
ar
X

iv
:1

00
9.

60
57

v1
 [

cs
.N

I]
 3

0
S

ep
 2

01
0

1

Network Flows for Functions
Virag Shah Bikash Kumar Dey D. Manjunath

Department of Electrical Engineering
Indian Institute of Technology Bombay

Mumbai, India, 400 076
virag4u@gmail.com,{bikash,dmanju}@ee.iitb.ac.in

Abstract

We consider in-network computation of an arbitrary function over an arbitrary communication network. A
network with capacity constraints on the links is given. Some nodes in the network generate data, e.g., like sensor
nodes in a sensor network. An arbitrary function of this distributed data is to be obtained at a terminal node. The
structure of the function is described by a given computation schema, which in turn is represented by a directed
tree. We design computing and communicating schemes to obtain the function at the terminal at the maximum rate.
For this, we formulate linear programs to determine networkflows that maximize the computation rate. We then
develop fast combinatorial primal-dual algorithm to obtain ǫ-approximate solutions to these linear programs. We
then briefly describe extensions of our techniques to the cases of multiple terminals wanting different functions,
multiple computation schemas for a function, computation with a given desired precision, and to networks with
energy constraints at nodes.

I. INTRODUCTION

Motivated by sensor network applications, there has been significant interest in computing functions
of distributed data inside the network. A typical scenario that is considered is as follows. Sensor nodes,
distributed in a sensor field, can make measurements of theirenvironment, perform reasonable amounts
of computation and also communicate with other nodes. The interest of the sensor network is not so
much in the measurement values made by the sensors but of somefunction of these variables, sayΘ.
Since the nodes in the network can perform computation, theycould participate in the computation ofΘ.
Thus the interest is in distributed computation of a function of distributed data. This has also been called
‘in-network function computation.’ In this setting, it is typically assumed that the variables form a time
sequence and that they can be generated at any rate; equivalently, an infinite sequence is readily available.
Thus, in this setting it is natural to want to computeΘ at the best rate possible. In this paper, we introduce
novel network flow techniques to design a computation and communication scheme that maximizes the
rate at whichΘ is computed. Though network flow techniques have been used widely to study multiple
unicast [1]–[4] problems, our work develops such techniques for the first time for function computation.

Early work on in-network computation was on the asymptotic analysis of the number of transmissions
needed to compute specific functions in noisy broadcast networks. e.g., [5]–[7]. In recent works, it
is assumed that the node locations are from a realization of asuitable random point process, hence
the resulting communication graph of the network is a randomgraph, e.g., [8]–[11]. In this setting a
probabilistic characterization of the asymptotic (in the number of nodes) computation rate for different
classes of functions, such as ‘type-threshold functions’ and ’type sensitive functions’ [8], have been
obtained.

Another class of work considers simplistic networks with small number of correlated sources [12]–[15].
Much of this work takes the information theoretic perspective in which the objective is to find encoding
rate regions for reliably communicating the desired function. This class of work allows block coding to
achieve better rates. There has been some recent work in the network coding literature on distributed
function computation [16]–[18]. They consider larger and more complex networks with independent
sources. However, designing optimal coding schemes and finding capacity is a difficult problem except
for very special functions or networks [16], [17].

http://arxiv.org/abs/1009.6057v1

2

t

s1 s2 s3

(a)

X2

s1 s2 s3

t

X1

X3

X3

Θ

X2

X1

(b)

s1 s2 s3

t

X2

X3

X3

X1

X1*X2

(c)

X1 X2
X3

Θ

*

+

X1X2

(d)

Fig. 1. ComputingΘ = X1X2+X3 over a network. (a) A network to computeΘ = X1X2+X3. (b) A possible embedding that computes
at Θ at unit rate. (c) An alternative embedding. (d) A schema to computeΘ.

In this paper we make a significant departure from the above. We consider arbitrary functions of the
distributed data for which a computation schema is described by a directed tree. A computation schema
defines a sequence of operations to compute the function. An arbitrary communication network over which
Θ is to be computed is assumed given. Our techniques work for networks with both directed as well as
undirected links with capacity constraints, though we present our results only for networks with undirected
links. There are some similarities of our work with that of graph embedding. e.g., [19]–[21] but there are
significant differences in the modeling assumptions and in the embedding objectives. Such work typically
assume the target network to be a ‘regular network’ like a hypercube or a mesh and all link capacities
are assumed equal. The embedding objective is to minimize the parameters like ‘dialation.’

A. An Example and Motivation

Let us consider the functionΘ(X1, X2, X3) = X1X2+X3 of three variables generated at three sources
s1, s2, ands3 respectively. A terminal nodet is required to obtain the functionΘ(X1, X2, X3). We assume
that all the three data symbols are from the same alphabetA. The computation of the function can be
broken into two parts, namely, first computingX1X2, and then addingX3. These two operations can be
done at different nodes in the network in the above order. This decomposition of the computation can
be represented by the graph shown in Fig. 1(d). Such a graphical representation of the computation will
henceforth be called a computation tree. Each edge represents aunique function of the source symbols.

Now consider computingΘ(X1, X2, X3) in the network shown in Fig. 1(a) where each edge has
unit capacity. There are multiple ways of receiving this function at the terminalt depending on what
computations are done at what nodes and along what paths the data flows. Two such ways of computing
this function are shown in Figs. 1(b) and 1(c). These are called ‘embeddings’, defined formally in Sec. II.
It is clear that intelligent time-sharing between these various embeddings may give higher number of
computation per use of the network on average than using onlyone such embedding. This raises the
natural question: what is the maximum rate of computing thatcan be achieved on a given network and
how to achieve it?

B. Organization and Summary of Contributions

We begin by describing the model in detail in the next section. Section III presents the main contributions
of this paper. Here we formulate a linear program,Embedding-Edge-LP, that optimally allocates flows
on the embeddings. We then present another LP,Node-Arc-LP,, based on a flow conservation law. This
LP can be solved in polynomial time. We then describe an algorithm, Algorithm 1, that converts the
flow rates obtained fromNode-Arc-LP into a flow allocation on the embeddings. We then present a fast
primal-dual algorithm which finds a solution to achieve at least (1 − ǫ) fraction of the optimal rate. We

3

call such a solution anǫ-approximate solution. This algorithm uses an oracle subroutine which finds a
minimum cost embedding of the computation tree in the network. We provide an efficient algorithm,
OptimalEmbedding(L), to obtain the same. This algorithm is also of independent interest. Four interesting
extensions of our results are presented in Sec. IV. First, weallow multiple computing schema for computing
the same function. Then we consider multiple terminals computing distinct functions of disjoint sets of
sources. For this problem, we modify our techniques to maximize the weighted sum-rate of computations,
and also to maximize the rate-tuple in a given direction. In the third extension, we consider the problem of
computing a function with a desired precision which is achieved by allowing possibly different precision
for each type of data. In the fourth extension, we consider a network with energy-constrained nodes, and
assume that each type of data, i.e., each edge of the computation tree, requires some fixed but different
amount of energy to compute/generate, transmit, and receive.

II. THE MODEL AND THE NOTATION

The communication network is an undirected, simple, connected graphN = (V,E) whereV is a set
of n nodes andE is a set ofm undirected edges. Each edgeuv ∈ E represents a half duplex link with a
total non-negative capacityc(uv). In the network,S = {s1, s2, . . . , sκ} ⊂ V is the set ofκ source nodes.
Sourcesi has an infinite sequence of data values{Xi(k)}k≥0 whereXi(k) belongs to a finite alphabet
A. The link capacities are expressed in|A|-ary unit. Xi is used to denote a representative element of

the sequence. LetX
△
= [X1, . . .Xκ]. Without loss of generality, we assume that each source node in the

network generates exactly one data sequence. If a source node generates two or more data sequences then
this can be represented by multiple source nodes connected by infinite capacity links. We also assume
that there is only one terminal node.

A given functionΘ : Aκ → A of X needs to be obtained at the terminal nodet for eachk at the
best possible rate. A computation schema forΘ is given and represented by a directed treeG = (Ω,Γ)
whereΩ is the set of nodes andΓ is the set of edges. The elements ofΩ are labelledµ1, µ2, . . . , µ|Ω|

where µ1, µ2, . . . , µκ are the source nodes,µ|Ω| is the terminal node that obtainsΘ and the rest are
computing nodes that compute different functions ofX. Further, the nodes inΩ are labelled according
to a topological order such that fori > j there is no directed path inG from µi to µj. The source nodes
have in-degree zero and out-degree one and the terminal nodehas in-degree one and out-degree zero. All
other nodes have in-degree greater than one and out-degree exactly one. Similarly, the elements ofΓ are
labelledθ1, θ2, . . . , θ|Γ| with θ1, θ2, . . . , θκ being the outgoing edges fromµ1, µ2, . . . , µκ respectively, and
θ|Γ| being the incoming edge intoµ|Ω|. The remaining edges are labeled according to a topologicalorder,
i.e., for anyi < j, there is no path from the head node ofj to the tail node ofi. The nodes and edges
of G can be labeled as above inO(|Γ|) = O(κ) time.

For any edgeθ ∈ Γ, let tail(θ) andhead(θ) represent, respectively, the tail and the head nodes of the
edgeθ. Let Φ↑(θ) andΦ↓(θ) denote, respectively, the predecessors and the successorsof θ, i.e.,

Φ↑(θ)
△
= {η ∈ Γ|head(η) = tail(θ)} and

Φ↓(θ)
△
= {η ∈ Γ|tail(η) = head(θ)}.

Each edgeθ of G represents a distinct function ofX that can be computed from the functions corresponding
to the edges inΦ↑(θ). Further, each function takes values from the same alphabetA. (We remark here
that this is not unreasonable even when all the computationsare over real numbers because computations
are performed using a fixed precision.)

Let N(v)
△
= {u ∈ V |uv ∈ E} denote the set of neighbors of a nodev ∈ V. We also denote the set of

neighbors and itself byN ′(v) = N(v) ∪ {v}. A sequence of nodesv1, v2, · · · , vl, l ≥ 1, is called a path
if vivi+1 ∈ E for i = 1, 2, . . . , l − 1. The set of all paths inN is denoted byP. With abuse of notation,
for such a pathP , we will say vi ∈ P and alsovivi+1 ∈ P . The nodesv1 andvl are called respectively
the start node and the end node ofP , and are denoted as start(P) and end(P).

4

As discussed in Sec. I, a function with a given computation tree can be computed along any “embedding”
of the tree in the network as shown in Fig. 1. We are now ready toformally define an embedding of a
computation tree.

Definition: An embedding is a mappingB : Γ → P such that
1) start(B(θl)) = sl for l = 1, 2, . . . , κ
2) end(B(η)) = start(B(θ)) if η ∈ Φ↑(θ)
3) end(B(θ|Γ|)) = t.
We denote the set of embeddings ofG in N byB. Our aim is to determine the flows on these embeddings

so as to maximize the total flow. An edge in the network may carry different functions of the source data
in an embedding. We thus define the number of times an edgee ∈ E is used in an embeddingB as
rB(e) = |{θ ∈ Γ|e is a part ofB(θ)}|. Note that|rB(e)| ≤ |Γ| for any edge, andrB(e) = 0 for an edge
e which is not used by the embeddingB. Further, an edge may also be used to carry flows on different
embeddings. Therefore in an assignment of flows on differentembeddings, i.e., in a particular timesharing
scheme, the edge may carry multiple types of data (i.e., different functions ofX) of different amounts.

III. L INEAR PROGRAMS AND ALGORITHMS

In this section, we present our main contributions.
• In Section III-A, we give a basic linear program, theEmbedding-Edge LP, which characterizes our

problem.
• In Section III-B, we give an alternate LP, theNode-Arc LP, that can be solved in polynomial time.

We then present an algorithm which obtains a solution of theEmbedding-Edge LP with the same
rate from a solution of theNode-Arc LP.

• Drawing parallels from multi-commodity flow techniques, wegive, in Section III-C, the dual of our
Embedding-Edge LP and present a fast primal-dual algorithm to compute anǫ-approximate solution.
This algorithm needs a subroutine which finds a ‘minimum weight embedding’ of the computation
tree in the network for given edge-weights. We present an efficient exact algorithm for this purpose.
This algorithm is of independent interest, for instance, for computing functions over a network with
power limited, but with infinite bandwidth, links.

Note that, if start(B(θi)) = end(B(θi)), i.e., if B(θi) consists of a single node, then in that embedding
the dataθi is generated as well as used (i.e., not forwarded to another node) in that node.

A. The Embedding-Edge LP

As discussed in Sec. I and Sec. II, the function for a particular sample of the data can be computed
over the network using any embedding of the computation treein the network. LetB be the set of all
embeddings ofG in N . For any embeddingB ∈ B, let x(B) denote the average number of function
symbols computed using the embeddingB per use of the network. We present below a linear program
to maximize the computation rateλ =

∑

B∈B x(B). Recall thatrB(e) represents the number of times the
edgee is used in the embeddingB.

Embedding-Edge LP: Maximizeλ =
∑

B∈B x(B) subject to
1. Capacity constraints

∑

B∈B

rB(e)x(B) ≤ c(e), ∀e ∈ E (1)

2. Non-negativity constraints
x(B) ≥ 0, ∀B (2)

5

f X2f X1=1.5

f X1=1.5

f X1=1.5

f X3=1.5

f X3=1f X1X2+X3

f X1X2=0.5

f X3=1

f X3=1.5

X1X2+X3f =0.5

f X1X2

=1f X1X2+X3
=1.5

=1.5f X2

=1.5f X2

s2 s3

t

s1

=1.5

=0.5

}
}

Fig. 2. The aggregate edge-flow values for a flow of 0.5 on the embedding in Fig. 1(c) and a flow of 1 on the embedding in Fig. 1(b).

This LP finds an optimal fractional packing of the embeddingsof G into N . Similar formulations have
been considered widely in literature in the context of multi-commodity flow [2], [22] and other packing
problems [2].

In multi-commodity flow problems, a solution of the so calledPath-edge LP readily gives a way of
achieving the corresponding rates. However, since in our problem, the data is to be mixed according
to different embeddings for different realizations of data, one needs to carefully device a protocol to
schedule the computation and communication at the nodes andedges in such a way that data from
different realizations are not mixed. Such a protocol is presented in the appendix.

B. The Node-Arc LP

Note that the cardinality ofB can be exponential in|V |. Hence the complexity of theEmbedding-
Edge LP is exponential in the network parameters if any other structure of the problem is not used.
In the multi-commodity flow literature, another LP formulation, called theNode-Arc LP, based on the
flow conservation principle is well-known which can be solved in polynomial time. In the following, we
formulate a node conservation based LP for our problem. For this LP, we assume that each node in the
network has a virtual self-loop of infinite capacity. The data flowing in the self-loop represents the data
generated at that node. This may be the source data generatedat the sources or the intermediate or final
values computed at the node. For example, if a node computesX1X2 from X1 andX2 it receives, and then
computesX1X2 +X3 by using the computedX1X2 and receivedX3, then bothX1X2 andX1X2 +X3

will be assumed to be flowing in its self-loop. Example of the flows on the edges and the self-loops
corresponding to a particular flow assignment on two embeddings is shown in Fig. 2.

The variables in ourNode-Arc LP are
{

f θ
uv, f

θ
vu|uv ∈ E, θ ∈ Γ

}

∪
{

f θ
uu|u ∈ V, θ ∈ Γ

}

∪ {λ}.

where,f θ
uv represents the flow of typeθ ∈ Γ flowing through the edgeuv ∈ E from u to v, f θ

uu denotes
the flow of typeθ flowing in the self-loop atu andλ represents the total rate of the function computation.

6

The linear program consists of capacity constraint on the edges ofN , a flow-conservation rule on the
nodes ofN , and non-negativity constraint on the flowsf θ

uv. The flow conservation rule is based on the
fact that an intermediate node inN can, apart from forwarding the flows it receives, generate a flow of
typeθ on its self-loop by terminating the same amount of incoming flows of typeη ∈ Φ↑(θ). Each source
nodesl, in addition, generatesλ amount of flow of typeθl. Similarly, the terminal nodet terminatesλ
amount of flow of typeθ|Γ|. The Node-Arc LP is as follows. Recall thatN ′(v) denotes the set of the
neighbors ofv and itself.

Node-Arc LP: Maximizeλ subject to following constraints any nodev ∈ V
1. Functional conservation of flows:

f η
vv +

∑

u∈N(v)

f θ
vu −

∑

u∈N ′(v)

f θ
uv = 0, ∀θ ∈ Γ \ {θ|Γ|} and∀η ∈ Φ↓(θ). (3)

2. Conservation and termination ofθ|Γ|:

∑

u∈N(v)

f
θ|Γ|
vu −

∑

u∈N ′(v)

f
θ|Γ|
uv =

{

−λ v = t

0. otherwise
(4)

3. Generation ofθl ∀l ∈ {1, 2, . . . , κ}:

f θl
vv =

{

λ v = sl
0. otherwise

(5)

4. Capacity constraints
∑

θ∈Γ

(

f θ
uv + f θ

vu

)

≤ c(uv), ∀uv ∈ E. (6)

5. Non-negativity constraints

f θ
uv ≥ 0, ∀uv ∈ E and∀θ ∈ Γ (7)

f θ
uu ≥ 0, ∀u ∈ V and∀θ ∈ Γ (8)

λ ≥ 0. (9)

This LP hasO(κm) number of variables,O(κm) number of non-negativity constraints (one for each
variable), andO(κn+m) number of other constraints. Hence it can be solved in polynomial time.

The above LP gives a set of flow values on each link. Now we briefly describe and present an algorithm,
Algorithm 1, which, from any feasible solution of this LP, obtains a corresponding feasible solution for
the Embedding-Edge LP that achieves the sameλ.

Each iteration of thewhile loop finds an embedding with a non-zero flow and removes the corresponding
edge-flows to obtain another feasible solution with a reduced rate. This continues untilλ amount of flow
has been extracted. Thei-th iteration of thefor loop finds the mapping ofθi in the embedding. While
exploring the nodes to find the mapping ofθi, it checks for the presence of a cycle of flow of typeθi. It
removes such a cycle if detected.

Proof of correctness of Algorithm 1: The proof of the following statements ensures the correctness of
the algorithm.

1) In the third line inside thefor loop, there exists au ∈ N ′(v) such thatf θ
uv > 0.

2) If a cycle of redundant flow is found and removed in the firstif block inside thefor loop, then the
remaining flows still satisfy the constraints in the LP withλ replaced byλ− λ′.

7

Algorithm 1: Finding equivalent solution of theEmbedding-Edge LP from a feasible solution of the
Node-Arc LP.
input : Network graphN = (V,E), capacitiesc(e), set of source nodesS, terminal nodet,

computation treeG = (Ω,Γ), and a feasible solution to itsNode-Arc LP that consists of the
values ofλ, f θ

uv ∀θ ∈ Γ, ∀uv ∈ E, andf θ
uu ∀θ ∈ Γ, ∀u ∈ V .

output: Solution{x(B)|B ∈ B} to theEmbedding-Edge LP with
∑

B∈B x(B) = λ.

Initialize x(B) := 0, B(θi) = ∅ (the null sequence), ∀B ∈ B and∀θi ∈ Γ, λ′ = 0
while λ′ 6= λ do

z(t) := λ ;
B(θ|Γ|) := t ;
for i := |Γ| to 1 do

v := B(θi) ; // valid, as B(θi) has of only one node at this step
u := an element inN ′(v) such thatf θi

uv > 0 ;
if u 6= v and u ∈ B(θi) then

// A cycle of redundant flow found: remove the flow from all
the edges in the cycle

Let P be the path inB(θi) upto the first appearance ofu in it.;
DeleteP from B(θi). ;
y := minu′v′∈{uv}∪P

(

f θi
u′v′

)

;
f θ
u′v′ := f θ

u′v′ − y ∀u′v′ ∈ {uv} ∪ P
end
else

z(u) := min
(

z(v), f θi
uv

)

;
end
if u 6= v then

Prefix u in B(θi) ;
v := u ;
Jump to the second statement inside thefor loop ;

end
else

B(η) := u, ∀η ∈ Φ↑(θi) ;
end

end
x(B) := z(s1) ; // Flow extracted on B
λ′ := λ′ + x(B) ; // Total flow extracted
// Remove x(B) amount of flow from all the edges in B.
f θ
u′v′ := f θ

u′v′ − x(B) ∀θ ∈ Γ and∀u′v′ ∈ B(θ) ;
// Remove x(B) amount of flow from all the relevant self-loops.
f θ
v′v′ := f θ

v′v′ − x(B) ∀θ ∈ Γ andv′ = start(B(θ)) ;
end

8

3) At the end of each iteration of thewhile loop, the remaining flows still satisfy the constraints in
the LP withλ replaced byλ− λ′.

4) The algorithm terminates in finite time.
We now outline a proof of each of these statements. We prove the statements 1)–3) for a certain iteration

of the loops while assuming that all the above claims are truein all the previous iterations of thewhile
and for loops.

Proof of 1: The current values of the flows satisfy all the constraints intheNode-Arc LP with λ replaced
by λ−λ′. The algorithm ensures that in this step, the total outgoingflow

∑

u∈N(v) f
θ
vu ≥ z(v) > 0. So, by

constraints (3) and (4), the total of incoming and generatedflows
∑

u∈N ′(v) f
θ
uv > 0. Hence the statement

follows.
Proof of 2: We will prove that a cyclic flow on a cyclev1, v2, · · · , vl, v1 satisfies all the constraints in

the Node-Arc LP with λ = 0. Then clearly after subtracting this flow from the edges of the cycle, the
remaining flows in the network will still satisfy the constraints with the sameλ as before. For a cyclic
flow of type θ of volumey, the flow values aref θ

vivi+1
= y for i = 1, 2, · · · , l− 1, f θ

vlv1
= y, and all other

flow values are equal to0. So, for any node, any nonzero incoming flow is ‘compensated’by the same
amount of outgoing flow of the same type. All flow values in the self-loops are also0. So clearly these
flows satisfy the constraints in the LP withλ = 0. This completes the proof.

Proof of 3: Again, we will prove that the removedx(B) amount of flows on the edges of an embedding
and on the self-loops themselves satisfy the constraints inthe LP withλ = x(B). Then the remaining flows
will also satisfy the constraints withλ replaced byλ− x(B). The subtracted flow values aref θ

uv = x(B)
for uv ∈ B(θ), f θ

uu = x(B) for u = start(B(θ)), and all other flow values0. We can verify that these
flows satisfy the constraints in theNode-Arc LP.

Proof of 4: The Node-Arc LP hasO(m|Γ|) number of variablesf θ
uv and f θ

uu. Each deletion of flows
through a cycle, or through an embedding, makes at least one of these variables zero. Since the number
of steps in each iteration is finite, the algorithm ends in finite time.

It can be checked that the overall complexity of Algorithm 1 is O(κ2m2).

C. Primal-dual algorithm and min-cost embedding

The Node-Arc LP and the subsequent algorithm to find an optimal solution of the Embedding-Edge LP
has polynomial-time complexity. For the multi-commodity flow problem, and for more general packing
problems, Garg and Konemann [2] gave a faster primal-dual algorithm to find anǫ-approximate solution.
The algorithm uses a hypothetical subroutine/oracle. For the multi-commodity flow problem, the subroutine
finds the shortest paths between the source-terminal pairs.We now give a similar fast algorithm to find
an ǫ-approximate solution to theEmbedding-Edge LP.

We first provide the dual of theEmbedding-Edge LP. The dual has the variablesL = (l(e))e∈E
corresponding to the capacity constraints in the primal. The dual LP is given as follows.

Dual of Embedding-Edge LP: Minimize D(L) =
∑

e∈E c(e)l(e) subject to
1. Constraints corresponding to eachx(B) in primal:

∑

e∈B

rB(e)l(e) ≥ 1, ∀B (10)

2. Non-negativity constraints:
l(e) ≥ 0, ∀e ∈ E (11)

We define the weight of an embeddingB as

wL(B) =
∑

e∈B

rB(e)l(e).

9

It can be checked (similar to [2]) that the dual LP is equivalent to findingminL
D(L)
αL

, where

αl = min
B

wl(B)

is the cost of the minimum cost embedding forL.
The Embedding-Edge LP is a fractional packing LP of the type considered by Garg and Konemann [2]

and Plotkinet al. [23]. A polynomial time primal-dual algorithm was presented in [2] for such LPs
assuming the existence of an efficient oracle subroutine which finds a ‘shortest path.’ For a packing LP
max

{

aTx|Ax ≤ b, x ≥ 0
}

and its dual LPmin
{

bTy|ATy ≥ a, y ≥ 0
}

, the shortest path is defined as
∑

i A(i, j)y(i)/a(j) [2]. It is easy to see that for our LP, the ‘shortest path’ corresponds to the embedding
with minimum weight,argminB wL(B). Algorithm 2 gives the instance of the primal-dual algorithm for
our problem.

Algorithm 2: Algorithm for finding approximately optimalx andλ
input : Network graphN = (V,E), capacitiesc(e), set of source nodesS, terminal nodet,

computation treeG = (Ω,Γ), the desired accuracyǫ
output: Primal solution{x(B), B ∈ B}

Initialize l(e) := δ/c(e), ∀e ∈ E, x(B) := 0, ∀B ∈ B ;
while D(l) < 1 do

B∗ := OptimalEmbedding(L) ; // OptimalEmbedding(L) outputs argminB wL(B)
e∗ := edge inB∗ with smallestc(e)/rB∗(e) ;
x(B∗) := x(B∗) + c(e∗)/rB∗(e∗) ;
l(e) := l(e)(1 + ǫ c(e

∗)/rB∗ (e∗)
c(e)/rB∗ (e)

), ∀e ∈ B∗ ;
end
x(B) := x(B)/ log1+ǫ

1+ǫ
δ
, ∀B ;

We now describe, and then provide below, the subroutine OptimalEmbedding(L) which finds a minimum
weight embedding ofG on N with a given length functionL. For each edgeθi, starting fromθ1, it finds
a way to computeθi at each network node at the minimum cost possible. It keeps track of that minimum
cost and also the ‘predecessor’ node from where it receivesθi. If θi is computed at that node itself then
the predecessor node is itself. This is done for eachθi by a technique similar to the Dijkstra’s algorithm.
Computingθi for i ∈ {1, 2, . . . , κ} at the minimum cost at a nodeu is equivalent to finding the shortest
path to u from si. We do this by using Dijkstra’s algorithm. For any otheri, the nodeu can either
computeθi from Φ↑(θi) or receive it from one of its neighbors. To take this into account, unlike Dijkstra’s
algorithm, we initialize the cost of computingθi with the cost of computingΦ↑(θi) at the same node. With
this initialization, the same principle of greedy node selection and cost update as in Dijkstra’s algorithm
is used to find the optimal way of obtainingθi at all the nodes. Finally, the optimal embedding is obtained
by backtracking the predecessors. Starting fromt, we backtrack using predecessors from whichθ|Γ| is
obtained, till we hit a node whose predecessor is itself. This node is the start node ofB(θ|Γ|) and the end
node ofB(η) for all η ∈ Φ↑(θ|Γ|). The complete embedding is obtained by continuing this process for
eachθi in the reverse topological order.

Correctness of OptimalEmbedding(L): It is sufficient to show that, during each phasei, the algorithm
computes optimal values forωu (θi) and σu (θi), for each nodeu in N . We prove this by induction on
the pair(i, |Ψ|) according to the lexicographic ordering. Fori ∈ {1, . . . , κ} and for all |Ψ|, this follows
from the correctness of Dijkstra’s algorithm. Now, assuming the optimality ofωu (θi) andσu (θi) till all
iterations before(i, |Ψ|), we prove the statement for(i, |Ψ|). Supposev is the element added toΨ in the
current iteration. We consider two cases:

Case 1:Ψ = {v}: The cost of computing (and not receiving from another node)θi at any nodeu
is

∑

η∈Φ↑(θi)
ωu (η). The algorithm choosesv which has the minimum

∑

η∈Φ↑(θi)
ωu (η) among all nodes

10

Procedure OptimalEmbedding(L)
input : Network graphN = (V,E), Length functionL, set of source nodesS, terminal nodet,

computation treeG = (Ω,Γ).
output: EmbeddingB∗ with minimum weight underL

for i = 1 to |Γ| do
if i ∈ {1, 2, . . . , κ} then

ωu (θi) := ∞, ∀u ∈ V − {si} ;
ωsi (θi) := 0 andσsi (θi) := si ;

end
else

ωu (θi) :=
∑

η∈Φ↑(θi)
ωu (η) , ∀u ∈ V ;

σu (θi) := u, ∀u ∈ V ;
end
Ψ := ∅; Ψ̄ := V ;
while |Ψ| < n do

v := argminu∈Ψ̄ ωu (θi) ;
Ψ := Ψ ∪ {v} ;
Ψ̄ := Ψ− {v} ;
foreach u ∈ N(v) do

if ωv (θi) + l(uv) < ωu (θi) then ωu (θi) := ωv (θi) + l(uv) andσu (θi) := v ;
end

end
end
B∗(θ|Γ|) := t ;
for i = |Γ| to 1 do

u := B∗(θi) ; // valid, as B∗(θi) consists of only a node at this step
while σu (θi) 6= u do

Prefix σu (θi) to B∗(i) ;
u := σu (θi) ;

end
B(η) := u ∀η ∈ Φ↑(θi) ;

end

u ∈ V and assignsωv (θi) =
∑

η∈Φ↑(θi)
ωv (η) andσv (θi) = v. If these are not optimal, then it must be more

efficient for v to receiveθi which is computed at some other nodeu. But that implies
∑

η∈Φ↑(θi)
ωu (η) <

∑

η∈Φ↑(θi)
ωv (η), which is a contradiction to the choice ofv.

Case 2:{v} (Ψ: Suppose there is a more efficient way of receivingθi at v than from the node selected
asσv (θi) and that is to computeθi at a nodeu and receive it along a pathPu,v. Let the corresponding

cost beω′
v(θi). First, if u ∈ Ψ′, then the present cost

(

≤
∑

η∈Φ↑(θi)
ωu (η)

)

at u is less than the present

value ofωv (θi), which is a contradiction to the choice ofv. Thusu ∈ Ψ. Let u′ be the last node inPu,v

from Ψ, andv′ be the first node inPu,v from Ψ′. Thenω′
v(θi) ≥ ωu′ (θi) + l(u′v′) ≥ ωv′ (θi) ≥ ωv (θi)

— a contradiction. Here the first inequality follows sinceu′ ∈ Ψ. The second inequality follows from the
update rule followed during the inclusion ofu′ in Ψ. The last inequality follows from the choice ofv.

Complexity of OptimalEmbedding(L) and the primal-dual algorithm: Let us consider the firstfor loop
in OptimalEmbedding(L). Each iteration of this loop is the same as Dijkstra’s algorithm except for the
initialization. Thus, the for loop, excluding the initialization step, can be run inO(m+n logn) time using

11

Fibonacci heap implementation. The initialization step requiresO(n|Φ↑(θi)|) time for each iteration. The
secondfor loop hasO(nκ) complexity. So the overall algorithm takesO(κ(m+ n logn)) time.

The number of iterations in the primal-dual algorithm is of the orderO(ǫ−1m log1+ǫ(m)). Thus the
overall complexity of the algorithm isO

(

ǫ−1κm(m+ n log n) log1+ǫ(m)
)

.

IV. EXTENSIONS

1. Multiple trees for the same function: It may be possible to compute a function in different sequences
of operations which are expressed by different computationtrees. For example, the ‘sum’ function
f(X1, X2, X3) = X1+X2+X3 may be computed by any of the computation sequences

(

(X1+X2)+X3

)

,
(

X1+(X2+X3)
)

, or
(

X2+(X1+X3)
)

. In general, suppose multiple computation treesG1,G2, . . . ,Gν are
given for computing the same function. LetBi denote the set of all embeddings ofGi for i = 1, 2, . . . , ν.
Let B = ∪iBi denote the set of all embeddings. Under this definition ofB, the Embedding-Edge LP for
this problem is the same as that for a single tree. The new OptimalEmbedding(L) algorithm finds an
optimal embedding for eachGi and chooses the one with minimum weight as the optimal embedding in
B. This can be used in the same primal-dual algorithm to find anǫ-approximate solution.

Some edges of different trees may represent an identical function of the sources. For example, for the
functionX1+X2+X3+X4, an edge corresponding to the functionX1+X2 is present in each of the trees
corresponding to

(

(

(X1 +X2) +X3

)

+X4

)

,
(

(X1 +X2) + (X3 +X4)
)

, and
(

(

(X1 +X2) +X4

)

+X3

)

.
For this reason, OptimalEmbedding(L) algorithm can be made more efficient by running iterations for
each function rather than each edge. The initialization ofωu (θ) changes correspondingly, to take into
account all possible ways of computing that function. Rest of the algorithm remains the same.

The particular functionΘ(X1, X2, . . . , Xκ) = X1 +X2 + . . . +Xκ is of special theoretical as well as
practical interest. There are many, of the order ofκ!, sequences of additions of data and corresponding trees
to get this function. With the above modification, our OptimalEmbedding(L) algorithm has complexity
exponential inκ and linear inm. As a result, our primal-dual algorithm gives anǫ-approximate solution
in exponential complexity inκ and quadratic inm. The problem is equivalent to the much investigated
multicast problem. For this problem, and consequently for the function ‘sum’, the oracle finds a minimum
weight Steiner tree. This is well-known to be NP-hard onκ. Approximate (but notǫ-approximate for
any givenǫ) polynomial complexity algorithms are known (see [24] and citations therein) for finding a
minimum weight Steiner tree. This can also be used to find approximate solution to the multicast, and
hence the ‘sum’, in polynomial complexity [24].

2. Multiple functions and multiple terminals: Suppose the network has multiple terminalst1, t2, . . . , tγ
wanting functionsΘ1(X

(1)),Θ2(X
(2)), . . . ,Θγ(X

(γ)) respectively. HereX(i) is the data generated by a
set of sourcesS(i). The setsS(i); i = 1, 2, . . . , γ are assumed to be pairwise disjoint. For each function
Θi, a computation treeGi is given. Let us consider the problem of communicating the functions to the
respective terminals at ratesλ1, λ2, . . . , λγ. The problem is to determine the achievable rate region which
is defined as the set ofr = (λ1, λ2, . . . , λγ) for which a protocol exists for transmission of the functions
at these rates. This region can be approximately found by solving either of the following problems.

(i) For any given non-negative weightsα1, α2, . . . , αγ, what is the maximum achievable weighted sum-
rate

∑γ
i=1 αiλi?

For this problem, we consider embeddings of the computationtreesGi into the network for each terminal
ti. Let Bi denote the set of all embeddings ofGi. Then theEmbedding-Edge LP for this problem is to
maximize

∑γ
i=1 αi

∑

B∈Bi
x(B). The constraints are the same as before withB defined byB = ∪iBi.

The weight of an embeddingB ∈ B under a weight functionL is defined asαiwL(B) if B ∈ Bi. The
new OptimalEmbedding(L) algorithm finds an optimal embedding for eachGi and chooses the one with
minimum weight. This can be used in the same primal-dual algorithm to find anǫ-approximate solution. It
is also easy to obtain aNode-Arc LP for this problem by minor modifications to that for a single function
computation at a single terminal.

12

(ii) For any non-negative demandsα1, α2, . . . , αγ, what is the maximumλ for which the ratesλα1, λα2, . . . , λαγ

are concurrently achievable?
Here, we define an embedding to be a tupleB = (B1, B2, . . . , Bγ), whereBi ∈ Bi is an embedding

of the computation treeGi. The Embedding-Edge LP for this problem is the same as that for the single
terminal problem withrB(e) defined asrB(e) =

∑γ
i=1 αi|{θ ∈ Γi|e is a part ofBi(θ)}| andB = B1 ×

B2 × . . .× Bγ . The weight of an embeddingB under a weight functionL is defined as
∑γ

i=1 αiwL(Bi).
The new OptimalEmbedding(L) algorithm finds an optimal embeddingB by separately finding optimal
embeddingsBi for eachGi. This can be used in the same primal-dual algorithm to find anǫ-approximate
solution. Again, we can easily obtain aNode-Arc LP by minor modification to that for a single function
computation at a single terminal.

3. Computing with a precision: In practice, the source data may be real-valued, and communicating
such a data requires infinite capacity. In such applications, it is common to require a quantized value
of the function at the terminal with a desired precision. This may, in turn, be achieved by quantizing
various data types with pre-decided precisions and thus different data type may require different number
of bits to represent them. Suppose the data type denoted byθ is represented usingb(θ) bits. Then the
Embedding-Edge LP and its dual for this problem are the same as before except that the definition of
rB(e) is changed torB(e) =

∑

θ∈Γ:e is a part ofB(θ) b(θ). In the Node-Arc LP, the capacity constraints are
changed to

∑

θ∈Γ

(

f θ
uv + f θ

vu

)

b(θ) ≤ c(uv), ∀uv ∈ E.

In the OptimalEmbedding(L) algorithm, l(uv) is replaced byl(uv)b(θi) inside theforeach loop.
4. Energy limitted sensors:Suppose, instead of capacity constraints on the links, eachnodeu ∈ V has

a total energyE(u). Each transmission and reception ofθ require the energyET,θ andER,θ respectively.
Generation of one symbol ofθ or computation of one symbol ofθ from Φ↑(θ) requires the energyEC,θ.
The objective is to compute the function at the terminal maximum number of times with the given total
node energy at each node.

For an embeddingB, if B(θ) = v1, v2, · · · , vl, thentr(B(θ)) = {v1, v2, · · · , vl−1} denotes the transmit-
ting nodes, andrx(B(θ)) = {v2, v3, · · · , vl} denotes the receiving nodes ofθ. If l = 1, thentr(B(θ)) =
rx(B(θ)) = ∅. For B, the energy load on the nodeu is given by

EB(u) =
∑

θ:start(B(θ))=u

EC,θ +
∑

θ:u∈tx(B(θ))

ET,θ +
∑

θ:u∈rx(B(θ))

ER,θ.

The capacity constraint in theEmbedding-Edge LP is replaced by the energy constraint on the nodes
∑

B∈B

x(B)EB(u) ≤ E(u) ∀u ∈ V,

where an empty sum is defined to be0. The dual of theEmbedding-Edge LP is: Minimize D(L) =
∑

u∈V E(u)l(u) subject to
1. Constraints corresponding to eachx(B) in primal:

∑

u∈B

EB(u)l(u) ≥ 1, ∀B (12)

2. Non-negativity constraints:
l(u) ≥ 0, ∀u ∈ V. (13)

The weight or cost of an embedding can be defined as

wL(B) =
∑

u∈B

EB(u)l(u).

13

The OptimalEmbedding(L) is modified in the weight initialization and weight update. The weight initial-
ization is done asωsi (θi) := EC,θi for source data andωu (θi) := EC,θi +

∑

η∈Φ↑(θi)
ωu (η) for other data.

The weight update atu is now done asωu (θi) := ωv (θi)+ET,θi+ER,θi if ωv (θi)+ET,θi+ER,θi < ωu (θi).
After suitable modification, the primal-dual algorithm with the modifiedOptimalEmbedding(L) algorithm
finds anǫ-approximate solution.

In the Node-Arc LP, the capacity constraints are replaced by energy constraints at the nodes:
∑

θ∈Γ

f θ
uuEC,θ +

∑

θ∈Γ

∑

v∈N(u)

(f θ
uvET,θ + f θ

vuER,θ) ≤ E(u) ∀u ∈ V.

V. D ISCUSSION AND CONCLUSION

In this paper, we have laid the foundations for network flow techniques for distributed function com-
putation. Though we have obtained results for computation trees, we believe that much of our techniques
can be extended to larger classes of functions, for instance, fast Fourier transform (FFT), that can be
represented by more general graphical structures like directed acyclic graphs and hypergraphs where each
edge or hyper-edge represents a distinct function of the sources. The sum function discussed in Sec. IV
is one such function representable by a hypergraph.

Our computation framework does not allow block coding, i.e., coding across different realizations of
the data. Such coding has been used in the information theoryand network coding literature. Block
coding can, in general, offer better computation rate. For example, consider the directed butterfly network
as shown in Fig. 3 with two binary source nodes (with source processes denoted byX and Y) and a
terminal node with a XOR target functionΘ(X, Y) = X ⊕ Y . It can be checked that the maximum rate
achievable by routing-like schemes, i.e., without using inter-realization coding, is1.5. On the other hand,
the scheme shown in Fig. 3(b) using inter-realization coding achieves a rate of2. However, for more
general functions, finding the optimal rate and designing optimal coding schemes is a difficult problem
under this framework. Further, for undirected multicast networks, it is known that the inter-realization
coding can achieve a rate strictly less than twice the rate achieved by routing [25]. We expect that similar
results will hold for function computation over undirectednetworks.

Altogether, we believe that results in this paper opens manynew avenues for further research.

s1 s2

+X Y

t

X Y

(a) The butterfly network. Each
edge has capacity 1 bit/use

X2

X2

Y1

Y2

Y1

X2+ Y2

X
2+

Y 1

Y 1
Y 2

+X
2

+
X 1

X 2+
Y1 X

2+
Y
1

X
1+

Y
1 X 2+

Y2

X1+ Y1

+ +

+

t

X

s1 s2

1

(b) A rate-2 solution using
cross-realization coding

Fig. 3. The butterfly network with XOR target functionΘ(X,Y) = X ⊕ Y

14

VI. A CKNOWLEDGEMENT

The authors would like to thank A. Diwan for fruitful discussions. This work was supported in part
by Bharti Centre for Communication at IIT Bombay and a project from the Department of Science and
Technology (DST), India.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows. Prentic Hall Inc, 1993.
[2] N. Garg and J. Konemann, “Faster and simpler algorithms for multicommodity flow and other fractional packing problems,” In Proc.

FOCS, 1998.
[3] T. Leighton, F. Makedon, S. Plotkin, C. Stein, S. Tragoudas, and E. Tardos, “Fast approximation algo- rithms for multicommodity flow

problems,”J. Comput. System Sci., vol. 50, pp. 228–243, 1995.
[4] F. Shahrokhi and D. Matula, “The maximum concur- rent flowproblem,” J. ACM,, vol. 37, pp. 318334, 1990.
[5] R. G. Gallager, “Finding parity in simple broadcast networks,” IEEE Transactions on Information Theory, vol. 34, pp. 176–180, 1988.
[6] E. Kushilevitz and Y. Mansour, “Computation in noisy radio networks,” inProceedings of the 9th annual ACM-SIAM Symposium on

Discrete Algorithms, 1998, pp. 236–243.
[7] U. Feige and J. Kilian, “Finding or in noisy broadcast network,” Information Processing Letters, vol. 73, no. 1–2, pp. 69–75, January

2000.
[8] A. Giridhar and P. R. Kumar, “Computing and communicating functions over sensor networks,”IEEE Journal on Selected Areas in

Communications, vol. 23, no. 4, pp. 755–764, April 2005.
[9] L. Ying, R. Srikant, and G. Dullerud, “Distributed symmetric function computation in noisy wireless sensor networks with binary data,”

in Proc. of the 4th International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless networks (WiOpt), April
2006, pp. 1–9.

[10] Y. Kanoria and D. Manjunath, “On distributed computation in noisy random planar networks,” inProceedings of IEEE International
Symposium on Information Theory, Nice, France, June 2007.

[11] S. Kamath and D. Manjunath, “On distributed function computation in structure-free random networks,” inProceedings of IEEE
International Symposium on Information Theory, Toronto, Canada, July 2008.

[12] J. Korner and K. Marton. How to encode the modulo-two sumof binary sources.IEEE Trans. Inform. Theory, 25(2):219–221, 1979.
[13] T. S. Han and K. Kobayashi. A dichotomy of functionsf(x, y) of correlated sources(x, y). IEEE Trans. Inform. Theory, 33(1):69–86,

1987.
[14] Alon Orlitsky and J. R. Roche. Coding for computing.IEEE Trans. Inform. Theory, 47(3):903–917, 2001.
[15] H. Feng, M. Effros, and S. A. Savari. Functional source coding for networks with receiver side information. InProceedings of the

Allerton Conference on Communication, Control, and Computing, September 2004.
[16] B. K. Rai and B. K. Dey, “Sum-networks: system of polynomial equations, reversibility, insufficiency of linear network coding,

unachievability of coding capacity,”Submitted to IEEE Trans. Inform. Th., available at http://arxiv.org/abs/0906.0695.
[17] R. Appuswamy, M. Franceschetti, N. Karamchandani, andK. Zeger, “Network coding for computing part i : Cut-set bounds,” Submitted

to IEEE Trans. Inform. Th., available at http://arxiv.org/abs/0912.2820.
[18] M. Langberg and A. Ramamoorthy, “Communicating the sumof sources in a 3-sources/3-terminals network,” inProceedings of IEEE

International Symposium on Information Theory, (Seoul, Korea), 2009.
[19] F. T. Leighton, M. J. Newman, A. G. Ranade, and E. J. Schwabe, “Dynamic tree embeddings in butterflies and hypercubes,” SIAM

Journal on Computing, vol. 21, no. 4, pp. 639–654, 1992.
[20] O. Wohlmuth and F. Mayer-Lindenberg, “A method for themembedding of arbitrary communication topologies into configurable

parallel computers,” inProceedings of the 1998 ACM Symposium on Applied Computing, 1998, pp. 569–574.
[21] V. Heun and E. W. Mayr, “Efficient dynamic embeddings of arbitrary binary trees into hypercubes,”Journal of Algorithms, vol. 43,

pp. 51–84, 2002.
[22] G. Karakostas, “Faster approximation schemes for fractional multicommodity flow problems,”ACM Trans. Algorithms, vol. 4, 2008,

pp. 1–17.
[23] S. Plotkin and D. Shmoys and E. Tardos, “Fast approximation algorithms for fractional packing and covering problems,” Math. Oper.

Res., vol. 20, pp. 257–301, 1995.
[24] M. Saad and T. Terlaky and A. Vannelli and H. Zhang, “Packing trees in communication networks,”J. Comb. Optim., vol. 16, pp. 402–

423, 2008.
[25] Z. Li and B. Li, “Network coding in undirected networks,” Proc. 38th CISS, Princeton, NJ, Mar. 2004, pp. 257–262.

APPENDIX A
THE PROTOCOL

We now outline a communication and computation protocol designed to receive the function at the
terminal at a rate that is greater than

∑

B∈B x(B)− ǫ for any given solution of theEmbedding-Edge LP.
First, the flow valuesx(B) are rounded to lower rational numbers so that the total flowr is still greater
than

∑

B∈B x(B) − ǫ. With abuse of notation, we use the same notationx(B) to denote these rounded
values ofx(B) in the rest of this subsection. All these flows are then multiplied by the least common
multiple N of the denominators of the flowsx(B);B ∈ B. Let the resulting values ben(B);B ∈ B.

15

Clearly
∑

B∈B n(B) = rN . Let us fix an order in the embeddingsB1, B2, . . . , B|B|. The protocol consists
of computation at the nodes and communication across the links in a block/frame ofN consecutive uses
of the network. In each frame, a linke can carry upto a total ofNc(e) symbols in both directions. Our
protocol will require sending integer number of symbols inN uses ofe in each direction. We assume that
this is possible as long as the total number of symbols transmitted in both directions is at mostNc(e).
We assume that computation at nodes is done instantaneously, and a frame sent across a link is available
at the receiving node at the end of the frame. The receiving node can forward the data on another edge
in the next frame or use it to compute something else for transmission in the next or later frames.

In our protocol, the data stream generated at each source is divided into blocks ofrN symbols, and
the terminal computesrN number of corresponding function values in each frame. Out of the rN
computations, the firstn(B1) are carried out using the embeddingB1, the nextn(B2) are carried out
using the embeddingB2, and so on. In each direction on each link, the transmissionscorresponding to
different embeddings are ordered in the same order as the embeddings. Further, ifuv is in B(θi) as well
as B(θj) (assumei < j without loss of generality), thenuv carries the data for(B, θi) first and then
the data for(B, θj). Formally, in each frame and in each direction, a linkuv in N carries a subframe,
possibly empty, of data for each(B, θ) pair, whereB ∈ B, θ ∈ Γ. These subframes are transmitted in
the lexicographic order on(B, θ). Since the subframes for different(B, θ) may be available atu with
different delay, these subframes will not correspond to thesame frame of source data. In the following,
we explicitly describe the subframes carried byuv in the k-th frame.

Let yk
B,θ denote then(B) symbols of data of typeθ corresponding to then(B) symbols of source data

in thek-th frame corresponding to the embeddingB. That is,yk
B1,θ

denotes then(B1) symbols of data of
typeθ corresponding to the firstn(B1) symbols of source data in thek-th frame,yk

B2,θ
denotes then(B2)

symbols of data of typeθ corresponding to the nextn(B2) symbols of source data in thek-th frame, and
so on. In each frame,uv carries a subframe of data for each(B, θ) pair. The subframe corresponding to
(B, θ) is empty if uv 6∈ B(θ). Formally,

y
k
uv,B,θ =

{

y
k
B,θ if uv ∈ B(θ),

∅ otherwise.

This subframe corresponds to thek-th block of source data. These subframes may be available atu with
variable delay due to variable path lengths from the sourcesalong different embeddings. Let us define
the depth or delayd(u,B, θ) as

d(uv, B, θ) =



























∞ if uv 6∈ B(θ)

0 if uv ∈ B(θ), u = si, θ = θi
1 + max{d(wu,B, η)|η ∈ Φ↑(θ), wu ∈ B(η)}}

if uv ∈ B(θ), u = start(B(θ)), (u, θ) 6= (si, θi)

d(wu,B, θ) + 1 if (u, θ) 6= (si, θi), wu, uv ∈ B(θ).

(14)

So, the subframeyk
uv,B,θ, which hasn(B) symbols if uv ∈ B(θ) and which corresponds to thek-the

frame of source data, will be transmitted in the(k + d(uv, B, θ))-th frame onuv. The infinite value for
uv 6∈ B(θ) indicates that the corresponding data does not flow throughuv from u to v.
Example: Consider the network and the computation tree shown in Fig. 4. The edges of the computation
tree are labeled by the functions they carry, that is,X, Y, andX+Y . For embeddingB1, d(s1v, B1, X) = 0,
d(s2v, B1, Y) = 0, d(vw,B1, X + Y) = 1, d(wt,B1, X + Y) = 2, and all other delay values are∞. For
embeddingB2, d(s1u,B2, X) = 0, d(s2w,B2, Y) = 0, d(uw,B2, X) = 1, d(wt,B2, X + Y) = 2, and all
other delay values are∞.

The data transmitted in thek-th frame fromu to v on the link uv, in order of transmission, is thus
y
k−d(uv,B1,θ1)
uv,B1,θ1

,y
k−d(uv,B1,θ2)
uv,B1,θ2

, . . . ,y
k−d(uv,B1,θ|Γ|)

uv,B1,θ|Γ|
,y

k−d(uv,B2,θ1)
uv,B2,θ1

, y
k−d(uv,B2,θ2)
uv,B2,θ2

, . . . ,y
k−d(uv,B2,θ|Γ|)

uv,B2,θ|Γ|
, . . . ,y

k−d(uv,B|B|,θ1)

uv,B|B|,θ1
,

16

t

s1

u v

w

X

s2

Y

(a) A network to compute
Θ = X + Y.

*

X Y

X+Y

(b) A computation tree forΘ.

t

s1

X

u v

w

s2

Y

X
Y

X+Y

X+Y

(c) A embeddingB1.

t

s2

Y
s1

X

X

X+Y

X

Y

u v

w

(d) An embeddingB2.

Fig. 4. A network, a computation tree and two embeddings

y
k−d(uv,B|B|,θ2)

uv,B|B|,θ2
, . . . ,y

k−d(uv,B|B|,θ|Γ|)

uv,B|B|,θ|Γ|
. It is easy to see that the required flow of function values will be

computed on each embedding by this protocol. If the communication starts with the frame number0 and
ends with theK-th frame of source data, then the subframes are empty fork < d(uv, Bi, θj) and for
k > K + d(uv, Bi, θj). In particular, a subframeyk−d(uv,Bi,θj)

uv,Bi,θj
is empty if uv 6∈ Bi(θj).

Example: In the above example, suppose a solution of theEmbedding-Edge LP is x(B1) = 1 and
x(B2) = 0.5. Then N = 2, and n(B1) = 2, n(B2) = 1. Each data stream is divided into frames of
3 symbols, out of which the first 2 symbols flow overB1 and the last symbol flows overB2. In the
k-th frame, the linkuw carries only one non-empty subframe forB2 containing one ‘X ’ symbol. That
subframeyk−1

uw,B2,X
corresponds to the last symbol of the(k−1)-th frame of data. The linkwt carries one

subframe of two ‘X + Y ’ symbols forB1 and another subframe of one ‘X + Y ’ symbol for B2. These
subframesyk−2

wt,B1,X+Y ,yk−2
wt,B2,X+Y correspond to the first two symbols of the(k − 2)-th data frame and

the last symbol of the(k − 2)-th data frame respectively.
To implement the protocol, any nodeu needs to knowN , n(B) for all embeddings with non-zero

n(B), and d(uv, B, θ) and d(vu, B, θ) for all such embeddingsB, θ ∈ Γ, v ∈ N(u). The values of
d(uv, B, θ) can be found inO(nb|Γ|) time, whereb is the number of embeddings for whichn(B) > 0.
In the following, we give the sequence of actions taken by anynodeu.

1. The node maintains an input queue for each(B, θ) pair for which d(vu, B, θ) < ∞ for some
v ∈ N(u).

2. For thek-th frame received fromv on the link vu, the nodeu knows the ‘composition’, i.e., how
many symbols for which(B, θ) pair are received on that frame and in what order. This is because the
frame contains a non-empty subframe corresponding to(B, θ) if and only if d(vu, B, θ) ≤ k. Such a non-
empty frame contains exactlyn(B) symbols. The transmission of all the non-empty frames is ordered in
the lexicographic ordering of(B, θ). For any received frame on any link,u puts each received subframe
in its respective input queue. Ifu is a source, it also takes therN generated symbols and creates the
subframes of lengthsn(B) for all the relevant embeddings. Those are also placed in respective queues.

3. After queueing all the received and generated data in thek-th frame,u prepares the data to be
transmitted on each linkuv in the next, that is(k + 1)-th, frame ofN transmissions. The non-empty
subframes for this transmitted frame are those for whichd(uv, B, θ) ≤ k + 1. If there is an input queue
for (B, θ), i.e., if such a data subframe is received atu, then this subframe ofn(B) symbols is taken from
the respective input queue. Otherwise, this subframe is generated from the subframes from the queues
for (B, η); η ∈ Φ↑(θ). If such a queue for(B, η) contains multiple subframes ofn(B) symbols, then the
oldest of them is taken. For instance, in our example (Fig. 4), for constructing the subframeyk

wt,B2,X+Y

at w for the k-th frame,w takes a subframe from its input queue(B2, X) and a subframe from the input
queue(B2, Y) and adds them. At this time, in the first queue, there is only one subframeyk−2

uw,B2,X
which

is used now. But in the second queue, there are two subframesy
k−1
vw,B2,Y

and y
k−2
vw,B2,Y

available, out of

17

which the older subframeyk−2
vw,B2,Y

is used.

	I Introduction
	I-A An Example and Motivation
	I-B Organization and Summary of Contributions

	II The model and the notation
	III Linear programs and algorithms
	III-A The Embedding-Edge LP
	III-B The Node-Arc LP
	III-C Primal-dual algorithm and min-cost embedding

	IV Extensions
	V Discussion and conclusion
	VI Acknowledgement
	References
	Appendix A: The protocol

