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Abstract

We discuss formulations of boundary conditions in a quantumgraph vertex and demonstrate that the so-calledS T-
form can be further reduced up to a form more effective in certain applications: In particular, in identifying the number
of independent parameters for given ranks of two connectionmatrices, or in calculating the scattering matrix when
both matrices are singular. The new form of boundary conditions, called thePQRS-form, also gives a natural scheme
to design generalized low and high pass quantum filters.
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1. Introduction

Quantum graphs are becoming increasingly relevant as mathematical models of quantum wire based single elec-
tron devices. At the heart of quantum graph is the behavior ofquantum particle at a graph vertex, in general connecting
n graph edges, which can be regarded as a natural generalization of singular point interaction in one dimension [1].
At a glance it is simple, but in reality a highly nontrivial object.

General mathematical characterizations of vertex couplings have been there for more than two decades. While at
first general theory of self-adjoint extensions was used andthe corresponding boundary conditions were worked out
for particular cases [2], in 1999 general conditions were written in the formAΨ+ BΨ′ = 0 by Kostrykin and Schrader
[3] with elegantly formulated requirements onA andB. It includes situations when one or both the matricesA, B are
singular; for those cases alternative descriptions were developed [4, 5] which employ projections to complements of
the rank of these matrices.

One may wonder why the physical contents of the vertex couplings, including the singular cases, is of interest –
recall that most existing models employ the most simple freecoupling, often called Kirchhoff. The main reason is that
it can give us alternative means to control transport through such graph structures which is the ultimate practical goal
of these investigations. No less important is that it gives theoretical tools to analyze various classes of graphs – recall,
e.g., the use of scale-invariant boundary conditions in investigation of radial tree graphs, see [6, 7] and subsequent
work of other authors.

Attempts to understand physical meaning of vertex couplingtake different routes. Some are “constructive”, trying
to approximate vertex with a prescribed coupling by a familyof graphs [8, 9, 10, 11, 12] or various “fat graphs”,
see [13, 14] and references therein. An alternative is to look into scattering properties associated with a particular
coupling an to try to classify their type. Such a study was undertaken, in particular, in the article [15].

A drawback of the conditionsAΨ + BΨ′ = 0 is that the matrix pair (A, B) determining the vertex coupling is
not unique. Our starting point, in this paper, is a particular unique version of them called theS T-form, which was
developed in [12], in which the matricesA, B exhibit a specific rank-based reduction and contain two parametric
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submatrices,S andT. Its properties were further investigated in [15]: the key point in this paper is the observation
that, atk → ∞, scattering matrix is reduced to the one obtained from scale-invariant coupling which generalizes the
one studied for a particle on a line by Fülöp and Tsutsui [16], and also by Solomyak and coauthors [6, 7]. Namely,
at this limit, the interaction is specified only byT and with the influence ofS vanishing asymptotically. At the same
time the opposite asymptotics,k→ 0, yields scattering matrix reduced to the one obtained fromwhat is in [15] called
reverse Fülöp-Tsutsui condition, being specified only byT̃ with the coupling matrixS̃ influencing only the second
term of the asymptotics.

In this work, we show that there is another useful and unique form for A andB, which we callPQRSform, that
lays a bridge betweenS T and reverseS T-forms, and demonstrate its connections to the other uniqueways to write
the coupling. In particular, we determine the number of independent parameters which characterize classes of singular
couplings with ranks ofA andB fixed. This new form turns out to be very useful in specifying Fülöp-Tsutsui and
reverse Fülöp-Tsutsui forms at small and largek limits. Also it is shown that certain “zero-limits” ofPQRS-form lead
to formulae that amount to the generalization of the classification ofn = 3 singular vertex [17], for which “Y-junction”
can function as a spectral branching filter.

2. Motivation

2.1. S T-form and its relation to the scattering matrix

Generally, for the boundary conditions
AΨ + BΨ′ = 0 , (1)

the scattering matrix is given by the formula

S(k) = −(A+ ıkB)−1(A− ıkB) (2)

and thus its computation needs to invert a matrixA+ ıkB which is of the sizen× n. However, if one of the matrices
A, B has not full rankn, the size of the matrix to be inverted can be reduced. Let us demonstrate it below.

For any value ofrB = rank(B), any admissible boundary condition for a singular vertex in quantum graph (1) can
be equivalently expressed in theS T-form

(

I (rB) T
0 0

)

Ψ′ =

(

S 0
−T∗ I (n−rB)

)

Ψ (3)

for certainS andT, where the symbolI ( j) denotes the identity matrix of sizej × j. In this formalism, the scattering
matrixS(k) acquires the form

S(k) = −I (n) + 2

















(

I (rB) + TT∗ − 1
ıkS

)−1 (

I (rB) + TT∗ − 1
ıkS

)−1
T

T∗
(

I (rB) + TT∗ − 1
ıkS

)−1
T∗

(

I (rB) + TT∗ − 1
ıkS

)−1
T

















= −I (n) + 2

(

I (rB)

T∗

) (

I (rB) + TT∗ −
1
ık

S

)−1
(

I (rB) T
)

(4)

which is easier to be calculated than (2), since one has to perform an inversion for a matrixrB × rB.

Moreover,S(k) given by (4) can be expanded for high energiesk ≫ 1: Since the matrix
(

I (m) + TT∗ − 1
ıkS

)−1

satisfies
(

I (rB) + TT∗ −
1
ık

S

)−1

=

[

(

I (rB) + TT∗
)

(

I (rB) −
(

I (rB) + TT∗
)−1 1

ık
S

)]−1

=
(

I (rB) + TT∗
)−1
+

∞
∑

j=1

(

1
ık

) j [
(

I (rB) + TT∗
)−1

S
] j (

I (rB) + TT∗
)−1

, (5)
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we have

S(k) = −I (n) + 2

(

I (rB)

T∗

)

(

I (rB) + TT∗
)−1 (

I (rB) T
)

+2

(

I (rB)

T∗

) ∞
∑

j=1

(

1
ık

) j [
(

I (rB) + TT∗
)−1

S
] j (

I (rB) + TT∗
)−1 (

I (rB) T
)

, (6)

and in particular we see that

lim
k→∞
S(k) = −I (n) + 2

















(

I (rB) + TT∗
)−1 (

I (rB) + TT∗
)−1

T

T∗
(

I (rB) + TT∗
)−1

T∗
(

I (rB) + TT∗
)−1

T

















, (7)

i.e. the scattering matrix corresponding to the vertex coupling expressed in the form (3) tends to the scattering matrix
of thescale invariantvertex coupling expressed by (3) withS = 0. The effect of matrixS in (3) thus fades away for
k→ ∞.

TheS T-form itself does not allow us to expandS(k) at the same time atk = 0 except for special cases when the
submatrixS is regular. If this expansion is required, we need to transform theS T-form into its reverse form

(

I (rA) T̃
0 0

)

Ψ =

(

S̃ 0
−T̃∗ I (n−rA)

)

Ψ′ (8)

whererA = rank(A) andS̃, T̃ are properly chosen matrices. In a similar manner to the caseof S T-form, we can find
that

S(k) = I (n) − 2

(

I (rA)

T̃∗

)

(

I (rA) + T̃T̃∗ − ıkS̃
)−1 (

I (rA) T̃
)

. (9)

It is easy to see that the reverseS T-form allows one to expandS(k) at k = 0, but generally not atk → ∞, and also
enables to find the zero-momentum limit which is given by

lim
k→0
S(k) = I (n) − 2

















(

I (rA) + T̃T̃∗
)−1 (

I (rA) + T̃T̃∗
)−1

T̃

T̃∗
(

I (rA) + T̃T̃∗
)−1

T̃∗
(

I (rA) + T̃T̃∗
)−1

T̃

















. (10)

We conclude that both theS T-form and its reversed version generally simplify the matrix inversion needed for
computation ofS(k), but neither of them makes it possible to expandS(k) for k ≫ 1 and at the same time around
k = 0, except for special cases whenS, S̃ are regular.

2.2. S T-form and number of parameters of vertex couplings
It follows from theS T-form of boundary conditions that ifrB < n, then the number of real numbers parametrizing

the family of vertex couplings in a vertex of degreen is reduced fromn2 to at mostn2 − (n− rB)2, cf. [12].
At the same time, if the boundary conditions are transformedinto the reverseS T-form (8), one can notice that

the number of parameters is bounded above by the valuen2 − (n − rA)2, since this is the total number of free real
parameters involved iñS andT̃.

There is a natural question on the actual number of free parameters if bothrB, rA are less thann. This question
cannot be anwered just with the help of theS T-form or its reverse, for that purpose we need to develop another form
of boundary conditions, which we shall consider in the next section.

3. PQRS-form

In the previous section we have come across two problems to them theS T-form gives only a partial answer.
The reason why theS T-form does not lead to the full solutions lies in the fact thatit is asymetric with respect
to rank(A), rank(B): whereas rank(B) substantially determines its structure, cf. (3), the value of rank(A) plays no
significant role. In this section we introduce a symmetrizedversion of theS T-form in which both ranks are essentially
equally important. The new form of boundary conditions, we will call it PQRS -form, will then help us to solve the
two foregoing problems, namely
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• to find the exact number of free parameters if both rank(B), rank(A) are fixed,

• to expandS(k) at bothk→ ∞ andk = 0 at the same time.

The formulation of thePQRS-form of boundary conditions follows.

Theorem 3.1. Let us consider a quantum graph vertex of a degree n.

(i) If 0 ≤ rA ≤ n, 0 ≤ rB ≤ n, S ∈ CrA+rB−n,rA+rB−n is a self-adjoint matrix and P∈ CrA+rB−n,n−rB, Q ∈ Cn−rA,n−rB,
R ∈ Cn−rA,rA+rB−n, then the equation





















I (rA+rB−n) 0 P
R I(n−rA) Q
0 0 0





















Ψ′ =





















S −S R∗ 0
0 0 0
−P∗ (RP− Q)∗ I (n−rB)





















Ψ . (11)

expresses admissible boundary conditions.

(ii) For any vertex coupling there exist numbers0 ≤ rA ≤ n, 0 ≤ rB ≤ n and a numbering of edges such that
the coupling is described by the boundary conditions(11) with the uniquely given matrices P∈ C

rA+rB−n,n−rB,
Q ∈ Cn−rA,n−rB, R∈ Cn−rA,rA+rB−n and aregularself-adjoint matrix S∈ CrA+rB−n,rA+rB−n.

(iii) Consider a quantum graph vertex of degree n with the numbering of the edges explicitly given; then there is a
permutationΠ ∈ Sn such that the boundary conditions may be written in the modified form





















I (rA+rB−n) 0 P
R I(n−rA) Q
0 0 0





















Ψ̃′ =





















S −S R∗ 0
0 0 0
−P∗ (RP− Q)∗ I (n−rB)





















Ψ̃ (12)

for

Ψ̃ =

























ψΠ(1)(0)
...

ψΠ(n)(0)

























Ψ̃′ =



























ψ′
Π(1)(0)
...

ψ′
Π(n)(0)



























, (13)

where the regular self-adjoint matrix S∈ C
m,m and the matrices P∈ C

rA+rB−n,n−rB, Q ∈ C
n−rA,n−rB, R ∈

Cn−rA,rA+rB−n depend unambiguously onΠ. This formulation of boundary conditions is in general not unique,
since there may be different admissible permutationsΠ, but one can make it unique by choosing the lexico-
graphically smallest possible permutationΠ.

Proof. We start with the claim (ii). Consider boundary conditions given in theS T-form
(

I (rB) TS T

0 0

)

Ψ′ =

(

SS T 0
−T∗S T I (n−rB)

)

Ψ (14)

whererB = rank(B) ≤ n, SS T ∈ C
m,m is a self-adjoint matrix andTS T ∈ C

m,n−m is a general matrix.
If we denoterA = rank(A), we see thatrA = rank(SS T) + n− rB, hence

rank(SS T) = rA + rB − n . (15)

We may suppose without loss of generality that the firstrA+rB−n (= rank(SS T)) rows ofSS T are linearly independent
and the remainingn − rA rows are their linear combinations. If it is not the case, it obviously suffices to apply a
simultaneous permutation on firstrB rows and columns of both matricesA andB and renumber the components ofΨ,
Ψ′ in the same manner. Now we decompose both matricesA, B in the following way:





















I (rA+rB−n) 0 T1

0 I (n−rA) T2

0 0 0





















Ψ′ =





















S11 S∗21 0
S21 S22 0
−T∗1 −T∗2 I (n−rB)





















Ψ (16)
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where
(

T1

T2

)

= TS T ,

(

S11 S∗21
S21 S22

)

= SS T (17)

and the sizes of all submatrices are determined by the blocksI (rA+rB−n), I (n−rA) andI (n−rB). Since the rows of (S21 S22)
are linear combinations of those of (S11 S∗21) (which are linearly independent), there is a unique matrix−R ∈
Cn−rA,rA+rB−n such that

(S21 S22) = −R
(

S11 S∗21
)

. (18)

In the next step we multiply the system (16) from the left by the matrix




















I (rA+rB−n) 0 0
R I(n−rA) 0
0 0 0





















(19)

to obtain




















I (rA+rB−n) 0 T1

R I(n−rA) T2 + RT1

0 0 0





















Ψ′ =





















S11 S∗21 0
0 0 0
−T∗1 −T∗2 I (n−rB)





















Ψ . (20)

We notice that (18) gives an explicit relation betweenS21 andS11 via the matrixR, namely

S21 = −RS11 . (21)

We employ this fact to eliminateS∗21 from (20), then we setT2+RT1 = Q and renameT1 asP andS11 asS. Herewith
we arrive at the sought final form of boundary conditions (11).

It follows from the construction that the matrixS ∈ CrA+rB−n,rA+rB−n is self-adjoint and regular, andP ∈ CrA+rB−n,n−rB,
Q ∈ Cn−rA,n−rB, R ∈ Cn−rA,rA+rB−n are general matrices of given sizes.

Thereby (ii) is proved. Since the claim (iii) can be obtainedimmediately from (ii) using a simultaneous permuta-
tion of elements in the vectorsΨ andΨ′, it remains to prove (i). We have to show that the matrices

A = −





















S −S R∗ 0
0 0 0
−P∗ (RP− Q)∗ I (n−rB)





















and B =





















I (rA+rB−n) 0 P
R I(n−rA) Q
0 0 0





















(22)

satisfy the condition rank(A|B) = n and thatAB∗ is self adjoint. Both can be verified in a straightforward way.

Remark 3.2. If the block with the matrixS is present in thePQRS-form (i.e. if rA + rB − n > 0), then it is supposed
to be regular. This assumption could be in fact dropped, but we would lose the uniqueness ofR then, cf. (18).

In the following sections, we shall demonstrate several applications of thePQRS-form.

4. Number of parameters of vertex couplings

The whole family of vertex couplings in a vertex of degreen may be decomposed into disjoint subfamilies
according to the pair (rank(A), rank(B)); the number of the subfamilies equals(n+1)(n+2)

2 by virtue of the condition
rank(A|B) = n. Such a decomposition is useful for a study of physical properties of quantum graph vertices: In [17], a
classification of vertex couplings based on the values rank(A), rank(B) has been provided forn = 3, and in Section 7
of this paper we extend the ideas to a generaln.

Each subfamily given by the pair (rank(A), rank(B)) has certain number of real parameters that is easily determined
with the help of thePQRS-form: If we just sum up the number of real parameters of the matricesP, Q, R, S involved
in (11), we arrive after a simple manipulation at

n2 − (n− rA)2 − (n− rB)2 . (23)

This formula shows in a very clear way how the number of parameters of the vertex coupling decreases with decreasing
ranks ofA andB.
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5. Relations to other parametrizations

The fact that Kostrykin-Schrader conditionsAΨ + BΨ′ = 0 are non-unique inspired various other ways how to
write the coupling. A commonly used one employs matrices which are functions of a given unitaryn × n matrix U,
namely

(U − I )Ψ + i(U + I )Ψ′ = 0 . (24)

In the quantum graph context it was proposed in [18, 19], however, it was known much earlier in the general theory
of boundary value problems [20].

As mentioned in the introduction, alternate conditions using projections were developed for situations when the
matrices in (1) can be singular. The paper [4] dealt with the case when one matrix is singular, general conditions of
this type allowing for singularity in both matrices were formulated in [5]. Let us recall this result:

Theorem. ([5]) For any vertex coupling in a vertex of degree n there aretwo orthogonal and mutually orthogonal
projectorsP,Q operating inCn and an invertible self-adjoint operatorΛ acting on the subspaceCCn, whereC =
1− P − Q, such that the boundary conditions can be expressed by the system of equations

PΨ = 0 , (25a)

QΨ′ = 0 , (25b)

CΨ′ = ΛCΨ . (25c)

Naturally, different unique descriptions of the coupling are mutually related. For instance, it is obvious that the
projectionsP,Q correspond to eigenspaces ofU with the eigenvalues∓1, respectively, andΛ is the part ofU in the
orthogonal complement to them. What is more relevant here isthat Theorem ([5] ) is tightly connected to thePQRS
form. Indeed, it apparently holds

• Eq. (25a) corresponds to then− rB lines
(

−P∗ (RP− Q)∗ I (n−rB)
)

Ψ = 0 of (11) ,

• Eq. (25b) corresponds to then− rA lines
(

R I(n−rA) 0
)

Ψ′ = 0 of (11) .

In other words,P andQ are projectors on the subspaces generated by the columns of




















−P
RP−Q
I (n−rB)





















and





















R∗

I (n−rA)

Q∗





















. (26)

It may not be completely obvious that the different coupling classes are characterized by the same numberof
parameters; note that the difference between (23) and the number of parameters of the matrix Λ equal to (rA+ rB−n)2

is given by

∆A,B = 2
[

rArB − (rA + rB − n)2
]

. (27)

The fact that the difference is positive unlessrA = rB = n is due the different setting of the boundary conditions. The
PQRS form works with a partly fixed basis while (24) does not, hence we need extra parameters to fix the ranges of
P andQ. We will employ the following elementary result.

Lemma 5.1. The number of real parameters required to fix an M-dimensional subspace ofCN equals2M(N − M).

Proof. Note that the expression must be symmetric w.r.t. the interchangeM ↔ N−M. To determine such a subspace
we have to fixN − M complex components of theM vectors spanning it, which gives the result.

To get the desired conclusion we apply the lemma twice: first to n− rA vectors spanning the complement to the
range ofA in Cn, and then ton − rB vectors spanning (RanB)⊥ = Ker B∗ in the remainingrA-dimensional space; it
yields

2rA(n− rA) + 2(n− rB)(rA + rB − n) = ∆A,B , (28)

hence the numbers of parameters are indeed the same.
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6. Scattering matrix and its expansions fork → 0 and k → ∞

Let us proceed to the scattering matrix expressed in terms ofthe submatricesP,Q,R,S appearing in thePQRS-
form. In order to have the formula forS(k) in more compact form, we introduce the following auxiliarymatrix
n× rA + rB − n:

X =





















I (rA+rB−n)

0
P∗





















−





















R∗

I (n−rA)

Q∗





















(

I (n−rA) + RR∗ + QQ∗
)−1

(R+ QP∗) . (29)

Then a straighforward calculation leads to the following expression forS(k):

S(k) = −I (n) + 2





















R∗

I (n−rA)

Q∗





















(

I (n−rA) + RR∗ + QQ∗
)−1 (

R I(n−rA) Q
)

+ 2X

(

X∗X −
1
ık

S

)−1

X∗ . (30)

Remark 6.1. Formula (30) can be in some sense regarded as an explicit version of the “projector” formulaS(k) =
−P + Q − (Λ − ık)−1(Λ + ık)C found in [5]. The first two projectorsP,Q have been discussed in the last section, and
the third one,C, can be shown to be the orthogonal projector on the subspace generated by the columns ofX, and thus

the term 2X
(

X∗X − 1
ıkS

)−1
X∗ from (30) is equal to−2ık(Λ − ık)−1C.

In the rest of the section we will calculate the expansions ofS(k) for high and low energies. Let us consider
boundary conditions expressed in thePQRS-form (11). We suppose that the blockS is present (i.e. rank(A) +
rank(B) − n > 0); if it is to the contrary, the vertex coupling is scale-invariant and thus independest ofk.

Similarly as theS T-form, thePQRS-form allows us to expandS(k) for high energies,

S(k) = −I (n) + 2





















R∗

I (n−rA)

Q∗





















(

I (n−rA) + RR∗+QQ∗
)−1 (

R I(n−rA) Q
)

+ 2X (X∗X)−1 X∗

+2X
∞
∑

j=1

(

1
ık

) j
[

(X∗X)−1 S
] j
· (X∗X)−1 X∗ , (31)

and hence to find the limit ofS(k) for k→ ∞,

lim
k→∞
S(k) = I (n) − 2





















−P
RP− Q
I (n−rB)





















[

I (n−rB) + P∗P+ (RP−Q)∗(RP−Q)
]−1 (

−P∗ P∗R∗−Q∗ I (n−rB)
)

(32)

(here we have used the identityP + Q + C = I from [5]).
The advantage of thePQRS-form is that one can at the same time obtain the expansion ofS(k) aroundk = 0. It

suffices to realize that (note that the matrixS is supposed to be regular, cf. Remark 3.2)
(

X∗X −
1
ık

S

)−1

=

[ ı
k

S
(

I (rA+rB−n) − ıkS−1X∗X
)

]−1
= −ık

∞
∑

j=0

(ık) j
(

S−1X∗X
) j
· S−1 ; (33)

then the sought expansion ofS(k) at k = 0 equals

S(k) = −I (n) + 2





















R∗

I (n−rA)

Q∗





















(

I (n−rA) + RR∗ + QQ∗
)−1 (

R I(n−rA) Q
)

− 2ıkX

















∞
∑

j=0

(ık) j
(

S−1X∗X
) j

















S−1X∗ . (34)

In particular we have

lim
k→0
S(k) = −I (n) + 2





















R∗

I (n−rA)

Q∗





















(

I (n−rA) + RR∗ + QQ∗
)−1 (

R I(n−rA) Q
)

. (35)
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1.0

0.5

0.0

|S(k)|
2

86420

k

 {1}{1}
 {2}{2}
 {3}{3}
 {1}{1'}
 {2}{2'}

0.4

0.2

0.0

|S(k)|
2

86420

k

 {1}{2}
 {2}{3}
 {3}{1} p=2.5,  q=1.2

r=0
s=3.0

n=5

Figure 1: Quantum scatterings off singular vertex of degreen = 5. Boundary condition is given byPQRS-form with block devision 2− 2 − 1.
The block matricesP, Q, R, S are given as constantsp, q, r , s times 1-filled matrixF, respectively. Each lines represents transmission/reflection
probability between/among blocks{1}, {2}, and{3}. This examples showsδδδ′-type connection among blocks.

7. Generalized spectral branching filter

We want to show that thePQRS-parametrization is suited to classify singular vertex in terms ofδ andδ′ connec-
tions, since it gives a convenient expression for the scattering matrix at bothk→ 0 andk→ ∞ limits. Let us assume
that all elements ofP are given byp, Q, by q, andR, by r, respectively, wherep, q andr are taken to be real numbers.
Namely, we set

P = pF(rA+rB−n,n−rB), Q = qF(n−rA,n−rB), R= rF (n−rA,rA+rB−n), (36)

whereF(m,l) is the matrix ofm rows andl columns, that is, of sizel × m, all of whose elements are equal to 1. The
Fülöp-Tsutsui limit (32) together with the identity

(

I (m) + αF(m,m)
)−1
= I (m) −

α

1+ αm
F(m,m) (37)

allows us to express the scattering amplitudes between any elements of the blockµ andν (µ, ν ∈ {1, 2, 3}), which we
denoteS{µ}{ν}(k), in the form

lim
k→∞
|S{1}{2}(k)| =

2(n− rB) |p| |q− (rA + rB − n)rp|
1+ lp |p|2 + lq |q− (rA + rB − n)rp|2

,

lim
k→∞
|S{2}{3}(k)| =

2 |q− (rA + rB − n)rp|
1+ lp |p|2 + lq |q− (rA + rB − n)rp|2

,

lim
k→∞
|S{3}{1}(k)| =

2 |p|
1+ lp |p|2 + lq |q− (rA + rB − n)rp|2

, (38)

with lp = (n− rB)(rA + rB − n) andlq = (n− rB)(n− rA).
Similarly, the scattering amplitudes between any element of the blockµ andν are identical atk → 0, which can

be read out from the inverse Fülöp-Tsutsui limit (35) as

lim
k→0
|S{1}{2}(k)| =

2 |r |
1+ lr |r |2 + lq |q|2

,

lim
k→0
|S{2}{3}(k)| =

2 |q|
1+ lr |r |2 + lq |q|2

,

lim
k→0
|S{3}{1}(k)| =

2 (n− rA) |r | |q|
1+ lr |r |2 + lq |q|2

, (39)

with lr = (n− rA)(rA + rB − n).
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Figure 2: Quantum scatterings off singular vertex of degreen = 5. Boundary condition is given byPQRS-form with block devision 2− 2 − 1.
The block matricesP, Q, R, S are given as constantsp, q, r , s times 1-filled matrixF, respectively. Eaxh lines represents transmission/reflection
probability between/among blocks{1}, {2}, and{3}. This examples showsδδ′δ′-type connection among blocks.

These limits give us obvious ways to control the pair-wise transmission probabilities between blocks of outgoing
lines by properly tuning the absolute values ofp, q andr. Specifically,δδδ′ type vertex is obtained with

r = 0, q ≈ 1, p≫ 1

−→
2|p|

1+ lq + lp |p|2
∼ |S{3}{1}(∞)| ∼ |S{1}{2}(∞)| ≫ |S{2}{3}(∞)|,

0 = |S{3}{1}(0)| = |S{1}{2}(0)| ≪ |S{2}{3}(0)|, (40)

with the moderation that|p| is not too large to keepS{1}{2} = S{3}{1} in sizable amount. The quantum particle entered
from the lines in block{3} is directed toward the lines in block{1} whenk is small, and is directed toward the lines in
block {2} whenk is large, enabling the use of this connection condition as a spectral branching filter.

Similarly, δδ′δ′ type vertex is obtained, for example, with

p = 0, q ≈ 1, r ≫ 1

−→ 0 = |S{1}{2}(∞)| = |S{3}{1}(∞)| ≪ |S{2}{3}(∞)|,
2|r |

1+ lq + lr |r |2
∼ |S{1}{2}(0)| ∼ |S{3}{1}(0)| ≫ |S{2}{3}(0)|, (41)

with the moderation that|r | is not too large to keepS{1}{2} = S{3}{1} in discernible size. In this setting, the quantum
particle entered from the lines in block{3} is directed toward the lines in block{2} whenk is small, and is directed
toward the lines in block{1} whenk is large. We can use this connection condition again as a spectral branching filter.
These amount to be the generalization ofδδδ′ andδδ′δ′ type connection forn = 3 vertex, namely the “Y-junction”.

These limits are illustrated in the numerical examples withn = 5 singular vertex in which lines are divided into
three blocks of size two, two and one with the choice ofrA = 3 andrB = 4, which are shown in Figures 1 and 2.
In Figure 1, we display the transmission and reflection probabilities between lines in various blocks with the choice
p = 2.5, q = 1.2, r = 0 ands = 3.0, which leads toδδδ′-type branching. In Figure 2, we display the results with the
choicep = 0, q = 1.2, r = 2.1 ands= 0.2, which leads toδδ′δ′-type branching.

8. Prospects

The results outlined in this article can serve as stepping stones for various further works and developments. It
is possible that there are choices ofP, Q andR other than (36) that lead to simple expressions forS(k), that could
help us sorting out physical contents of connection conditions further. Up to now, the multi-vertex graphs has been
considered only with “free” connections mostly, or at best,with δ connections. Examining the system with more than
two singular vertices of nontrivial characteristics should be interesting. In this work, the physical analysis is directed
to the scattering properties. Examination of the bound state spectra, which is given as the purely imaginary poles of
theS-matrix, should be high in the list of next agenda. Many of thesingular vertex parameters are complex numbers.
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The imaginary part is related to the “magnetic” components of the vertex coupling. In light of the recent finding of
exotic quantum holonomy in magnetic point interaction on a line [21], the quantum graph with magnetic vertices may
be a rich play ground for phenomena related to the quantum holonomy.
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