the pattern of the nested tori.

We repeat the same procedure at a larger en-
ergy, Ej=−4.39. This time the x initial condition of
x1v1 is perturbed successively by ∆x = 0.1, 0.2, 0.3
and 0.4. The result is given in Fig. 32, having a
point of view (θ, φ) = (27o, 316o). Four rotational
tori surround the x1v1 p.o. and are indicated with
arrows (U1, U2, U3 and U4). Each torus consists of
104 consequents. The tori are distorted, with the
last one having a morphology similar to V21 of the
previous case.
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Fig. 33. Stability Diagram for −4.7 < Ej < −4.3, that
shows the stability of the family x1 and its bifurcating family
of p.o. x1v1.

6.2. The small perturbation case
qa = 1.01, qb = 1.0

In order to study qualitative differences from the
axisymmetric case when a small perturbation is in-
troduced in the system, we increase the qa param-
eter from qa = 1 to qa = 1.01. Fig. 33 gives for this
system the evolution of the stability of the central
family x1 and that of its bifurcations for −4.7 < Ej
< −4.3. We observe that x1 (b1, b2 indices with
black lines) is initially stable and at Ej=−4.54 we
have a transition from stability to simple instability.
The family x1 becomes again stable at Ej=−4.386.
At the transition from stability to simple instabil-
ity x1v1 is bifurcated (red lines show its stability
indices ), as stable. At a larger energy (Ej=−4.525)
we have a S → ∆ transition to complex instability
of the family x1v1. In this case the stability indices
become complex numbers and they do not appear
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Fig. 34. The (x, ẋ, z) 3D projection of the 4D surface of section for Ej=−4.4461 close to the stable p.o. x1v1. Our point of
view is (θ, φ) = (55o, 194o).

in the figure. There is a narrow complex unstable
interval of x1v1 until Ej=−4.525, where x1v1 be-
comes again stable. In the present paper we study
the phase space only in the neighborhood of stable
p.o.

We choose a value of energy for which we have
studied the orbital dynamics at the neighborhood
of a stable x1v1 orbit at the axisymmetric case,
Ej=−4.4461, and we perturb first he x0 initial con-
dition of x1v1 by ∆x = 0.02, 0.04 . . . 0.14 succes-
sively.

In Fig. 34 we observe seven tori at the (x, ẋ, z)
projection, which we name W1,W2,. . .W7, sur-
rounding the fixed point of the x1v1 p.o. at this Ej.
Each torus consists of 104 consequents. The mor-
phology of W1,W2,W3,W4 and W6 indicates that
they are rotational while the morphology of W5 and
W7 is typical for tube tori. The tubes of W5 have
many self-intersections. However, the gaps between
them do not fill even if we consider 106 consequents.
Thus, we conclude that W5 is a tube torus. On
the other hand, despite its wavy character, W7 is
a tube torus with only one self intersection in the
3D (x, ẋ, z) projection. We note that tube tori ap-
pear in the 3D projections of the spaces of section
as soon as a perturbation is introduced, even if it is
a small one.

7. Summary and Conclusions

In this phenomenological paper we have studied in
detail the structure of phase space in the neighbor-
hood of stable periodic orbits in a 3D potential that

represents a rotating, thick galactic disk. We have
visualized the 4D spaces of section by means of the
color and rotation method. This allowed us to clar-
ify the properties of the invariant tori that we en-
counter in the vicinity of the stable p.o. We have
also examined chaotic zones that we have found
encaged between tori and the effect that these zones
could have in the support of structures observed in
thick galactic disks. Below we summarize our con-
clusions and compare our results with the results of
previous studies.

(1) On the equatorial plane (z=0), the dynamics of
the system is determined by the presence of the
central family x1. Even in the intervals that x1
is characterized as simple unstable (U), we find
in the (x, ẋ) surface of section invariant curves
surrounding the periodic orbit.

(2) In general we find around stable periodic or-
bits invariant tori. In the 3D projections we
encounter the invariant tori that have been
found in the papers by Froeschlé (1970, 1972),
Martinet and Magnenat (1981), Contopoulos et
al. (1982), Magnenat (1982), Patsis & Zachi-
las (1994) and Vrahatis et al. (1997), named by
the latter authors “rotational tori”. However,
we have found as well the other kind of invari-
ant tori, named by Vrahatis et al. (1997) “tube
tori”. The fact that this second kind of tori ap-
pear frequently in the vicinity of stable periodic
orbits in totally different physical systems as are
Hamiltonian systems of galactic type (this pa-
per) and 4D symplectic maps associated with
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the problem of beam stability in circular parti-
cle accelerators (Vrahatis et al. 1997), indicates
that they represent a generic behavior in 3D
orbits.

(3) The method of color and rotation was particu-
larly enlightening in understanding the proper-
ties of the two kinds of tori.

• As regards the rotational tori in all cases we
studied in our potential the continuation of
color, that guarantees the smooth variation of
the 4th coordinate, changes side along certain
lines (Figs. 11, 12). This shows that in the 3D
projections we have intersections in the rota-
tional tori, which, in all cases we encountered
in this study, appear four times on the tori.
• As regards the tube tori, their characteristic
feature, the self-intersections of their tubes, was
a projection effect in all cases, since at the in-
tersections meet always different colors. We re-
mark that we found always an odd number of
self-intersections in the 3D projections of the
tube tori. In the 4D space we did not find any
self-intersections of the tube tori.

We found that the two kinds of tori cannot be
distinguished neither from their rotation num-
bers, nor from the morphological features of the
orbits in the configuration space.

(4) As we depart from the initial conditions of the
stable p.o., the 3D projections of the tori ap-
pear distorted. Beyond a certain torus we found
sticky chaotic orbits that for a long time remain
on toroidal surfaces on which the consequents
have a smooth color variation and finally dif-
fuse in phase space, where we observe mixing
of colors.

(5) We found chaotic orbits, which can be encaged
by tori in the 4D space for times longer than a
Hubble time, but not forever, since there are no
topological barriers. We presented an example,
where such orbits support a peanut morphol-
ogy, similar but thicker than the morphology
supported by the corresponding quasi-periodic
orbits trapped around the stable x1v1.

(6) Tube-tori have been found only in the 3D pro-
jections of orbits in perturbed systems. In the
axisymmetric case we encountered only rota-
tional tori.
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