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Abstract

The aim of this paper is to review the classical limit of Quantum
Mechanics and to precise the well known threat of chaos (and fundamental
graininess) to the correspondence principle. We will introduce a formalism
for this classical limit that allows ud find the surfaces defined by the
constants of the motion in phase space. Then in the integrable case we
will find the classical trajectories, and in the non-integrable one the fact
that regular initial cells become ”amoeboid-like”. This deformations and
their consequences can be considered as a threat to the correspondence
principle. Essentially we present an analysis of the problem similar to the
one of Omnès, but with a simpler mathematical structure.

1 Introduction

It seems that Einstein was the first one to realize that chaos was a threat
to quantum mechanics [1] in a paper that was ignored by forty years [2]. A
panoramic view of the this incompatibility of the classical chaos and quantum
concepts (up to 1994) can be found in [1] and a recent review in [3]. Our first
contribution to the subject was the introduction of a theory of the classical limit
for closed quantum systems with Hamiltonian with continuos spectrum based
in destructive interference (that we have called the ”Self Induced Decoherence”
-SID- and where we have used the Riemann-Lebesgue theorem [4]) and later we
found a class of quantum chaotic systems (that may not contain all cases but
certainly it contains the relevant ones) with chaotic classical limit [5]. With this
idea in mind we study quantum chaos in papers [6] and extended the notions
of non-integrable, ergodic and mixing quantum systems in paper [7]. These
works were inspired in the landmark paper of Bellot and Earman [8]. The aim
of this remarkable paper is precisely to show ” how chaos puts some pressure
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on the correspondence principle (CP)” and the author says that there is not a
”quick and convincing argument for the conclusion that the CP fails”. Another
important source of inspiration for us was the two books of Roland Omnès [9]
and [10], precisely the characterization of quantum chaos as the evolution of a
square cell to a distorted ”amoeboid” cell (see figure 6.B). In this paper we will
essentially follow this idea, with simpler mathematical methods, and we will try
to precise the origin of the elongated, distorted and final amoeboid cells which,
in fact, we consider the main threat to the CP.

The paper is organized as follows:
Section 2: We introduce the mathematical structures we will use.
In the next sections we will see that the classical limit can be obtained

using three weapons: decoherence, Wigner transformation and the limit ~

S → 0.
Precisely:

Section 3. We review the decoherence alla SID for non-integrable quantum
systems.

Section 4 We obtain the classical statistical limit, using Wigner transforma-
tion and the limit ~

S → 0, and the classical surfaces defined by the constant of
the motion in phase space. We show that, up to this point chaos is not threat
to the CP.

Section 5 deals the fundamental graininess of quantum mechanics
Section 6 We find the classical trajectories for the integrable system and

estimate the threat to the CP, in the non-integrable case. The main conclusion
will be that fundamental graininess and chaos constitutes a real menace for the
CP.

Section 7 We present our conclusions.

2 Mathematical background

In this section we will review, following ref. [5], the main mathematical concepts
we will use in the paper.

2.1 Weak limit

Our presentation is based on the algebraic formalism of quantum mechanics
([11], [12]). Let us consider an algebra A of operators, whose self-adjoint el-
ements O = O† are the observables belonging to the space O. The states ρ
are linear functionals belonging to the dual space O′, but they must satisfy the
usual conditions: self-adjointness, positivity and normalization and therefore
the state ρ belongs to a convex S. If A is a C*-algebra, it can be represented
by a Hilbert space (GNS theorem see [12]). If A is a nuclear algebra, it can be
represented by a rigged Hilbert space, as proved by a generalization of the GNS
theorem ([13], [14]). In this case, the van Hove states with a singular diagonal
can be properly defined (see [15]; for a rigorous presentation of the formalism,
see also [16]).
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If we write the action of the functional ρ on the space O as (ρ|O), then we
can say that:

• The evolution Utρ = ρ(t) has a Weak-limit if, for any O ∈ O and any
ρ ∈ S, there is a unique ρ∗ ∈ S such that

lim
t→∞

(ρ(t)|O) = (ρ∗|O), ∀ O ∈ O (1)

We will symbolize this limit as

W − lim
t→∞

ρ(t) = ρ∗ (2)

• A particular useful weak limit can be obtained using the Riemann-Lebesgue
theorem. The idea of destructive interference is embodied in this theorem,
according to which, if f(ν) ∈ L1, then

lim
t→∞

∫ b

a

f(ν) e−iνt dν = 0 (3)

If we can express the action of a functional ρ(t) ∈ S on the operator O ∈ O
as

(ρ(t)|O) =

∫ b

a

[Aδ(ν) + f(ν)] e−iνt dν (4)

with f(ν) ∈ L1, then

lim
t→∞

(ρ(t)|O) = lim
t→∞

∫ b

a

[Aδ(ν) + f(ν)] e−iνt dν = A = (ρ∗|O), ∀ O ∈ O

(5)
We will call this result “Weak Riemann-Lebesgue limit”.

2.2 Generalized Projections.

As it is well known, in order to describe an irreversible process in terms of an
unitary evolution it is necessary to break the underlying unitary evolution. The
usual tool to do this is to introduce a coarse graining, that restricts the informa-
tion of the system. But generically any information restriction can be obtained
using a projection, which retains the “relevant” information and discards the
“irrelevant” one of the considered system.

In fact, in its traditional form, the action of a projection is to eliminate some
components of the state vector corresponding to the finest description (see [35])
to obtain a coarse grained one. If this idea is generalized, any restriction of
information can be conceived as the result of a convenient projection. In fact,
we can define a projector Π belonging to the space O ⊗O′ such that

Π ⊜

∑

j

|Oj)( ρj | (6)
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where (ρj | ∈ O
′ satisfies (ρj |Ok) = δjk where |Ok)ǫO 1. Therefore, the action

of Π on ρ ∈ O′ involves a projection leading to a state ρP such that

ρP ⊜ ρΠ =
∑

j

(ρ|Oj)( ρj | (7)

where in ρP only contains the information that we can obtain from the observ-
ables |Ok)ǫO

2.3 Weyl-Wigner-Moyal mapping.

Let Γ =M2(N+1) ≡ R2(N+1) be the phase space. The functions over Γ will be
called f(φ), where φ symbolizes the coordinates of Γ, φ = (q1, ..., qN+1, p1q, ..., p

N+1
q ).

If we consider the operators f̂,ĝ, ... ∈ Â and the candidates to be the correspond-
ing distribution functions f(φ), g(φ), .... ∈ A, where Â is the quantum algebra
of operators and A is the classical algebra of distribution functions, the Wigner
transformation reads (see [36], [37], [38])

symbf̂ ⊜ f(φ) =

∫
〈q +∆| f̂ |q −∆〉e2i

p∆

~ dN+1∆ (8)

We can also introduce the star product (see [39]),,

symb(f̂ ĝ) = symb f̂∗symb ĝ = (f∗g)(φ) = f(φ) exp

(
−
i~

2

←−
∂ aω

ab−→∂ b

)
g(φ)

(9)
and the Moyal bracket, that is, the symbol corresponding to the quantum com-
mutator

{f, g}mb =
1

i~
(f ∗ g − g ∗ f) = symb

(
1

i~
[f, g]

)
(10)

It can be proved that (see [36])

(f ∗ g)(φ) = f(φ)g(φ) + 0(~), {f, g}mb = {f, g}pb + 0(~2) (11)

To define the inverse symb−1, we will use the symmetrical or Weyl ordering
prescription, namely,

symb−1[qi(φ), pj(φ)] ⊜
1

2

(
q̂ip̂j + p̂j q̂i

)
(12)

Therefore, by means of the transformations symb and symb−1, we have defined
an isomorphism between the quantum algebra Â and the “classical-like” algebra
Aq,

symb−1 : Aq→Â, symb : Â→ Aq (13)

The mapping so defined is the Weyl-Wigner-Moyal symbol.2

1In fact, Π is a projector since

Π2 =
∑

jk

|Oj)( ρj |Ok)( ρk | =
∑

jk

|Oj)δjk( ρk| =
∑

j

|Oj)( ρj | = Π

2When ~ → 0, then Aq → A, where A is the classical algebra of observables over phase
space.
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The Wigner transformation for states is

ρ(φ) = symb ρ̂ = (2π~)−(N+1) symb(for operators) ρ̂ (14)

As it is well known, an important property of the Wigner transformation is that:

〈Ô〉ρ̂ = (ρ̂|Ô) = (symb ρ̂ | symb Ô) =

∫
dφ2(N+1)ρ(φ)O(φ) (15)

This means that the definition of ρ̂ ∈ Â′ as a functional on Â is equivalent to
the definition of symb ρ ∈ A′

q as a functional on Aq.

3 Decoherence in non-integrable systems

3.1 Local CSCO

This subsection is a short version of the corresponding subsection of paper [5].

a.- In [5] we have proved that, when the quantum system is endowed with a

CSCO of N + 1 observables containing Ĥ, that defines an eigenbasis in terms
of which the state of the system can be expressed, the corresponding classical
system is integrable. In fact, if the CSCO is {Ĥ, Ĝ1, ..., Ĝ N}, the Moyal brackets
of its elements are

{GI(φ), GJ (φ)}mb = symb

(
1

i~
[ĜI , ĜJ ]

)
= 0 (16)

where I, J = 0, 1, ..., N , Ĝ0 = Ĥ , and φ ∈ M ≡ R2(N+1). Then, when ~ → 0,
from Eq. (11) we know that

{GI(φ), GJ (φ)}pb = 0 (17)

Thus, since H(φ) = G0(φ), the set {GI(φ)} is a complete set of N +1 constants
of motion in involution, globally defined all overM; as a consequence, the system
is integrable.

b.- We have also proved (see [5]) that, when the CSCO has A+ 1 < N + 1

observables, a local CSCO {Ĥ, Ĝ1, ..., ĜA, Ôi(A+1), ..., ÔiN} can be defined for

a maximal domain Dφi
around any point φi ∈ Γ ≡ R2(N+1), where Γ is the

phase space of the system. In this case the system is non-integrable.
In order to prove this assertion, we have to recall the Carathèodory-Jacobi

theorem (see [40], theorem 16.29) according to which, when a system with
N + 1 degrees of freedom has A + 1 global constants of motion in involution
{G0(φ), G1(φ), ..., GA(φ)}, then N − A local constants of motion in involution
{Ai(A+1)(φ), ..., AiN (φ)} can be defined in a maximal domain Dφi

around φi,

for any φi ∈ Γ ≡ R2(N+1) (see also section 3.2 below).
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Let us consider the particular case of a classical system with N + 1 degrees
of freedom, and whose only global constant of motion (for simplicity) is the
Hamiltonian H(φ). The Carathèodory-Jacobi theorem states that, in this case,
the system has N local constants of motion AiI(φ), with I = 0, ..., N , in the
maximal domain Dφi

around φi, for any φi ∈ Γ.
If we want to translate these phase space functions into the quantum lan-

guage, we have to apply the transformation symb−1; this can be done in the
case of the Hamiltonian, Ĥ = symb−1H(φ), but not in the case of the AiI(φ)
because they are defined in a maximal domain Dφi

⊂ Γ and the Weyl-Wigner-
Moyal mapping can only be applied on phase space functions defined on the
whole phase space Γ. To solve this problem, we can introduce a positive parti-
tion of the identity (see [41]),

1 = I(φ) =
∑

i

Ii(φ) (18)

where each Ii(φ) is the characteristic or index function

Ii(φ) =

{
1 if φ ∈ Dφi

0 if φ /∈ Dφi

(19)

and Dφi
⊂ Dφi

, Dφi
∩ Dφj

= ∅,
⋃

i Dφi
= Γ. Then we can define the functions

OiI(φ) as

OiI(φ) = AiI(φ) Ii(φ) (20)

Now the OiI(φ) are defined for all φ ∈ Γ; so, we can obtain the corresponding
quantum operators as

ÔiI = symb−1OiI(φ) (21)

Since the original functions AiI(φ) are local constants of motion in the maximal
domain Dφi

, they make zero the corresponding Poisson brackets, with H , in
such a domain and, a fortiori, in the non-maximal domain Dφi

⊂ Dφi
. This

means that the OiI(φ) makes zero the corresponding Poisson brackets in the
whole space space Γ. In fact, for φ ∈ Dφi

, because OiI(φ) = AiI(φ) , and
trivially for φ /∈ Dφi

. We also know that, in the macroscopic limit ~ → 0, the
Poisson brackets can be identified with the Moyal brackets, that is, the phase
space counterpart of the quantum commutator (see eq. (11)) 3. Therefore, we

can guarantee that all the observables of the set
{
Ĥ, ÔiI

}
commute with each

other: [
Ĥ, ÔiI

]
= 0

[
ÔiI , ÔiJ

]
= 0 (22)

for I, J = 1 to N and in all the Dφi
. As a consequence, we will say that the set{

Ĥ, Ôi1, ..., ÔiN

}
is the local CSCO of N + 1 observables corresponding to the

3Even if these reasoning is only valid in the limit ~ → 0 it is enough for our purposes since
essentially we are trying to find classical limit.
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domain Dφi
⊂ Γ. If Ĥ has a continuous spectrum 0 ≤ ω < ∞, and the ÔiI a

discrete one (just for simplicity) a generic observable Ô can be decomposed as

Ô =
∑

imiI m′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ ÕimiI m′

iI
(ω, ω′) |ω,miI〉〈ω

′,m′
iI | (23)

where the |ω,miI〉 = |ω,mi1, ...,miN 〉 are the eigenvectors of the local CSCO{
Ĥ, ÔiI

}
corresponding to Dφi

. Since it can be proved that (see [5]), for i 6= j,

〈ω,miI |ω,mjI〉 = 0 (24)

the decomposition of eq. (23) is orthonormal, and it generalizes the usual eigen-
decomposition of the integrable case to the non-integrable case. Therefore, any
ÔiI corresponding to the domain Dφi

commutes with any ÔjI corresponding to
the domain Dφj

with i 6= j,4

[
ÔiI , ÔjJ

]
= δij δIJ (25)

3.2 Continuity and differentiability.

In paper [7], we have used a “bump” smooth function Bi(φ), in each domain
Dφi

surrounded by a frontier zone Fφi
,such that Di(φ) ∪ Fφi

⊂ Di(φ), and we
have defined a new partition of the identity (compare with (18)),

1 = I(φ) =
∑

i

Bi(φ) (26)

where each Bi(φ) ≥ 0 satisfies (compare with (19))

Bi(φ) =





1 if φ ∈ Dφi

ǫ[0, 1] if φ /∈ Fφi

0 if φ /∈ Dφi
∪ Fφi

(27)

and Fφi
⊂ F =

⋃
i Fφi

is the union of all the joining zones (see figure 1.A)5.
Then if we change the definition OiI(φ) = AiI(φ) Ii(φ ) (compare (20)) by

OiI(φ) = AiI(φ)Bi(φ)

we would have smooth connections between F through the functions OiI(φ)
6.

Namely to work with continuos and differential functions force us to introduce

4In this paper we have slightly changed the notation of paper [5], because we consider that
the present notation is more explicit than the one.of that paper.

5Moreover, as we will discuss in section 5, quantum phase space has a fundamental grain-
iness. Then the width of F must be of the order that we will define in that section, i.e. it
must contain a box of the size ∆x∆p = 1

2
~.

6In some cases it can be shown that the discontinuities in the boundary zones introduces
a 0(~2), which vanishes when ~ → 0 and, therefore, in this cases, the Moyal brackets can be
replaced with Poisson brackets in such a limit (see [7])
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continuity zones F and functions Bi(φ) in the frontier of the domains Dφi
(fig-

ure1. A). Then we can use Cr−functions (and eventually C∞−functions) in
the whole treatment (see.[7]) . For simplicity, up to now, we have not considered
these F−zones, nevertheless we will be forced to use them in section 6 (figure
6.A).

Another kind of joining zones are used in the decomposition, in small square
boxes, of a ”cell” [9], i. e. the small boxes distributed in the ”boundary of C”
in figure 6.1 of the quoted book (see also between eqs. (6.6) and (6.79) of this
book). This figure corresponds to our figure 1.B. But, as the Dφi

are neither
boxes nor cells (that will be introduce in section 5), F and the ”boundary of
C” are completely different concepts.

Figure 1.A. The domains and the frontier. ∆x∆p = 1
2~. Figure 1.B A cell

decomposed in small square boxes.

3.3 Decoherence

Let us consider a quantum system with a globally defined Hamiltonian Ĥ . In
order to complete the CSCO, we can add constants of the motion locally defined

as in the previous subsection. Thus, we have the CSCO
{
Ĥ, ÔiI

}
, with I = 1

to N and i corresponding to all the necessary domains Dφi
obtained from the

partition of the phase space Γ.

a.- In paper [5] we have considered the case with continuous and discrete

spectrum for Ĥ and for the ÔiI . For the sake of simplicity in this paper we will
only consider the continuous spectrum 0 ≤ ω < ∞ for Ĥ and discrete spectra
miI ∈ N for the ÔiI . Then in the eigenbasis of Ĥ , the elements of any local
CSCO can be expressed as (see Eq. (23))

Ĥ =
∑

imiI

∫ ∞

0

ω |ω,miI〉〈ω,miI | dω (28)

ÔiJ =
∑

imiI

∫ ∞

0

miI |ω,miI〉〈ω,miI | dω (29)

where miI is a shorthand for mi1, ...,miN , and
∑

imiI
is a shorthand for∑

i

∑
mi1

...
∑

imiN
.

With this notation,

Ĥ |ω,miI〉 = ω |ω,miI〉, ÔiI |ω,miI〉 = miI |ω,miI〉 (30)

where the set of vectors {|ω,miI〉}, with I = 1 to N and i corresponding to all
the domain Dφi

, is an orthonormal basis (see Eq. (24)), i. e.:

〈ω,miI |ω
′,m′

iI〉 = δ(ω − ω′) δmiI m′

iI
(31)
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b.- Also in the orthonormal basis {|ω,miI〉}, a generic observable reads (see
Eq. (23))

Ô =
∑

imiI m′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ÕimiI m′

iI
(ω, ω′) |ω,miI〉〈ω

′,m′
iI | (32)

where ÕimiI m′

iI
(ω, ω′) is a generic kernel or distribution in ω, ω′. As in paper

[5], we will restrict the set of observables (i.e. we make a projection like those
of section 2.2 namely a generalized coarse-graining) by only considering the van
Hove observables (see [15]) such that 7

ÕimiI m′

iI
(ω, ω′) = OimiI m′

iI
(ω) δ(ω − ω′) +OimiI m′

iI
(ω, ω′) (33)

The first term in the r.h.s. of Eq. (33) is the singular term and the second one
is the regular term since the OimiI m′

iI
(ω, ω′) are “regular” , i. e. L2, functions

of the variable ω - ω′. Then we will call Ô the subspace of observable, of our
algebra Â, with these characteristics. Moreover we can define a projector Π, as
those of section 2.2, that projects on Ô. This projection will be our generalized
coarse graining.

Therefore, the observables will read

Ô =
∑

imiI m′

iI

∫ ∞

0

dωOimiI m′

iI
(ω) |ω,miI〉〈ω,m

′
iI |+

∑

imiI m′

iI

∫ ∞

0

dω

∫ ∞

0

dω′OimiI m′

iI
(ω, ω′) |ω,miI〉〈ω

′,m′
iI | (34)

Since the observables are the self-adjoint operators of the algebra, Ô† = Ô, they
belong to a space Ô ⊂ Â whose basis {|ω,miI ,m

′
iI), |ω, ω

′,miI ,m
′
iI)} is defined

as

|ω,miI ,m
′
iI) ⊜ |ω,miI〉〈ω,m

′
iI |, |ω, ω′,miI ,m

′
iI) ⊜ |ω,miI〉〈ω

′,m′
iI | (35)

c.- The states belong to a convex set included in the dual of the space Ô,
ρ̂ ∈ Ŝ ⊂ Ô′. The basis of Ô′ is {(ω,miI ,m

′
iI |, (ω, ω

′,miI ,m
′
iI |}, whose elements

are defined as functionals by the equations

(ω,miI ,m
′
iI | η, niI , n

′
iI) ⊜ δ(ω − η) δmiI niI

δm′

iI
n
′

iI

(ω, ω′,miI ,m
′
iI | η, η

′, niI , n
′
iI) ⊜ δ(ω − η) δ(ω′ − η′) δmiI niI

δm′

iI
n
′

iI

(ω,miI ,m
′
iI | η, η

′, niI , n
′
iI) ⊜ 0 (36)

and the remaining (• |•) are zero. Then, a generic state reads

7In papers [6] we have shown that this choice does not diminish the physical generality of
the model
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ρ̂ =
∑

imiI m′

iI

∫ ∞

0

dωρimiI m′

iI
(ω) (ω,miI ,m

′
iI |+

∑

imiI m′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ρimiI m′

iI
(ω, ω′) (ω, ω′,miI ,m

′
iI | (37)

where the functions ρimiI m′

iI
(ω, ω′) are “regular”, i.e. L2 functions of the vari-

able ω - ω′. We also require that ρ̂† = ρ̂, i.e.,

ρimiI m′

iI
(ω, ω′) = ρim′

iI
miI

(ω′, ω) (38)

and that the ρimiI miI
(ω, ω) ⊜ ρimiI

(ω) would be real and non-negative, satis-
fying the total probability condition,

ρimiI
(ω) ≥ 0, trρ̂ = (ρ̂|Î) =

∑

imiI

∫ ∞

0

dωρimiI
(ω) = 1 (39)

where Î =
∑

imiI

∫∞

0 dω|ω,miI〉〈ω,miI | is the identity operator in Ô.

d.- On the basis of these characterizations, the expectation value of any
observable Ô ∈ Ô in the state ρ̂(t) ∈ Ŝ can be computed as

〈Ô〉ρ̂(t) = (ρ̂(t)|Ô) =
∑

imiI m′

iI

∫ ∞

0

dωρimiI m′

iI
(ω)OimiI m′

iI
(ω)+

∑

imiI m′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ρimiI m′

iI
(ω, ω′) ei(ω−ω′)t/~ OimiI m′

iI
(ω, ω′) (40)

The requirement of “regularity”, in variables ω−ω′, for the involved functions, i.
e. OimiI m′

iI
(ω, ω′) ǫ L2 and ρimiI m′

iI
(ω, ω′) ǫ L2, as a consequence of Schwarz

inequality, it means that ρimiI m′

iI
(ω, ω′)OimiI m′

iI
(ω, ω′) ∈ L1 in the variable

ν = ω − ω′, a property that we will use below. .

Now, for reasons that will be clear further on, it is convenient to choose a
new basis {|ω, piI)} that diagonalize the m-variables of ρ (of eq. (38)), for the
case ω = ω′, through a unitary matrix U , which performs the transformation

ρimiI m′

iI
(ω)→ ρipiI p′

iI
(ω) δpiI p′

iI
⊜ ρipiI

(ω) (41)

Such transformation defines the new orthonormal basis {|ω, piI〉}, where piI is
a shorthand for pi1, ..., piN , and piI ∈ N. This basis corresponds to a new local

CSCO
{
Ĥ, P̂iI

}
. Therefore, in eachDφi

we can deduce, from the equations (40)

and (41), that the basis {|ω, piI〉} corresponds to the basis of observables. i. e.
{|ω, piI), |ω, ω

′, piI , p
′
iI)}, defined as in Eq. (35) but with the indices p instead of

m, and also to the corresponding basis for the states is {(ω, piI |, (ω, ω′, piI , p
′
iI |}.
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Then when the observables P̂iI have discrete spectra, in the new basis the
van Hove observables of our algebra Â will read

Ô =
∑

ipiI

∫ ∞

0

dωOipiI
(ω) |ω, piI)+

∑

ipiI p′

iI

∫ ∞

0

dω

∫ ∞

0

dω′OipiI p′

iI
(ω, ω′) |ω, ω′, piI , p

′
iI) (42)

where the first term of the r.h.s is the singular part and the second terms the
regular part of Ô. The states, in turn, will have the following form

ρ̂ =
∑

ipiI

∫ ∞

0

dωρipiI
(ω) (ω, piI |+

∑

ipiI p′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ρipiI p′

iI
(ω, ω′) (ω, ω′, piI , p

′
iI | (43)

where, again, the first term of the r.h.s. is the singular part and the second one
is the regular part of ρ̂.

From the last two equations we have

(ρ̂(t)|Ô) =
∑

ipiI

∫ ∞

0

dωρipiI
(ω)OipiI

(ω)+

∑

ipiI p′

iI

∫ ∞

0

dω

∫ ∞

0

dω′ρipiI p′

iI
(ω, ω′) ei(ω−ω′)t/~ OipiI p′

iI
(ω, ω′)

Then we can make the Riemann-Lebesgue limit to (ρ̂|Ô) since from the Schwarz
inequality OipiI p′

iI
(ω, ω′)ρipiI p′

iI
(ω, ω′)ǫL1 in ν =(ω−ω′) the regular part van-

ishes and only the singular part remains:

W − lim
t→∞

ρ̂(t) =
∑

ipiI

∫ ∞

0

dωρipiI
(ω) (ω, piI | = ρ̂∗ (44)

and we have decoherence in all the variables (ω, piI).

Here we have considered the case of observables P̂iI with discrete spectra;
the case of P̂iI with continuos spectra is very similar (see [5]).

3.4 Comment

A comment is in order: Usually decoherence is studied in the case of open
system surrounded by an environment, up to the point that some people believe
that decoherence takes place in open systems. But also several authors have
introduced, for different reasons, decoherence formalisms for closed system ([17]
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- [26]). Related with the method used in this paper two important examples are
given:

1- In paper [27], where a system that decoheres at high energy at the Hamil-
tonian basis is studied, and

2.-In paper [28], where complexity produces decoherence in a closed trian-
gular box (in what we could call a Sinai-Young model).

Also we have developed our own theory for decoherence of closed systems,
SID (see [29] - [32]). In paper [33] we show how our formalism explains the
decoherence of the Sinai-Young model above. Recently it has been shown that
also the gravitational field produces decoherence in the Hamiltonian basis [34]

4 The classical statistical limit

In order to obtain the classical statistical limit, it is necessary to compute the
Wigner transformation of observables and states. For simplicity and symmetry

we will consider all the variables (ω, piI) continuous in this section

If we do this substitution, Eq. (43), reads

ρ̂(t) =
∑

i

∫

piI

dpNiI

∫ ∞

0

dω ρi(ω, piI) (ω, piI |+

∑

i

∫

piI

dpNiI

∫

p′

iI

dp′NiI

∫ ∞

0

dω

∫ ∞

0

dω′ ρi(ω, ω
′, piI , p′iI) e

i(ω−ω′)t/~ (ω, ω′, piI , p
′
iI |

(45)
Therefore, Eq. (44) can be written as

W − lim
t→∞

ρ̂(t) = ρ̂∗ =
∑

i

∫

piI

dpNiI

∫ ∞

0

dωρi(ω, piI) (ω, piI | (46)

where ρ̂∗ is simply the singular component of ρ̂(t), where the regular part has
vanished as a consequence of the Riemann-Lebesgue theorem.

Now, the task is to find the classical distribution ρ∗(φ) resulting from the
Wigner transformation of ρ̂∗ in the limit ~→ 0,

ρ∗(φ) = symb ρ̂∗ (47)

where

ρ∗(φ) = symb ρ̂∗ =
∑

i

∫

piI

dpNiI

∫ ∞

0

dω ρi(ω, piI) symb (ω, piI | (48)

So, the problem is reduced to compute symb (ω, piI |.

As it is well known, in its traditional form the Wigner transformation yields
the correct expectation value of any observable in a given state when we are

12



dealing with regular functions (see Eq. (15)). In previous papers ([5], [42])
we have extended the Wigner transformation to singular functions in order to
use it in functions like (ω, piI |. Here we will briefly resume the results of these
papers in two steps: first, we will consider the transformation of observables
and, second, we will study the transformation of states.

4.1 Transformation of observables

As we have seen (see Eq.(42)), our van Hove observables Ô ∈ Ô have a singular

part, i. e. ÔS , and a regular part, i.e. Ô.R. We will direct our attention to
the singular operators ÔS , since the regular operators ÔR “disappear” from the
expectation values after decoherence, as explained in Section 2.3. ÔS reads:

ÔS =
∑

i

∫

piI

dpNiI

∫ ∞

0

dωOi(ω, piI) |ω, piI) (49)

Then, the Wigner transformation of ÔS can be computed as

OS(φ) = symb ÔS (50)

where

OS(φ) = symb ÔS =
∑

i

∫

piI

dpNiI

∫ ∞

0

dω Oi(ω, piI) symb |ω, piI) (51)

Now if we consider that the functions Oi(ω, piI) are polynomials of functions of
a certain space where the polynomials are dense it can be probed that

ÔS =
∑

i

Oφi
(Ĥ, P̂iI) =

∑

i

ÔSφi

where ÔSφi
= OSφi

(Ĥ, P̂iI), and where symbÔSφi
= symbOSφi

(Ĥ, P̂iI) =

OSφi
(H(φ), PiI(φ)) + O(~2). Then if OSφi

(H(φ), PiI(φ)) = δ(ω − ω′) δN (piI −
p′iI) we have (see paper [7] for details) that the function symb |ω, piI) in the
limit ~

S → 0, is

symb |ω, piI) = δ(H(φ)− ω) δN (PiI (φ)− piI) (52)

where H(φ) = symbĤ and PiI(φ) = symbP̂iI

4.2 Transformation of states

As in papers [5] and [42], in order to compute the symb (ω, piI |, we will define
the Wigner transformation of the singular operator ρ̂S = ρ̂∗ on the base of
the only reasonable requirement that such a transformation would lead to the
correct expectation value of any observable. Then we must postulate that it is
(see Eq. (15)),

(symb ρ̂S | symb ÔS) ⊜ (ρ̂S | ÔS) (53)
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These equations must also hold in the particular case in which ÔS = |ω′, p′iI),
ρ̂S = (ω, piI |, for some Dφi

(see Eq.(24)) i. e.:

(symb(ω, piI | | symb |ω′, p′iI)) = (ω, piI |ω
′, p′iI) (54)

and all the remaining cross terms are zero for any domain Dφj
, with j 6= i.

But from Eq. (52) we know how to compute symb |ω′, p′iI). Moreover, from the
definition of the cobasis (see Eq. (36)) we know that

(ω, piI |ω
′, p′iI) = δ(ω − ω′) δN (piI − p′iI) (55)

Therefore in the limit ~

S → 0 we have,

(symb(ω, piI | | δ(H(φ)− ω′) δN (PiI(φ)− p′iI)) = δ(ω − ω′) δN(piI − p′iI) (56)

Then in paper [5] we have proved that (always in the ~

S → 0 limit)

symb(ω, piI | =
δ(H(φ)− ω) δN (PiI (φ)− piI)

Ci(H,PiI)
(57)

where Ci(H,PiI) is the configuration volume of the region ΓH,PiI
∩Dφi

, being
ΓH,PiI

⊂ Γ the hypersurface defined by H = const. and PiI = const. In this
way we have obtained the symb of |ω, piI) and (ω, piI | so the classical statistical
limit is completed.

4.3 Convergence in phase space

Finally, we can introduce the results of Eq. (57) into Eq. (48), in order to
obtain the classical distribution ρ(φ):

ρ∗(φ) = ρS(φ) =
∑

i

∫

piI

dpNiI

∫ ∞

0

dω
ρi(ω, piI)

Ci(H,PiI )
δ(H(φ)− ω) δN (PiI(φ)− piI)

(58)
As a consequence, the Wigner transformation of the limits of Eq. (44) can be
written as

W − lim
t→∞

ρ(φ, t) = ρS(φ) = ρ∗(φ) =

∑

i

∫

piI

dpNiI

∫ ∞

0

dω
ρi(ω, piI)

Ci(H,PiI)
δ(H(φ)− ω) δN (PiI (φ)− piI) (59)

Remember that all this is only valid in a domain Dφ defined in eq. (19)
and that it would completely change if we change to another domain through a
continuity zone F of section 3.2

Then we have obtained a convincing classical limit of the states, that de-
composed as in eq. 59, it turns out to be sums of states peaked in the classical
hypersurfaces of constant energy, H(φ) = ω, and where also the other constants
of motions are constant, PiI(φ) = piI . This is an important step forward, to
have obtained these classical surfaces as a limit of the quantum mechanics for-
malism. Up to here chaos has not produced any problem to the CP, even if the
system is not integrable. The real problems will begin in the next section.
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5 Graininess

Up to here we have found the hypersurfaces where the classical trajectories lay.
Now we want to find the classical motions in these trajectories. Thus we need
to define the notion of ”a point that moves”. But in quantum mechanics there
is not such a thing. In fact it is well known that the commutation relations
and its consequence, the indetermination principle, establishes a fundamental
graininess in ”quantum phase space”. Precisely if we call Ĵ and Θ̂ two generic
conjugated operators (e. g. in our case Ĵ will be the constants of the motion

Ĥ , P̂iI and Θ̂ the corresponding configuration operators) we have

[Θ̂, Ĵ ] = i~Î (60)

and therefore

∆Θ∆J ≥
~

2
(61)

where, from now on, ∆Θ and ∆J are defined as the variances of some typical
state ρ̂ the one with the smallest dimensions we can ”determinate” (in the sense
of Ballentine chapter [45]) in our experiment. With different choices for this
ρ we will obtain different ratios ∆Θ/∆J but the qualitative results will be
the same. Then we will consider that the rectangular box ∆Θ∆J of volume ~

(or the polyhedral box of volume ~(n+1) in the many dimensions case) will be
the smallest volume that we can determinate with our measurement apparatus,
precisely:

vol∆Θ∆J = ~ (or eventually N0~)

for a phase space of two dimensions or

vol
∏

∆Θ

∏
∆J = ~(n+1) (or eventually N0~

)n+1))

for a phase space of 2(n + 1) dimensions, where N0 is not a very large natural
number (cf. [9]). This is the new feature of the ”quantum phase space”: its
graininess and this fact will be the origin of the threat to the CP 8.

In Omnès’ book [9] the cell produced by the fundamental graininess are
described in the (x, p) coordinates, using a mathematical theory, the microlocal
analysis, based in the work [46]. In our formalism we will change these (x, p)
for the (J,Θ) coordinates where J are the constants of the motion and Θ the
corresponding configuration variables and where the commutation relations (60)
and their consequence the indetermination principle (61) will play the main role.

To see how the fundamental graininess works let us consider a closed simply
connected set of a two dimensional phase space that we will call a cell CT ,
with its continuous boundary B, (figure 1.B, or fig 6.1 of [9]). The coordinates
(J,Θ) and a lattice of rectangular boxes ∆Θ∆J (eventually 2(n+1) polyhedral
boxes) define the two domains related with CT : Σ, set of boxes that intersect
B, and C, the set of the interior rectangular boxes of the cell CT . Volume is well

8Fundamental graininess appears in many other disguises (see [43], [44], etc.)

15



defined in phase space of any dimension while (hyper) surfaces are not defined,
so in order to compare the the size of the frontier with the size of the interior
we can define the coefficient

Ω =
volΣ

volC

It is quite clear that Ω≪ 1 corresponds to a bulky cell while Ω≫ 1 corresponds
to an elongated and maybe deformed cell. It is also almost evident that if we
want that a cell would somehow represent a real point it is necessary that Ω < 1,
because if Ω > 1 the volume of the interior C is smaller than the volume of the
”frontier” Σ, where we do not know for certain if its points belong or not to CT

since B ⊂ Σ. Thus in the case Ω≫ 1 we completely lose the notion of real point
and the description of the classical trajectories, as the motion of CT , becomes
impossible.

Analogously Omnès defines semiclassical projectors for each cell and shows
that if Ω is very large the definition of these projectors lose all its meaning and
the classicality is lost, namely he obtain a similar conclusion.

In the next section we will consider the cells and their evolution in several
cases and estimate the corresponding Ω.

6 The classical trajectories

Up to this point we have obtained the classical distribution ρ∗(φ) = ρS(φ) to
which the system converges in phase space. This distribution defines hyper-
surfaces H(φ) = ω, PiI(φ) = piI corresponding to the constant of the motion
i.e. our the “momentum” variables. But such a distribution does not define
the trajectories of ”points” on those hypersurfaces, i. e., it does not fix definite
values for the “configuration” variables (the variables canonically conjugated
to H(φ) and PiI(φ)). This is reasonable to the extent that definite trajectories

would violate the uncertainty principle. In fact we know that, if Ĥ and P̂iI have
definite values, then the values of the observables that do non-commute with
them will be completely undefined.

Nevertheless, trajectory-like motions can be recovered by means of the Ehren-
fest theorem, applied to the constants of motion and their conjugated variables.
But also a better classical limit (and its limitations) can be obtained searching
the trajectories, of the rectangular boxes (and later of the cells) we will consider
as ”points”, integrating the Heisenberg equation, and then studying the defor-
mations of the cells under the motion (as in [9]). Let us follow this second path,

as in section 5, let us call, Ĵ the “momentum” variables Ĥ and P̂iI (constants of

the motion), and Θ̂ the corresponding conjugated “configuration” variables, all
of them defined in the domain Dφi

. The equations of motion, in the Heisenberg
picture, read

dĴ

dt
=

i

~
[Ĥ, Ĵ ]

dΘ̂

dt
=

i

~
[Ĥ, Θ̂] (62)
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where as [Ĥ, Ĵ ] = 0

dĴ

dt
= 0

dΘ̂

dt
=

i

~
[Ĥ, Θ̂] (63)

Within the domain Dφ we know that if we can consider the Ĥ as a function

(or a convergent sum) of the Ĵ , i. e.:

Ĥ = F (Ĵ) =
∑
n
anĴ

n (64)

and since [Θ̂, Ĵ ] = i~ we have [Θ̂, Ĵn] = in~Ĵ (n−1) so

[Ĥ, Θ̂] =
dĤ

dĴ

where Ĥ and Ĵ are constant in time, so calling V̂ (0) = dĤ

dĴ
, which is another

constant in time, we have

Ĵ(t) = Ĵ(0), Θ̂(t) = Θ̂(0) + V̂ (0)t

Then we can make the Wigner transformation from these equations and, since
this transformation is linear, we have

J(φ, t) = J(φ, 0), Θ(φ, t) = Θ(φ, 0) + V (φ, 0)t (65)

We will use this equation to follow the motion of the boxes and the cells in the
phase space:

Let us first consider a rectangular (eventually 2(n + 1)polyhedral) moving
box of size ∆Θ,∆J with ∆Θ∆J ∼ ~ (eventually ~(n+1)), that we will symbolize
by a small square in figures 2, 3, 4, and 5 (and just by a point in the figures 6.A
and 6.B) and let us also consider the typical point-test-distribution function
symbρ̂=ρ(φ) = ρ(j, θ), (see under eq. (61), also from now on φ = (j, θ)) with
support contained in ∆Θ∆J , then let us define the mean values

j(t) =

∫

∆Θ∆J

J(j, θ, t)ρ(j, θ)djdθ; θ(t) =

∫

∆Θ∆J

Θ(j, θ, t)ρ(j, θ)djdθ,

v(t) =

∫

∆Θ∆J

V (j, θ, t)ρ(j, θ)djdθ; (66)

where the ρ(j, θ) is not a function of the time since we are in the Heisenberg
picture. Now using eq. (65) we have

j(φ, t) = j(φ, 0), θ(φ, t) = θ(φ, 0) + v(φ, 0)t (67)

so our minimal rectangular box moves along a classical trajectory of our system.
Now our rectangular boxes are so small that we can not even consider

their possible deformation. Precisely the Indetermination Principle makes this
deformation merely hypothetical. Thus, from now on, we will consider that the
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rectangular boxes are not in motion (and therefore they can not be deformed
by motion) and that they are the most elementary theoretical fixed notion of
a point at (j, θ) 9. In this way we have obtained the classical trajectories of
theoretical points (i. e. eq.(67 )) and we would have completed our quantum to
classical limit (apparently CP is safe up to now).

But remember that the real physical points are not these rectangular boxes
but the cells with Ω < 1 that we must also consider, because real measure-
ment devises cannot see the elementary rectangular boxes but bigger cells of
dimensions far bigger than the Planck ones. In the next examples we will see
what happens with these cells that we will consider as real points: the cells can
be deformed by the motion (while the rectangular boxes always remain rigid).
We will show the interplay of these theoretical points (boxes) and physical real
points (cells) in some examples bellow:

1.- Then, as a first example, let us consider a two dimensional space within
a domain Dφ (much larger than the cell that we will define below) and let as
also consider the system of coordinates (J,Θ) and the corresponding trajectories

when the Hamiltonian is a linear function, Ĥ = a0Î + a1Ĵ , Then V̂ = a1Î so

J(φ, t) = J(φ, 0), Θ(φ, t) = Θ(φ, 0) + a1It

and, with the same reasoning as above the trajectories of the boxes (theoretical
points) are

j(t) = j(0), θ(t) = θ(0) + a1t (68)

Namely we obtain figure 2 and we have a uniform translation motion with
constant velocity v[j(0)] along all the trajectories.. Let us then consider two par-
allel lines with constant velocities v[j1] = v[j2], thus the difference of velocities
is

v(j1)− v(j2) = 0 (69)

. Then if we consider an initial rectangular cell the motion will not deform the
cell. Since there is no deformation of the cell Ω is rigid, thus if Ω < 1 in the
initial cell Ω will be < 1 in any transferred cell. Therefore, in this trivial case
the cell will represent a physical real point moving according to eq. (68). Thus
in this case we have completed our classical limit and the CP is safe.

Evolution of a cell with constant velocity.

2.- As a further example let us consider the same two dimensional space
within a Dφ and let as consider the system of coordinates (J,Θ) and the cor-

responding trajectories when Ĥ = a0Î + a1Ĵ + a2Ĵ
2. Then V̂ = a1Î + a2Ĵ

so
J(φ, t) = J(φ, 0), Θ(φ, t) = Θ(φ, 0) + [a1I + 2a2J(φ, 0]t

9The rectangular moving cell defined after the eq. (65) will be the only rectangular objects
that moves in this paper.
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and, with the same reasoning as above.

j(t) = j(0), θ(t) = θ(0) + [a1 + 2a2j(0)]t

Namely we obtain figure 3 and we have a uniform motion with constant
velocity v[j(0)] = a1 + 2a2j(0) along straight lines parallel to the axis θ..

θ(t) = θ(0) + v[j(0)]t

Let us then consider two parallel lines with constant velocities v(j1) 6= v(j2),
thus the difference of velocities is

v(j1)− v(j2) = 2a2(j1 − j2) = v (70)

Let J,Θ be the dimension of the initial cell and ∆J ,∆Θ the dimension of the fix
rectangular boxes. Then the length of the basis is constant and so V olC also is
constant. Then if we consider an initial rectangular box the motion will deform
this cell in a parallelogram, where the height continue to be J and the base will
now be Θ +∆θ, i. e. there is ”elongation” ∆θ (see figure 3), precisely

∆θ = vt

Let us compute the evolution of Ω in this case: the number of new boxes
that appears at time t will be

n = 2
∆θ

∆Θ
= 2

vt

∆Θ

Now

Ω =
V olΣ

V olC
=

V olΣ+∆V olΣ

V olC
=

V olΣ+ n∆J∆Θ

V olC
so

∆Ω =
n∆J∆Θ

V olC
=

n~

V olC
= 2

v

∆Θ

~

V olC
t = 2

∆θ

∆Θ

~

V olC
> 0

Then:
a.- The increment ∆Ω is proportional to the time t
b.- It is also proportional to the product of the ratio of the elongation ∆θ

measured in units of ∆Θ.
c.- Finally it is proportional to ~

V olC so in the macroscopic limit ~

V olC → 0
we have ∆Ω→ 0 and the threat to CP disappears.

But the most important conclusion is that, in a generic case, even if ~

V olC

would be small but if it is far from the limit ~

V olC → 0, after enough time we will
have Ω≫ 1. Then the cell ceases to be a good model for a point and it surely is
the beginning of threat to the CP. This happens even if the system is integrable,
namely, Dφ = Γ the phase space, and the Hamiltonian Ĥ = a0Î + a1Ĵ + a2Ĵ

2,

e. g., simply be Ĥ = 1
2m P̂ 2, namely the one of a free particle. So fundamental

graininess alone (with no chaos) can be a threat to the CP, in the case ~

V olC > 0

Evolution of the cell with linear velociy
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3.- In the most general case the Hamiltonian is Ĥ = a0Î + a1Ĵ + a2Ĵ
2 +

a3Ĵ
3 + ... and eq. (69) becomes

v(j1)− v(j2) = 2a2(j1 − j2) + 3a3(j
2
1 − j2

2
) + ...

as described in figure 4 where there are not vertical deformations but there are
strong horizontal ones. Then for Hamiltonians with power bigger than 2 the
threat of chaos begins.

Evolution of a cell with non linear velociy
In fact, let us consider the case

Ĥ =

∞∑

n=0

An(Ĵ) exp in
Ĵ

∆J

then

v(j) =
∞∑

n=0

[A′
n(j) +

in

∆J
An(j)] exp in

j

∆J
=

∞∑

n=0

Bn(j) exp in
j

∆J

and

θ(j, t) = θ(j, 0) + v(j)t = θ(j, 0) + t

∞∑

n=0

Bn(j) exp in
j

∆J

Then the elongation will be

∆θ = t

∞∑

n=0

Bn(j) exp in
j

∆J

Let us consider the simple case Bm(j) = const 6= 0 and all other Bn(j) = 0
(figure 5), then

∆θ = tBm exp im
j

∆J
so Re∆θ = tBm cosm

j

∆J

and the wave longitude of the oscillation of the vertical boundary curves is
λ = ∆J

m and we can have λ≪ ∆J if m≫ 1. Then we have

∆Ω =
∆volΣ

V olC
= 2

J∆θ

JΘ
= 2

Bm

Θ
t

So when t → ∞ then ∆Ω → ∞, and we have a real threat to the CP with no
redemption in the classical limit. And this can happen even in a not chaotic
case since we can have Dφ = Γ 10.

Evolition of a cell with periodical velocity.

10In if the cases 1, 2, and 3 we would take the Ĥ as the free variable we would have
Ĵ = F−1(Ĥ), and, in the corresponding figures, H = const. would appear in the vertical axis,
and t, in the horizontal one, with the same qualitative results.
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4.- But things get really worst if, instead of one Dφ, we consider two Dφ
1

and Dφ2 and their joining zone F , as in figure 6.A. Precisely let us suppose that
in Dφ1 we have two parallel motions and only a parallelogram deformation as
in point 2, and we use the (θ, j) coordinate of Dφ

1
. But neither in F nor in Dφ

2

the just quoted coordinate j is a constant of the motion, so in Dφ2
the motion

becomes completely deformed as shown in the figure 6.A. Then if the motion
goes through several joining zones F it is clear that the initial regular cell will
become the amoeboid object of figure 6.B, where of course Ω ≫ 1. Remember
that, for the sake of simplicity, the points of all these figures 6.A and 6.B have
a volume ~ (or really ~(n+1) in the general case). Then when, as a consequence
of chaos, the volume of the complex details of the amoeboid figure becomes of
the order of ~ (or ~(n+1) in the general case) the classical limit representing the
notion the original cell becomes meaningless as a result of chaos. Moreover in
this case we could speculate that the square box becomes strongly deformed.
But this kind of reasonings is forbidden by the Indetermination Principle and
because in our treatment square boxes are considered rigid.

Another way to see that there is a real problem is to consider that the
classical motion of the center of the initial cell (where the probabilities to find
the particle are different from zero) as the real classical motion of a classical
particle. Then in the chaotic case it may happen that at time t, the cell would
get the amoeboid shape of figure 6.B. Now the center of the original cell turns
out to be outside of the amoeboid figure. Then this center is in a zone of zero
probability and cannot represent the motion of a real point-like classical particle
anymore.

So chaos and fundamental graininess are a real threat to the classical limit
of quantum mechanics and so for its interpretation.

Figure 6.A. A square cell scatterd by a frontier. Figure 6.B. A square cell
becomes an ameoboidal cell

Example: the Henon-Heiles system and the high energy problem.

In the case of Henon-Heiles classical system ([47] page 121) with Hamiltonian

H =
1

2
(p2x + p2y + x2 + y2) + x2y −

1

2
y3

We can observe that:
a.-The Hamiltonian is non integrable so in the whole phase space we will

find something like figure 6.A.
b.- For energies E = 1

12 (figure 44a of [47]) the tori are practically unbroken,
as in case 3 above. But in largeDφ and in a physical case most likely volDφ ≫ ~2

and CP could be far from having practical problems with chaos at least for short
periods of time. These Dφ become smaller for E = 1

8 (figure 44b of [47]) and
probably very tiny for E = 1

6 (figure 44c of [47]) so in such cases we may have
serious problems with chaos (i.e. those of case 4) since for real high energy we
could have volDφ ≈ ~2. We can obtain these conclusions because our method
allows us to evaluate the volDφ on the surface defined by the constant of motion
(tori) from the Poincaré sections.
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So we conclude that when the Dφ in phase space are of the order of ~ CP has
real problems. But also we see that for high energy there is not a generic well
defined ”high energy limit”. The threat of chaos to the CP is thus explained.
Moreover this example introduces the threat of chaos to the high energy limit.

7 Conclusion.

In this paper we have:
1.- Presented a new formalism to study the classical limit of quantum me-

chanics.
2.- Showed that somehow fundamental graininess alone is a threat to the CP

(section 6 case 3).
3.- Demonstrated how chaos increases this threat.
4.- Proved that these threats also compromise the high energy limit of quan-

tum mechanics
We conclude that in fact there is a threat of chaos and fundamental graininess

to the CP and this thread can be elucidated studying the domains of definition
of the constants of the motion (in the considered non-integrable system), the
corresponding broken tori at different energies and the behavior of the cells for
different Hamiltonians (as in case 1,2, and 3 of section 6).

Based in these results we could go on with the following speculation: In the
classical level, the KAM theorem was the solution of the problem of the scarcity
of chaos in the solar system, since the tori were broken but not badly broken.
In the same way we could consider that the study of the size of the Dφi

, for
different levels of energy, could also explain the behavior of chaotic quantum
systems and may be the scarcity of chaos in these systems. I. e. it may be
that, many cases, the Dφi

would be large enough to endow these systems with a
quasi-integral chaotic behavior Along these lines we will continue our research.
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