arXiv:1009.6057v1 [cs.NI] 30 Sep 2010

Network Flows for Functions

Virag Shah Bikash Kumar Dey D. Manjunath
Department of Electrical Engineering
Indian Institute of Technology Bombay
Mumbai, India, 400 076
virag4u@gmail.cor{bikash,dmanji@ee.iitb.ac.in

Abstract

We consider in-network computation of an arbitrary funectiover an arbitrary communication network. A
network with capacity constraints on the links is given. #omodes in the network generate data, e.g., like sensor
nodes in a sensor network. An arbitrary function of thisribsted data is to be obtained at a terminal node. The
structure of the function is described by a given computasichema, which in turn is represented by a directed
tree. We design computing and communicating schemes tinab& function at the terminal at the maximum rate.
For this, we formulate linear programs to determine netwitols that maximize the computation rate. We then
develop fast combinatorial primal-dual algorithm to ohtaiapproximate solutions to these linear programs. We
then briefly describe extensions of our techniques to thesca$ multiple terminals wanting different functions,
multiple computation schemas for a function, computatiagthva given desired precision, and to networks with
energy constraints at nodes.

. INTRODUCTION

Motivated by sensor network applications, there has begmifgiant interest in computing functions
of distributed data inside the network. A typical scenahattis considered is as follows. Sensor nodes,
distributed in a sensor field, can make measurements of éngironment, perform reasonable amounts
of computation and also communicate with other nodes. Thkerdst of the sensor network is not so
much in the measurement values made by the sensors but of feocteon of these variables, sa&y.
Since the nodes in the network can perform computation, toeyd participate in the computation 6f.
Thus the interest is in distributed computation of a funtitd distributed data. This has also been called
‘in-network function computation.’ In this setting, it iggically assumed that the variables form a time
sequence and that they can be generated at any rate; eqtlivade infinite sequence is readily available.
Thus, in this setting it is natural to want to compéet the best rate possible. In this paper, we introduce
novel network flow techniques to design a computation andngonication scheme that maximizes the
rate at which® is computed. Though network flow techniques have been usedlyvio study multiple
unicast [1]-[4] problems, our work develops such techrsgioe the first time for function computation.

Early work on in-network computation was on the asymptotialgsis of the number of transmissions
needed to compute specific functions in noisy broadcast arksw e.g., [[5]-4[7]. In recent works, it
is assumed that the node locations are from a realization sditable random point process, hence
the resulting communication graph of the network is a randpaph, e.g.,[[8]+[11]. In this setting a
probabilistic characterization of the asymptotic (in thenber of nodes) computation rate for different
classes of functions, such as ‘type-threshold functiomsl &ype sensitive functions’ [8], have been
obtained.

Another class of work considers simplistic networks witheimumber of correlated sources [12]-]15].
Much of this work takes the information theoretic perspeaxin which the objective is to find encoding
rate regions for reliably communicating the desired fumctiThis class of work allows block coding to
achieve better rates. There has been some recent work inetisdnk coding literature on distributed
function computation[[16]5[18]. They consider larger andren complex networks with independent
sources. However, designing optimal coding schemes andthdrchpacity is a difficult problem except
for very special functions or networks [16], |17].

http://arxiv.org/abs/1009.6057v1

X3

X1X2

(d)

Fig. 1. Computing® = X; X» + X3 over a network. (a) A network to compu& = X; X> + X5. (b) A possible embedding that computes
at © at unit rate. (c) An alternative embedding. (d) A schema tmate ©.

In this paper we make a significant departure from the abowe.cWsider arbitrary functions of the
distributed data for which a computation schema is desdriiyea directed tree. A computation schema
defines a sequence of operations to compute the functionri?meay communication network over which
O is to be computed is assumed given. Our techniques work fovanks with both directed as well as
undirected links with capacity constraints, though we @nésur results only for networks with undirected
links. There are some similarities of our work with that oagh embedding. e.gl, [19]-[21] but there are
significant differences in the modeling assumptions andhénembedding objectives. Such work typically
assume the target network to be a ‘regular network’ like aehgybe or a mesh and all link capacities
are assumed equal. The embedding objective is to minimz@dnameters like ‘dialation.’

A. An Example and Motivation

Let us consider the functio®(X, X, X3) = X; X, + X3 of three variables generated at three sources
s1, S2, and sz respectively. A terminal nodeis required to obtain the functiof (X, X», X3). We assume
that all the three data symbols are from the same alphdbdthe computation of the function can be
broken into two parts, namely, first computiig X,, and then adding(s;. These two operations can be
done at different nodes in the network in the above orders Teicomposition of the computation can
be represented by the graph shown in Fig.]1(d). Such a gm@pt@presentation of the computation will
henceforth be called a computation tree. Each edge repseaenique function of the source symbols.

Now consider computind (X7, X, X3) in the network shown in Fig. 1(a) where each edge has

unit capacity. There are multiple ways of receiving thisdiion at the terminak depending on what
computations are done at what nodes and along what pathatadlaws. Two such ways of computing
this function are shown in Figk. 1{b) ahd 1(c). These areedd#émbeddings’, defined formally in Séd. II.
It is clear that intelligent time-sharing between theseows embeddings may give higher number of
computation per use of the network on average than using oméy such embedding. This raises the
natural question: what is the maximum rate of computing tzet be achieved on a given network and
how to achieve it?

B. Organization and Summary of Contributions

We begin by describing the model in detail in the next sect@actior Il presents the main contributions
of this paper. Here we formulate a linear prograembedding-Edge-LP, that optimally allocates flows
on the embeddings. We then present anotherNdéle-Arc-LP,, based on a flow conservation law. This
LP can be solved in polynomial time. We then describe an #hgor Algorithm [, that converts the
flow rates obtained fronNode-Arc-LP into a flow allocation on the embeddings. We then presentta fas
primal-dual algorithm which finds a solution to achieve asig1 — ¢) fraction of the optimal rate. We

call such a solution am-approximate solution. This algorithm uses an oracle subte which finds a
minimum cost embedding of the computation tree in the ndiw@e provide an efficient algorithm,
OptimalEmbedding(L), to obtain the same. This algorithm is also of independdetést. Four interesting
extensions of our results are presented in Sdc. IV. Firsgllwes multiple computing schema for computing
the same function. Then we consider multiple terminals asing distinct functions of disjoint sets of
sources. For this problem, we modify our techniques to medrthe weighted sum-rate of computations,
and also to maximize the rate-tuple in a given directionhinthird extension, we consider the problem of
computing a function with a desired precision which is aebieby allowing possibly different precision
for each type of data. In the fourth extension, we considegtavork with energy-constrained nodes, and
assume that each type of data, i.e., each edge of the comoputise, requires some fixed but different
amount of energy to compute/generate, transmit, and receiv

II. THE MODEL AND THE NOTATION

The communication network is an undirected, simple, comtegraph\ = (V, E) whereV is a set
of n nodes and¥ is a set ofm undirected edges. Each edge € E represents a half duplex link with a
total non-negative capaci(uv). In the network,S = {s1, ss,...,s.} C V is the set ofx source nodes.
Sources; has an infinite sequence of data valyes;(k)}r>o where X;(k) belongs to a finite alphabet
A. The link capacities are expressed |id|-ary unit. X; is used to denote a representative element of

the sequence. LeX 2 [X1,...X,]. Without loss of generality, we assume that each source nodleei
network generates exactly one data sequence. If a soureegaoetrates two or more data sequences then
this can be represented by multiple source nodes connegteafibite capacity links. We also assume
that there is only one terminal node.

A given function© : A* — A of X needs to be obtained at the terminal nad®r eachk at the
best possible rate. A computation schema@ois given and represented by a directed téee- (2, T")
where() is the set of nodes and is the set of edges. The elements(ofare labelled,, s, ..., jq
where p, o, . . ., 1, are the source nodeg,q is the terminal node that obtairs and the rest are
computing nodes that compute different functionsXof Further, the nodes if2 are labelled according
to a topological order such that for> j there is no directed path iG from p; to 1;. The source nodes
have in-degree zero and out-degree one and the terminalhresdm-degree one and out-degree zero. All
other nodes have in-degree greater than one and out-degaettyeone. Similarly, the elements of are
labelled,, 0, ..., 0;r with 6,,0,,...,0, being the outgoing edges from, p», . .., i, respectively, and
¢ir| being the incoming edge inte,,|. The remaining edges are labeled according to a topologrcir,

i.e., for anyi < 7, there is no path from the head nodejofo the tail node ofi. The nodes and edges
of G can be labeled as above ((|I'|) = O(x) time.

For any edgd € I, let tail(0) and head(0) represent, respectively, the tail and the head nodes of the
edged. Let () and®,(#) denote, respectively, the predecessors and the successbrse.,

D4(0) {n € I'lhead(n) = tail(0)} and
P, (0) {n € T|tail(n) = head(0)}.

Each edgé of G represents a distinct function af that can be computed from the functions corresponding
to the edges inb,(6). Further, each function takes values from the same alphdbéie remark here
that this is not unreasonable even when all the computationever real numbers because computations
are performed using a fixed precision.)

Let N(v) 2 {u € Vluv € E} denote the set of neighbors of a node V. We also denote the set of
neighbors and itself byV'(v) = N(v) U {v}. A sequence of nodes, v, --- ,v;, [> 1, is called a path
if v;v;.1 € Efori=1,2,...,1— 1. The set of all paths it is denoted byP. With abuse of notation,
for such a pathP, we will sayv; € P and alsov,v;.; € P. The nodes;, and v, are called respectively
the start node and the end nodef®fand are denoted as sidr) and endP).

> >

As discussed in Sed. |, a function with a given computatiea ttan be computed along any “embedding”
of the tree in the network as shown in Fig. 1. We are now readprnmally define an embedding of a
computation tree.

Definition: An embedding is a mapping : I' — P such that

1) startB(6;)) =s fori=1,2,... K

2) endB(n)) = star(B(0)) if n € &4(6)

3) endB(fr))) =t.

We denote the set of embeddinggin N by B. Our aim is to determine the flows on these embeddings
SO as to maximize the total flow. An edge in the network mayycdifferent functions of the source data
in an embedding. We thus define the number of times an edgeF is used in an embeddin§ as
rp(e) = |{0 € I'|e is a part of B(#)}|. Note that|rz(e)| < |I'| for any edge, andz(e¢) = 0 for an edge
e which is not used by the embeddirigy Further, an edge may also be used to carry flows on different
embeddings. Therefore in an assignment of flows on diffezertieddings, i.e., in a particular timesharing
scheme, the edge may carry multiple types of data (i.e.erdifft functions ofX) of different amounts.

[Il. LINEAR PROGRAMS AND ALGORITHMS

In this section, we present our main contributions.

. In SectionTII-A, we give a basic linear program, tBenbedding-Edge LP, which characterizes our
problem.

« In Section1ll-B, we give an alternate LP, tiNode-Arc LP, that can be solved in polynomial time.
We then present an algorithm which obtains a solution of Ehwedding-Edge LP with the same
rate from a solution of th&lode-Arc LP.

« Drawing parallels from multi-commodity flow techniques, gi®e, in Sectiod 11I-C, the dual of our
Embedding-Edge LP and present a fast primal-dual algorithm to compute-approximate solution.
This algorithm needs a subroutine which finds a ‘minimum \weigmbedding’ of the computation
tree in the network for given edge-weights. We present anieiffi exact algorithm for this purpose.
This algorithm is of independent interest, for instance,domputing functions over a network with
power limited, but with infinite bandwidth, links.

Note that, if startB(6;)) = end B(6;)), i.e., if B(6;) consists of a single node, then in that embedding

the datad; is generated as well as used (i.e., not forwarded to anothe)rin that node.

A. The Embedding-Edge LP

As discussed in Sefl | and Séd. Il, the function for a padiceample of the data can be computed
over the network using any embedding of the computation itrethe network. Let3 be the set of all
embeddings o in A/. For any embedding3 € B, let x(B) denote the average number of function
symbols computed using the embeddiBgper use of the network. We present below a linear program
to maximize the computation rate=) ,_. #(B). Recall that-z(e) represents the number of times the
edgee is used in the embedding.

Embedding-Edge LP: Maximize A = ,_, #(B) subject to

1. Capacity constraints
> rple)z(B) < cle), Ve € E (1)
BeB

2. Non-negativity constraints
©(B) >0, VB 2)

fX=15 fX=z15 fx=15

2z (s

f*=15 f*=1.5

fxaxe g } C o
f X1X2+X3_ fxa=q
f XIX24X3_ pd X305
. C

f X1X2+X3- O

Fig. 2. The aggregate edge-flow values for a flow of 0.5 on thbeelting in Fig[I(d) and a flow of 1 on the embedding in Fig-]1(b)

This LP finds an optimal fractional packing of the embeddiofy§ into V. Similar formulations have
been considered widely in literature in the context of mettmmodity flow [2], [22] and other packing
problems [[2].

In multi-commodity flow problems, a solution of the so calleath-edge LP readily gives a way of
achieving the corresponding rates. However, since in oablpm, the data is to be mixed according
to different embeddings for different realizations of dabae needs to carefully device a protocol to
schedule the computation and communication at the nodesedgds in such a way that data from
different realizations are not mixed. Such a protocol isspreéed in the appendix.

B. The Node-Arc LP

Note that the cardinality o3 can be exponential if//|. Hence the complexity of th&mbedding-
Edge LP is exponential in the network parameters if any other stmecof the problem is not used.
In the multi-commodity flow literature, another LP formudat, called theNode-Arc LP, based on the
flow conservation principle is well-known which can be salie polynomial time. In the following, we
formulate a node conservation based LP for our problem. lkisrltP, we assume that each node in the
network has a virtual self-loop of infinite capacity. Theafibwing in the self-loop represents the data
generated at that node. This may be the source data genatatse sources or the intermediate or final
values computed at the node. For example, if a node compt&s from X; and X, it receives, and then
computesX; X5 + X3 by using the computed’; X, and receivedXs, then bothX; X, and X; X5 + X3
will be assumed to be flowing in its self-loop. Example of them$ on the edges and the self-loops
corresponding to a particular flow assignment on two embrepidis shown in Fig.12.

The variables in ouNode-Arc LP are

{10, foluwwe E,0 eT}U{fllueV,0 e} U{A}L

where, f° represents the flow of typé c I' flowing through the edgev € E from u to v, f% denotes
the flow of typef flowing in the self-loop at: and A represents the total rate of the function computation.

The linear program consists of capacity constraint on tlgegdf\/, a flow-conservation rule on the
nodes of\/, and non-negativity constraint on the flovi§ . The flow conservation rule is based on the
fact that an intermediate node ix can, apart from forwarding the flows it receives, generatew &f
type # on its self-loop by terminating the same amount of incomiow§ of typen € ®+(#). Each source
nodes;, in addition, generated amount of flow of typef,. Similarly, the terminal node terminatesi\
amount of flow of typedr;. The Node-Arc LP is as follows. Recall thatV’(v) denotes the set of the
neighbors ofv and itself.

Node-Arc LP: Maximize A subject to following constraints any node= V'
1. Functional conservation of flows:

Z Z —0, V0 T\ {6} andvy € ®,(6). 3)

ueN (v ueN’ (v

2. Conservation and termination 6f:

O Or -\ v=t
Z Jou! = Z Jus! _{ . otherwise “)

ueN (v) ueN’(v)
3. Generation of); VI € {1,2,...,k}:
A v=s
0 _ ! 5
fun {0. otherwise ®)
4. Capacity constraints
Z (6+ fu) < c(uv), Yuv € E. (6)
oel’

5. Non-negativity constraints

f? >0,Yuv € Eandvf € T (7)
0 >0,YueVandvd cT (8)
A>0. 9)

This LP hasO(xm) number of variablesQ(xm) number of non-negativity constraints (one for each
variable), andO(xn + m) number of other constraints. Hence it can be solved in pohjabtime.

The above LP gives a set of flow values on each link. Now we lgragfscribe and present an algorithm,
Algorithm [1, which, from any feasible solution of this LP,talms a corresponding feasible solution for
the Embedding-Edge LP that achieves the same

Each iteration of thevhile loop finds an embedding with a non-zero flow and removes thresponding
edge-flows to obtain another feasible solution with a reduege. This continues unt{ amount of flow
has been extracted. Theh iteration of thefor loop finds the mapping of; in the embedding. While
exploring the nodes to find the mapping ®f it checks for the presence of a cycle of flow of typelt
removes such a cycle if detected.

Proof of correctness of Algorithm([I} The proof of the following statements ensures the correstid
the algorithm.

1) In the third line inside théor loop, there exists @ € N'(v) such thatf’ > 0
2) If a cycle of redundant flow is found and removed in the fifdilock inside thefor loop, then the
remaining flows still satisfy the constraints in the LP withreplaced by\ —).

Algorithm 1: Finding equivalent solution of thEmbedding-Edge LP from a feasible solution of the
Node-Arc LP.
input : Network graph\V = (V, E), capacities:(e), set of source nodeS, terminal node,

computation trej = (2,I"), and a feasible solution to ifdode-Arc LP that consists of the
values of)\, f VO eT,Vuv e E,andf? Vo eT, YueV.

output: Solution {z(B)|B € B} to the Embedding-Edge LP with 3", . z(B) = A.

Initialize z(B) := 0, B(#;) = 0 (the null sequenceYB € B andV§, € T, \' =0
while)\ # X do

2(t) = A
B(0r)) :=
for ¢ := F| to 1 do
v = B(6;) ; /1 valid, as B(#;) has of only one node at this step
u := an element inV’(v) such thatf? > 0 ;
if wvandue B(6;) then
/

/ A cycle of redundant flow found: renove the flow from all
the edges in the cycle

Let P be the path |nB(9) upto the first appearance afin it.;
Delete P from B(6;). ;

Yy = minulv/e{uv}UP (fg;v’) ;
’3’1}/ = fglvl —y Vu'v' € {uv} UPp

end
else
| z(u) = min (2(v), f%) ;
end
if u+# v then
Prefixu in B(9;) ;
viITu;
Jump to the second statement inside fibreloop ;
end
else
| B(n) = u,Vn € 24(6)) ;
end
end
x(B) = z(s1) ; /'l Flow extracted on B
N =XN+z(B); /'l Total flow extracted

/'l Remove z(B) amount of flow fromall the edges in B.
0 — r0

= foy —x(B) V8 € I andVu'v' € B(6) ;
I Rermve xz(B) amount of flow from all

0 .= 0

the relevant sel f-1oops.
O = fo, —x(B) V8 eI andv' = star{ B(0)) ;

end

3) At the end of each iteration of thehile loop, the remaining flows still satisfy the constraints in
the LP with A replaced by\ — V.
4) The algorithm terminates in finite time.

We now outline a proof of each of these statements. We pravstdiements 1)-3) for a certain iteration
of the loops while assuming that all the above claims are itual the previous iterations of thehile
andfor loops.

Proof of [The current values of the flows satisfy all the constrainth@Node-Arc LP with) replaced
by A — \. The algorithm ensures that in this step, the total outgfiow ZueN(v) f2, > 2(v) > 0. So, by
constraints[(3) and_{4), the total of incoming and generétaus ZueN,(v) % > 0. Hence the statement
follows.

Proof of 2 We will prove that a cyclic flow on a cycle;, v,, - - -, v;, v, satisfies all the constraints in
the Node-Arc LP with A = 0. Then clearly after subtracting this flow from the edges @& ¢ycle, the
remaining flows in the network will still satisfy the constres with the same\ as before. For a cyclic
flow of type # of volumey, the flow values argffm+1 =yfori=1,2,---,1—1, fm =y, and all other
flow values are equal t0. So, for any node, any nonzero incoming flow is ‘compensalgdthe same
amount of outgoing flow of the same type. All flow values in tledf-toops are alsd. So clearly these
flows satisfy the constraints in the LP with= 0. This completes the proof.

Proof of [3 Again, we will prove that the removed B) amount of flows on the edges of an embedding
and on the self-loops themselves satisfy the constrairtteeihP withA = z(B). Then the remaining flows
will also satisfy the constraints with replaced by\ — z(B). The subtracted flow values afé = x(B)
for uwv € B(0), f°, = x(B) for u = star{B(0)), and all other flow values. We can verify that these
flows satisfy the constraints in tidode-Arc LP.

Proof of & The Node-Arc LP hasO(m|T'|) number of variableg’?, and f¢ . Each deletion of flows
through a cycle, or through an embedding, makes at least btiege variables zero. Since the number
of steps in each iteration is finite, the algorithm ends intditime. [

It can be checked that the overall complexity of AlgorithimslOi(x?m?).

C. Primal-dual algorithm and min-cost embedding

The Node-Arc LP and the subsequent algorithm to find an optimal solution ef&tmbedding-Edge LP
has polynomial-time complexity. For the multi-commoditgvil problem, and for more general packing
problems, Garg and Konemarin [2] gave a faster primal-dgariéhm to find anc-approximate solution.
The algorithm uses a hypothetical subroutine/oracle. f@ntulti-commodity flow problem, the subroutine
finds the shortest paths between the source-terminal pagsnow give a similar fast algorithm to find
an e-approximate solution to thEmbedding-Edge LP.

We first provide the dual of th&mbedding-Edge LP. The dual has the variables = (l(€))ccr
corresponding to the capacity constraints in the primagé dhal LP is given as follows.

Dual of Embedding-Edge LP: Minimize D(L) = > _ c(e)l(e) subject to
1. Constraints corresponding to eacfiB) in primal:

> rule)i(e) > 1, VB (10)
eeB
2. Non-negativity constraints:
l(e) >0, Ve e E (11)

We define the weight of an embeddiigyas

wi(B) =Y ra(e)i(e).

eeB

It can be checked (similar t6][2]) that the dual LP is equinal® findingmin, 22, where
@y = miin wy(B)

is the cost of the minimum cost embedding for

The Embedding-Edge LP is a fractional packing LP of the type considered by Garg andefnann([2]
and Plotkinet al. [23]. A polynomial time primal-dual algorithm was preseatm [2] for such LPs
assuming the existence of an efficient oracle subroutinelwhnds a ‘shortest path.” For a packing LP
max {a’z|Az < b,z > 0} and its dual LPmin {b"y|ATy > a,y > 0}, the shortest path is defined as
> AW y(i) /a(g) [2]. Itis easy to see that for our LP, the ‘shortest path’ esponds to the embedding
with minimum weight,arg ming w; (B). Algorithm[2 gives the instance of the primal-dual algaritifor
our problem.

Algorithm 2: Algorithm for finding approximately optimat and A

input : Network graph\V = (V, E), capacities:(e), set of source nodeS, terminal node,
computation treej = (2, I'), the desired accuracy
output: Primal solution{z(B), B € B}
Initialize i(e) := ¢ /c(e), Ve € E,x(B) :=0,VB € B ;
while D(l) <1 do
* := OptimalEmbeddingf) ; /1 Optinmal Enbeddi ng(L) outputs argmingwg(B)
e* := edge inB* with smallestc(e)/rp-(e) ;
x(B*) := x(B*) + c(e*) /rp-(e*) ;
l(e) = I(e)(1 + eLprete)) Ve € B ;
end

z(B) := x(B)/log, VB ;

We now describe, and then provide below, the subroutinen@imbeddingl)) which finds a minimum
weight embedding off on N with a given length functiorl.. For each edgé;, starting fromé, it finds
a way to computé; at each network node at the minimum cost possible. It kegg& of that minimum
cost and also the ‘predecessor’ node from where it recélvd$ 0, is computed at that node itself then
the predecessor node is itself. This is done for eadby a technique similar to the Dijkstra’s algorithm.
Computingé; for i € {1,2,...,x} at the minimum cost at a nodeis equivalent to finding the shortest
path tou from s;. We do this by using Dijkstra’s algorithm. For any othgrthe nodeu can either
computed; from @4 (6;) or receive it from one of its neighbors. To take this into acdpunlike Dijkstra’s
algorithm, we initialize the cost of computirtg with the cost of computing.(6;) at the same node. With
this initialization, the same principle of greedy node stta and cost update as in Dijkstra’s algorithm
is used to find the optimal way of obtainifigat all the nodes. Finally, the optimal embedding is obtained
by backtracking the predecessors. Starting frgnwve backtrack using predecessors from whigh is
obtained, till we hit a node whose predecessor is itselfs Tioide is the start node &f(¢,r) and the end
node of B(n) for all n € ®+(0r|). The complete embedding is obtained by continuing this ggsdor
eachd; in the reverse topological order.

Correctness of OptimalEmbedding(): It is sufficient to show that, during each phaséhe algorithm
computes optimal values fas, (6;) and o, (6;), for each node: in A/. We prove this by induction on
the pair (i, |¥|) according to the lexicographic ordering. Foe {1,...,x} and for all ||, this follows
from the correctness of Dijkstra’s algorithm. Now, assugnihe optimality ofw,, (6;) anda,, (6;) till all
iterations befordi, |V|), we prove the statement for, |V|). Supposer is the element added & in the
current iteration. We consider two cases:

Case 1.V = {v}: The cost of computing (and not receiving from another nagedt any nodeu
is Zne@(ei) wy (). The algorithm chooses which has the minimunEn@T(e_) wy () among all nodes

K3

10

Procedure OptimalEmbedding()

input : Network graph\V = (V, E), Length functionL, set of source nodeS, terminal nodet,
computation tree; = (Q,).
output: EmbeddingB* with minimum weight undet.

for i =1 to |I'| do
if i e {1,2,...,k} then
wy (60;) = oo,Vu € V —{s;} ;
ws; (0;) == 0andog, (0;) = s; ;
end

else
Wy (92) = Zﬁeq)T(@i) Wy (77) ,\V/U eV ;
ou(0;) = u, YueVv;

end

U =0v=V,;
while || < n do

v = argming, g wy (6;) ;

U =vu{v};

U= {v};
foreach v € N(v) do

| if wy (0;) + l(uv) < w, (0;) then w, (6;) = w, (6;) + [(uwv) and oy, (6;) = v ;
end

end

end

B*(Ory) := 1 ;
for i = |I'| to 1 do

w:=DB*6;); Il valid, as B*(#;,) consists of only a node at this step
while o, (6;) # u do
Prefix o, (0;) to B*(7) ;

u =0y (0;)
end
B(n) == uVn € &+(6;) ;

end

u € V and assigns, (0;) = Zne%(ei) wy, (n) ando, (6;) = v. If these are not optimal, then it must be more
efficient forv to receives; which is computed at some other nodeBut that implieszne%(ei) wy () <
Zne%(ei) wy, (1), which is a contradiction to the choice of

Case 2{v} C ¥: Suppose there is a more efficient way of receivipngt v than from the node selected
aso, (#;) and that is to computé; at a nodeu and receive it along a path, ,. Let the corresponding
cost bew! (6;). First, if u € ¥, then the present cos{tg D ned, 6 Wu (1) | @tu is less than the present
value ofw, (;), which is a contradiction to the choice of Thusu € V. Let ' be the last node i#, ,
from ¥, andv’ be the first node inP,, from ¥’. Thenw! (6;) > ww (6;) + L(u/'v") > wy (6;) > w, (6;)
— a contradiction. Here the first inequality follows sincec . The second inequality follows from the
update rule followed during the inclusion af in ¥. The last inequality follows from the choice of

Complexity of OptimalEmbedding(Z) and the primal-dual algorithm: Let us consider the firsfior loop
in OptimalEmbedding(). Each iteration of this loop is the same as Dijkstra’s athan except for the
initialization. Thus, the for loop, excluding the initiatition step, can be run 0 (m +nlogn) time using

11

Fibonacci heap implementation. The initialization steguieesO(n|®4(6;)|) time for each iteration. The
secondfor loop hasO(nk) complexity. So the overall algorithm takéX x(m + nlogn)) time.

The number of iterations in the primal-dual algorithm is b&torderO(e 'mlog,. . (m)). Thus the
overall complexity of the algorithm i& (e~'km(m + nlogn)log, . (m)).

IV. EXTENSIONS

1. Multiple trees for the same function: It may be possible to compute a function in different seqasnc
of operations which are expressed by different computatiees. For example, the ‘sum’ function
f(X1, X,, X3) = X, + X, + X3 may be computed by any of the computation seque(icEs+ X5) + X3),
(X1+ (X4 X3)), or (Xo+ (X1 4 X3)). In general, suppose multiple computation tréesG., ..., G, are
given for computing the same function. LBt denote the set of all embeddings@ffor i =1,2,... v.
Let B = U;B; denote the set of all embeddings. Under this definitiolBpthe Embedding-Edge LP for
this problem is the same as that for a single tree. The newn@fEmbeddingl) algorithm finds an
optimal embedding for eaci; and chooses the one with minimum weight as the optimal embgdd
B. This can be used in the same primal-dual algorithm to find-approximate solution.

Some edges of different trees may represent an identicatiumof the sources. For example, for the
function X; + X, + X5+ X4, an edge corresponding to the functi&@n+ X, is present in each of the trees
corresponding tc(((X1 + X3) + X3) +X4), (X1 + Xa) + (X5 + X4)), and ((X1 + X,) + X)) + Xg).
For this reason, OptimalEmbeddirig(algorithm can be made more efficient by running iteratioms f
each function rather than each edge. The initializatiom©ff)) changes correspondingly, to take into
account all possible ways of computing that function. Réghe algorithm remains the same.

The particular functior©(X;, Xo, ..., X,) = Xi + Xo + ... + X, is of special theoretical as well as
practical interest. There are many, of the ordet!pSequences of additions of data and corresponding trees
to get this function. With the above modification, our OptiErabedding() algorithm has complexity
exponential ink and linear inm. As a result, our primal-dual algorithm gives aapproximate solution
in exponential complexity inc and quadratic inn. The problem is equivalent to the much investigated
multicast problem. For this problem, and consequentlytierfunction ‘sum’, the oracle finds a minimum
weight Steiner tree. This is well-known to be NP-hard anApproximate (but not-approximate for
any givene) polynomial complexity algorithms are known (séel[24] ariightions therein) for finding a
minimum weight Steiner tree. This can also be used to findamate solution to the multicast, and
hence the ‘sum’, in polynomial complexity [24].

2. Multiple functions and multiple terminals: Suppose the network has multiple terminalg,, . . ., t,
wanting functionso, (X)), ©,(X@),...,0,(X")) respectively. HereX? is the data generated by a
set of sourcess™. The setsS":i = 1,2,...,~ are assumed to be pairwise disjoint. For each function
0©;, a computation treg; is given. Let us consider the problem of communicating thecfions to the
respective terminals at rates, Ao, ..., \,. The problem is to determine the achievable rate regionwhic
is defined as the set af= (A, X, ..., A,) for which a protocol exists for transmission of the functon
at these rates. This region can be approximately found hyirgpkither of the following problems.

(i) For any given non-negative weights, as, . . ., o, What is the maximum achievable weighted sum-
rate) | o \?

For this problem, we consider embeddings of the comput#temsg; into the network for each terminal
t;. Let B; denote the set of all embeddings @f Then theEmbedding-Edge LP for this problem is to
maximize 37, «; 3.5 2(B). The constraints are the same as before vtiefined by = U;5;.
The weight of an embedding € B under a weight functiorl is defined asv,w,(B) if B € B;. The
new OptimalEmbeddind() algorithm finds an optimal embedding for eaghand chooses the one with
minimum weight. This can be used in the same primal-dualrétga to find ane-approximate solution. It
is also easy to obtain lMode-Arc LP for this problem by minor modifications to that for a singl@dtion
computation at a single terminal.

12

(if) For any non-negative demands, as, . . ., a, What is the maximun for which the rates\a;, Aao, . . ., A,
are concurrently achievable?

Here, we define an embedding to be a tuple= (B, Bs, ..., B,), whereB; € B; is an embedding
of the computation tre€;. The Embedding-Edge LP for this problem is the same as that for the single
terminal problem withr(e) defined asrp(e) = Y., a;|{# € I';]e is a part of B;(0)}| and B = B; x
By x ...x B,. The weight of an embedding under a weight functiorL is defined asy")_, a;w(B;).
The new OptimalEmbeddingj algorithm finds an optimal embedding by separately finding optimal
embeddings3; for eachg;. This can be used in the same primal-dual algorithm to find-approximate
solution. Again, we can easily obtainNode-Arc LP by minor modification to that for a single function
computation at a single terminal.

3. Computing with a precision: In practice, the source data may be real-valued, and conuaitimg
such a data requires infinite capacity. In such applicatidns common to require a quantized value
of the function at the terminal with a desired precision.sTmay, in turn, be achieved by quantizing
various data types with pre-decided precisions and thdierdiit data type may require different number
of bits to represent them. Suppose the data type denotetibyepresented using(d) bits. Then the
Embedding-Edge LP and its dual for this problem are the same as before excepthbadefinition of
ri(e) is changed tas(e) = 3 ycr. is a part ofn(e) 0(0)- IN the Node-Arc LP, the capacity constraints are
changed to

Z (f2,+ 12,) b(0) < c(uv), Yuv € E.
oel
In the Optimal Embedding(L) algorithm,/(uv) is replaced by (uv)b(6;) inside theforeach loop.
4. Energy limitted sensors:Suppose, instead of capacity constraints on the links, eadbu € V' has
a total energyF(u). Each transmission and receptionfofequire the energysr, and Er» respectively.
Generation of one symbol @f or computation of one symbol af from ®.(0) requires the energ¥c .
The objective is to compute the function at the terminal mmaxin number of times with the given total
node energy at each node.
For an embedding, if B(0) = vy, vy, -+ , v, thentr(B(0)) = {v1,va, - - - ,v;_1} denotes the transmit-
ting nodes, andz(B(0)) = {vs, v3,--- ,v;} denotes the receiving nodes @flf [= 1, thentr(B(0)) =
raz(B(6)) = 0. For B, the energy load on the nodeis given by

EB(U) = Z Ecﬂ—F Z ET9+ Z ER@
0:star{ B(0))=u O:uctx(B(0)) O:ucrz(B(0))
The capacity constraint in thembedding-Edge LP is replaced by the energy constraint on the nodes
> #(B)Eg(u) < E(u) Yu eV,
BeB

where an empty sum is defined to be The dual of theEmbedding-Edge LP is: Minimize D(L) =
> wey E(u)l(u) subject to
1. Constraints corresponding to eacfiB) in primal:

> Ep(u)l(u) > 1, VB (12)
ueB
2. Non-negativity constraints:
l(u) >0, YueV. (13)
The weight or cost of an embedding can be defined as
=Y Ep(u)i(u)

ueB

13

The Optimal Embedding(L) is modified in the weight initialization and weight updaténeTweight initial-
ization is done as, (6;) := E¢, for source data and, (¢;) := Ecyg, + Zne%(gi) w, (n) for other data.
The weight update at is now done asy, (¢;) = w, (0;)+ Erg, + Erg, if w, (0;)+ Ere, + Ere, < wy (6;).
After suitable modification, the primal-dual algorithm Wwithe modifiedOptimal Embedding(L) algorithm
finds ane-approximate solution.

In the Node-Arc LP, the capacity constraints are replaced by energy contratrthe nodes:

> foEco+Y > (foEre+ fluEre) < E(u) VueV.
)

oer el veN(u

V. DISCUSSION AND CONCLUSION

In this paper, we have laid the foundations for network floshteéques for distributed function com-
putation. Though we have obtained results for computatieest we believe that much of our techniques
can be extended to larger classes of functions, for instaflasé Fourier transform (FFT), that can be
represented by more general graphical structures liketéideacyclic graphs and hypergraphs where each
edge or hyper-edge represents a distinct function of thecesuThe sum function discussed in Sed. IV
is one such function representable by a hypergraph.

Our computation framework does not allow block coding, iceding across different realizations of
the data. Such coding has been used in the information thawdynetwork coding literature. Block
coding can, in general, offer better computation rate. kan®le, consider the directed butterfly network
as shown in Fig[]3 with two binary source nodes (with sourag@sses denoted by andY) and a
terminal node with a XOR target functioB(X,Y) = X @ Y. It can be checked that the maximum rate
achievable by routing-like schemes, i.e., without usingrmmnealization coding, i$.5. On the other hand,
the scheme shown in Fi§. 3[b) using inter-realization cgdichieves a rate af. However, for more
general functions, finding the optimal rate and designingintgd coding schemes is a difficult problem
under this framework. Further, for undirected multicastwoeks, it is known that the inter-realization
coding can achieve a rate strictly less than twice the rateeaed by routingl[25]. We expect that similar
results will hold for function computation over undirecteetworks.

Altogether, we believe that results in this paper opens nreawy avenues for further research.

Y2

X Y,

D
+ 40
®
oA
© X
XY XD Yo

(a) The butterfly network. Each(b) A rate-2 solution using
edge has capacity 1 bit/luse cross-realization coding

Fig. 3. The butterfly network with XOR target functigd(X,Y) =X @Y

14

VI. ACKNOWLEDGEMENT

The authors would like to thank A. Diwan for fruitful discusss. This work was supported in part
by Bharti Centre for Communication at IIT Bombay and a projeem the Department of Science and
Technology (DST), India.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlif\etwork Flows. Prentic Hall Inc, 1993.

[2] N. Garg and J. Konemann, “Faster and simpler algoritharsrfulticommodity flow and other fractional packing probkein Proc.
FOCS, 1998.

[3] T. Leighton, F. Makedon, S. Plotkin, C. Stein, S. Tragasidand E. Tardos, “Fast approximation algo- rithms for imathmodity flow
problems,”J. Comput. System <ci., vol. 50, pp. 228-243, 1995.

[4] F. Shahrokhi and D. Matula, “The maximum concur- rent flpmblem,”J. ACM,, vol. 37, pp. 318334, 1990.

[5] R. G. Gallager, “Finding parity in simple broadcast netls,” |[EEE Transactions on Information Theory, vol. 34, pp. 176-180, 1988.

[6] E. Kushilevitz and Y. Mansour, “Computation in noisy radetworks,” in Proceedings of the 9th annual ACM-SAM Symposium on
Discrete Algorithms, 1998, pp. 236-243.

[7] U. Feige and J. Kilian, “Finding or in noisy broadcastwetk,” Information Processing Letters, vol. 73, no. 1-2, pp. 69-75, January
2000.

[8] A. Giridhar and P. R. Kumar, “Computing and communicgtifunctions over sensor networkd EEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 755-764, April 2005.

[9] L.Ying, R. Srikant, and G. Dullerud, “Distributed syminie function computation in noisy wireless sensor netvgonkth binary data,”
in Proc. of the 4th International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless networks (W Opt), April
2006, pp. 1-9.

[10] Y. Kanoria and D. Manjunath, “On distributed computatiin noisy random planar networks,” Proceedings of |IEEE International
Symposium on Information Theory, Nice, France, June 2007.

[11] S. Kamath and D. Manjunath, “On distributed functionmgmutation in structure-free random networks,” Bnoceedings of IEEE
International Symposium on Information Theory, Toronto, Canada, July 2008.

[12] J. Korner and K. Marton. How to encode the modulo-two sefnbinary sourcesIEEE Trans. Inform. Theory, 25(2):219-221, 1979.

[13] T.S.Han and K. Kobayashi. A dichotomy of functiofiéz, y) of correlated sourcege, y). |EEE Trans. Inform. Theory, 33(1):69-86,
1987.

[14] Alon Orlitsky and J. R. Roche. Coding for computindgzEE Trans. Inform. Theory, 47(3):903-917, 2001.

[15] H. Feng, M. Effros, and S. A. Savari. Functional souroeling for networks with receiver side information. Rroceedings of the
Allerton Conference on Communication, Control, and Computing, September 2004.

[16] B. K. Rai and B. K. Dey, “Sum-networks: system of polynamequations, reversibility, insufficiency of linear netik coding,
unachievability of coding capacityBubmitted to |EEE Trans. Inform. Th., available at http://arxiv.org/abs/0906.0695.

[17] R. Appuswamy, M. Franceschetti, N. Karamchandani, lendeger, “Network coding for computing part i : Cut-set bdsii Submitted
to IEEE Trans. Inform. Th., available at http://arxiv.org/abs/0912.2820.

[18] M. Langberg and A. Ramamoorthy, “Communicating the sefnisources in a 3-sources/3-terminals network,Pioceedings of IEEE
International Symposium on Information Theory, (Seoul, Korea), 2009.

[19] F. T. Leighton, M. J. Newman, A. G. Ranade, and E. J. StiewdDynamic tree embeddings in butterflies and hypercutf@&M
Journal on Computing, vol. 21, no. 4, pp. 639-654, 1992.

[20] O. Wohlmuth and F. Mayer-Lindenberg, “A method for theambedding of arbitrary communication topologies into agunfable
parallel computers,” ifProceedings of the 1998 ACM Symposium on Applied Computing, 1998, pp. 569-574.

[21] V. Heun and E. W. Mayr, “Efficient dynamic embeddings obitrary binary trees into hypercubeslburnal of Algorithms, vol. 43,
pp. 51-84, 2002.

[22] G. Karakostas, “Faster approximation schemes fortisaal multicommodity flow problems,ACM Trans. Algorithms, vol. 4, 2008,
pp. 1-17.

[23] S. Plotkin and D. Shmoys and E. Tardos, “Fast approxomatlgorithms for fractional packing and covering probsghiMath. Oper.
Res., vol. 20, pp. 257-301, 1995.

[24] M. Saad and T. Terlaky and A. Vannelli and H. Zhang, “Ragkrees in communication networks],’ Comb. Optim., vol. 16, pp. 402—
423, 2008.

[25] Z. Li and B. Li, “Network coding in undirected network€$roc. 38th CISS, Princeton, NJ, Mar. 2004, pp. 257—-262.

APPENDIX A
THE PROTOCOL

We now outline a communication and computation protocolgies] to receive the function at the
terminal at a rate that is greater than,_, x(B) — ¢ for any given solution of th&mbedding-Edge LP.
First, the flow values:(B) are rounded to lower rational numbers so that the total flaw still greater
than ", s 2z(B) — e. With abuse of notation, we use the same notati0) to denote these rounded
values ofz(B) in the rest of this subsection. All these flows are then miigtipby the least common
multiple N of the denominators of the flows(B); B € B. Let the resulting values be(B); B € B.

15

Clearly) ;.zn(B) = rN. Let us fix an order in the embeddingg, B;, ..., Bjz. The protocol consists
of computation at the nodes and communication across thke ima block/frame ofV consecutive uses
of the network. In each frame, a linkcan carry upto a total olN¢(e) symbols in both directions. Our
protocol will require sending integer number of symbols\iruses ofe in each direction. We assume that
this is possible as long as the total number of symbols trétesmin both directions is at mosYc(e).
We assume that computation at nodes is done instantangandly frame sent across a link is available
at the receiving node at the end of the frame. The receivirdg raan forward the data on another edge
in the next frame or use it to compute something else for tmés&on in the next or later frames.

In our protocol, the data stream generated at each sourdeided into blocks ofr N symbols, and
the terminal computes N number of corresponding function values in each frame. GQuthe r N
computations, the first(B,) are carried out using the embeddihy, the nextn(B,) are carried out
using the embedding,, and so on. In each direction on each link, the transmisstonesponding to
different embeddings are ordered in the same order as thedsfimys. Further, ifiv is in B(6;) as well
as B(0;) (assumei < j without loss of generality), thenv carries the data fofB, 6;) first and then
the data for(B, 6;). Formally, in each frame and in each direction, a linkin N\ carries a subframe,
possibly empty, of data for eadl3, 0) pair, whereB € BB,0 € I'. These subframes are transmitted in
the lexicographic order o0B,#). Since the subframes for differe(B, #) may be available at. with
different delay, these subframes will not correspond tosdme frame of source data. In the following,
we explicitly describe the subframes carriedy in the k-th frame.

Let yge denote then(B) symbols of data of typé corresponding to the(B) symbols of source data
in the k-th frame corresponding to the embeddiBg That is,yghe denotes thex(B;) symbols of data of
type @ corresponding to the first(B;) symbols of source data in theth frame,yfg%(, denotes the:(Bs)
symbols of data of typé corresponding to the next(B,) symbols of source data in theth frame, and
so on. In each frameyv carries a subframe of data for each, 0) pair. The subframe corresponding to
(B, 0) is empty ifuv ¢ B(6). Formally,

vt Yo if uv € B(0),
w.B6 ™\ g otherwise.

This subframe corresponds to theh block of source data. These subframes may be availahlevih
variable delay due to variable path lengths from the souatesg different embeddings. Let us define
the depth or delay/(u, B,) as

(oo if uv & B(0)
0if uv € B(0),u = s;,0 =0,

d(uv, B,0) = < 1+ max{d(wu, B,n)|n € ®4+(0),wu € B(n)}} (14)
if wv € B(0),u = star{B(0)), (u,0) # (si,0;)

d(wu, B,0) + 1if (u,0) # (s;,6;), wu,uv € B(0).

So, the subframe’, ;,, which hasn(B) symbols ifuv € B(f#) and which corresponds to thethe
frame of source data will be transmitted in thle+ d(uv, B, #))-th frame onuwv. The infinite value for
uv ¢ B(0) indicates that the corresponding data does not flow thraugfrom w to v.
Example: Consider the network and the computation tree shown inFighé edges of the computation
tree are labeled by the functions they carry, thakisy, and X +Y. For embeddind3;, d(s,v, By, X) = 0,
d(sqv, B1,Y) =0, d(vw, B;, X +Y) =1, d(wt, B;, X +Y) = 2, and all other delay values are. For
embeddingBs, d(siu, By, X) =0, d(sew, By, Y) = 0, d(uw, By, X) = 1, d(wt, By, X +Y) = 2, and all
other delay values areo.

The data transmitted in the-th frame fromu to v on the linkuwv, in order of transmission, is thus

k—d(uv,B1,01) _ k—d(uv,By,02) k—d(uv,B1,0|r|) _ k—d(uv,B2,01) _ k—d(uv,B2,02) k—d(uv,B2,0|r|) k—d(uv,B|),01)

uv,B1,01 » S uv,B1,02 L 7yuv,B1,9m » S uv,Ba,01 » Y uv,B2,02 v Juw,Ba O v Juw,Big,0h

Y

16

X+Y

(@ A network to computgb) A computation tree fo®. (c) A embeddingB;. (d) An embeddingB-.
0=X+Y.

Fig. 4. A network, a computation tree and two embeddings

. jg(;’ P Yoy jlg(zg"f‘f‘ %) It is easy to see that the required flow of function valued t
computed on each embeddlng by this protocol. If the comnatioic starts with the frame numberand

ends with theK-th frame of source data, then the subframes are empty: far d(uv, B;, ;) and for
k> K +d(uv, B, 0;). In particular, a subframg,, %", is empty ifuv ¢ B;(6).

Example: In the above example, suppose a solution of Emabedding-Edge LP is z(B;) = 1 and
x(By) = 0.5. Then N = 2, andn(B;) = 2,n(B;) = 1. Each data stream is divided into frames of
3 symbols, out of which the first 2 symbols flow ové&; and the last symbol flows oveB,. In the
k-th frame, the linkuw carries only one non-empty subframe 85 containing one X’ symbol. That
subframeyuw B,.x corresponds to the last symbol of ttle— 1)-th frame of data. The linkvt carries one
subframe of ton + Y’ symbols for B; and another subframe of on& ‘+ Y’ symbol for By. These
subframesy” 2 ByX +Y,y1’jt %, x+y correspond to the first two symbols of tiie — 2)-th data frame and
the last symbol of theék — 2)-th data frame respectively.

To implement the protocol, any node needs to knowVN, n(B) for all embeddings with non-zero
n(B), and d(uv, B,6) and d(vu, B, §) for all such embedding®3, # € I',v € N(u). The values of
d(uv, B,0) can be found inD(nb|T'|) time, whereb is the number of embeddings for whiel{ B) > 0.

In the following, we give the sequence of actions taken by aoge .

1. The node maintains an input queue for eaéh#) pair for which d(vu, B,6) < oo for some
v e N(u).

2. For thek-th frame received fromv on the linkvu, the nodeu knows the ‘composition’, i.e., how
many symbols for whicH B, #) pair are received on that frame and in what order. This is umezahe
frame contains a non-empty subframe correspondindtd) if and only if d(vu, B,) < k. Such a non-
empty frame contains exacthy(B) symbols. The transmission of all the non-empty frames ier@d in
the lexicographic ordering dfB, 6). For any received frame on any link, puts each received subframe
in its respective input queue. if is a source, it also takes théV generated symbols and creates the
subframes of lengths(B) for all the relevant embeddings. Those are also placed pentise queues.

3. After queueing all the received and generated data inkttte frame, v prepares the data to be
transmitted on each linkwv in the next, that ik + 1)-th, frame of N transmissions. The non-empty
subframes for this transmitted frame are those for whighv, B, 0) < k + 1. If there is an input queue
for (B, 6), i.e., if such a data subframe is received.athen this subframe of(B) symbols is taken from
the respective input queue. Otherwise, this subframe iergéed from the subframes from the queues
for (B,n);n € ®4+(0). If such a queue fofB,n) contains multiple subframes af(B) symbols, then the
oldest of them is taken. For instance, in our example (Bigfat)constructing the subframel), 5, v
at w for the k-th frame,w takes a subframe from its input que(B,, X') and a subframe from the input
queue(B,,Y) and adds them. At this time, in the first queue, there is onb/smrbframe_yuw “8,.x Which

is used now. But in the second queue, there are two subfrgnj;[é@ y and waB v available, out of

which the older subframg}, % , is used.

17

	I Introduction
	I-A An Example and Motivation
	I-B Organization and Summary of Contributions

	II The model and the notation
	III Linear programs and algorithms
	III-A The Embedding-Edge LP
	III-B The Node-Arc LP
	III-C Primal-dual algorithm and min-cost embedding

	IV Extensions
	V Discussion and conclusion
	VI Acknowledgement
	References
	Appendix A: The protocol

