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Abstract—Considering the interaction through mutual Interestingly, such a linear combination of actions in
interference of the different radio devices, the channel the CS problem in MAC, is just the multiple access
selection (CS) problem in decentralized parallel multiple interference (MAI) seen at the receiver. Thus, the MAI
access channels can be modeled by strategic-form gamesphserved over each channel at the receiver can be fed
Here, we show that the CS problem is a potential game pacl 15 the transmitters through a common signaling

(PG) and thus the fictitious play (FP) converges to a Nash h : =2
equilibrium (NE) either in pure or mixed strategies. Using message. Using this message, it is shown that the FP can

a 2—player 2—channel game, it is shown that convergence P€ implemented by relying on the fact that transmitters
in mixed strategies might lead to cycles of action profiles are able to obtain an estimate of their own channels and

which lead to individual spectral efficiencies (SE) which to calculate their utilities based on the above mentioned
are worse than the SE at the worst NE in mixed and pure signaling message.
strategies. Finally, exploiting the fact that the CS problen  This paper is organized as follows. In Sdd 1lI, we
is a PG and an aggregation game, we present a methodformalize the CS problem in parallel MAC and formulate
to implement FP with local information and minimum  he corresponding strategic-form game. In Sed. Ill, we
feedback. present recent results on the existence and multiplicity of
the NE in the CS game. In Séc.]IV, we introduce the FP
originally introduced in[[6] using our notation. Therein,
In recent literature in wireless communications (seeis shown that the CS game possesses the fictitious play
[1], [2], [B]), it has been shown that channel selectioproperty and thus, FP converges to NE in the CS game.
(CS) problems in decentralized parallel multiple access Sec.[V, we study the convergence of the FP i2-a
channels (MAC), where each transmitter is interested jtayer2-channel game and describe a two-action-profile
its own spectral efficiency, can be modeled by strategicycle. In Sed._MI, we exploit the fact that the CS problem
form games. More importantly, it has been shown in [2§ an aggregation game to provide a practical way of
that CS problems in MAC are finite potential gamesnplementing FP with milder information assumptions
(PG) [4]. In general, finite potential games belong tthan its original version. Finally, the paper is concluded
the class of games for which the existence of at ledst Sec[VIl.
one Nash equilibrium (NE) is ensured [4]. Moreover, it
has been shown that the iterative best-response dynamics Il. MODELS
(BRD) and fictitious play (FP) both converge to Nash,. System Model

equilibrium in potential gamedJ5]. The BRD in CS The channel selection (CS) problem in the parallel-

problems has been studied inl [3]. In this paper, -
exclusively focus on the case of FP in its original versio '?‘S(% ;221’5’92 d{(iscnb%j}aosf I?;Ir?;vrﬁfttérsssggnrﬁngﬁiti C?,fre

[6]. Here, it is shown that when several NE exists in t trough a common s&t — {1,...,S} of orthogonal

CS game, which is often the case at high signal-to-noi . . .
ratio, FP might converge to (strictly) mixed strategie annels with a unique receiver. Chansek S has

and cycles of action profiles might be observed. This fa%tbandw'dth.Ost Hertz andB = Egles Hertz.
rises the main question to be answered by this paper5@ach transmitter communicates with the receiver using
the empirical measure of the frequency of each playefsUnique channel. Limiting transmitters to use a unique
actions a good metric to evaluate convergence? Here, gi@nnel in decentralized networks is optimal for the
use a2—player2—action game to show that the actionglobal spectral efficiency of the network (see [8] [2],
or mixed sirategies corresponding to an NE are neddh)- Let ¢ € IN be a discrete time index. Denote by
played even though a convergence of the empirical frx(t) = (Pr1(?),- ... pr,s(t)) the PA vector of trans-
quencies of each player is observed. Surprinsingly, cycldéter k£ € K at time ¢ > 0. Here, p;, ((¢) represents
of action profiles might lead players to achieve expect&€ transmit power of transmittér € K over channel
utilities which are worse than the worst expected utilities € S at time ¢ > 0. The set of available PA vectors
at NE in pure and mixed strategies. for transmitterk are (px,maxen),, s Wherepy max is the
Finally, we also show that the CS problem is an adgpaximum transmit power of transmittérande,, is the_
gregation game[[7]. Here, the utility achieved by &-th vector of the set of unitary vectors of the canonical
given player does not depend directly on the actions bése of RS. Here,Vs € S, e; = (es1,...,€55),

all the players but on the actions of the given playend vn € S\ {s}, es, = 0 andes;, = 1. For all
and a linear combination of all the players’ actiongk,s) € K xS, g s represents the channel gain between
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transmitterk and the receiver through channel The other players. Under these conditions, no player would
received signal at the receiver at timedenoted by the be interested on changing its strategy since it would
vectory(t) = (y1(t),. .. ,ys(t))T, whereVs € S, is represent a decrement of its own utility. Strategy profiles
satisfying this condition are known as Nash Equilibrium.
In general, an NE is defined as follows:
ng sTh,s(t) + ws. 1) Definition 1 (Nash Equilibrium): A mixed-strategy
profile 7* is an NE if, for all playersc € £ andVs € S

Here, the symbols transmitted by transmitteat time¢

are denoted byey,(t) = (zx1(t), ..., zks(t)". For all (T, Wp) 2 (€ M), ©)

(k,s) € K x S at each timef, xk S(1t) is a realization

of a Gaussian random variablé with zero mean amdere,iy : A (Ar) x ... x A(Ag) — R

varlflncepk,s(t), ie., IE}[w)ks( )mgsét) | = vk sI( )dg?e

vectorw = (wy,...,wg) is a S-dimensional additive T — )

white Gauss<|an noise process with zero mean and co- e () = En [uk (pk’p_k)] ©

variance matr|>d1ag o ..., Hence, assuming that

the receiver implements smgf% user decoding (SUD), the 1. EXISTING RESULTS

spectral efficiency of transmittet € K can be written . . . I

as In this section, we introduce some definitions and

existing results required in later sections. First, we in-

wn(p(1)=3, s B log, (1+ng+zj22f{(2}{]'§fs<nws>‘ (2) troduce the concept of potential games (PG). Second,

we provide elements on the existence and multiplicity
At each timet, the aim of each transmitter is to choosef the NE. We define a PG as follows:

the channel which maximizes its own spectral efficiency Definition 2 (Exact Potential Game): Any

regardless of the spectral efficiency of its correspondiggme in strategic form defined by thé-tuple

counterparts. (K, (Ag)perc » (ue)pexc) 1S an exact potential game

. if there exists a functio (p) for all p € A such that

B. Game Theoretic Model for all playersk € K and fg)r)all p), € Ay, it holds that
Assume that the strategic-form game

G = (K, {Ar}pexc » {ur}rex) models the CS problem

in parallel-MAC. Here, the seC of players is the set of *

transmitters, and the set of action profilesvs, € I,

k(Pg> P_1) — uk(Ph i) = ¢(Pr P_1) — A(D), P_i)-

In [2], [B], it is proven that the CS problem in parallel-
A = {Prmax€1,-- -, Pk max €S} - (3) MAC is a finite PG. Hence, the existence of at least one
NE is guaranteed [4]. Moreover, it is proven In [2], that
We denote byp( ") the PA VECIOMp max €n, V(k,n) € several NE might simultaneously exist and can be easily
K xS. An actlon profile ofg is a super vectop = identified. We summarize those results in the following

S c A, Where_A:_A X ... x Awr. The proposition.
l(JI'[)Ihty fuﬁcﬁ?on up : A — R measlureS the beKneflt tha Proposmon 3 (The Channel Selection game is a PG)
playerk obtains when it plays a specific action given th% channel  selection  game § =
actions adopted by all the other players. Here, the utilifyC: 1Ak rex - {urtrex) i @ potential game Wlth

function uy, is defined in[(R), for allk € K. otential functions : A — R

We assume the gam@ is dynamic in the sense that

it is repeatedly played a large number of times. We B K

denote byp.(t) € A, the PA chosen by player at = —logy | 0 + sOk,s 7
time ¢. For the ease of notation, we denaig(t) = *p) SEZS B % ;pk’ 9 ()

uy, (pr(t), p_1(t)). At each timet, each playei: € K
chooses its actiomy(t) following a probability distri- penote byZ € IN the number of pure NE. Hence,<

bution 7, = (wk - T p<5)) € A(Ag), where L < SE-L
V(k,s) € K xS, T p represents the probability that
player k uses channed i.e., for a given timeg > 0, IV. CHANNEL SELECTION GAMES AND FICTITIOUS
(s) PLAY
kpm—Pl‘(pk() ) 4)

In [3], it has been shown that the iterative best-
In this paper, we refer tar, as the mixed strategyresponse dynamics (BRD) converges to pure NE in
of player £ € K. Our interest is to find the set ofthe CS in paralle-MAC games. Conversely, the simul-
strategy profilesw, € A (Ag), Yk € K, such that taneous BRD does not necessarily converge in pure
once played, every player obtains its maximum benstrategies. Here, we study another dynamic known as
fit (spectral efficiency) given the strategies of all théctitious play (FP).



A. Description of Fictitious Play Many classes of games have been proved to have the FPP

The fictitious plav can be described as follows. Adsee [5] and references therein). In particular, potential
sume that transenit){ers have complete and perfect §ames have the FPPI [5] and so does the CS game. Hence,
formation, i.e., they know the structure of the gagie We Write the following proposition o
and observe at each timethe PA vectors taken by . Proposition 4 (Convergence of FP in CS): The ficti-
all players. Each transmittet € K assumes that all tious play converges empirically to the set of Nash
its counterparts play independent and stationary (tim@quilibrium in the CS game in paralle-MAC.
invariant) mixed strategies;, V5 € K \ {k}. Under  In the following sections, we study the implications of
these conditions, playek is able to build an empirical convergence of the FP in the CS game and the required
probability distribution over each set;, Vj € K\ {k}. information assumptions.

Let frp (t) = 1370 14, (9=p,} e the (empirical) _ S o
probability with which plé{lye(r)g' c %C \ {k} observe that C. Practical Limitations of Fictitious Play
player k plays actionp, € A;. Hence,vk € K and  ag presented in its original versian [6], the FP requires
Vpy, € Ay, the following recursive expression holds, complete and perfect information. This is the same as
_ e B stating that each transmitter, at each titne 0, is aware
e (EHD)=Frm D4 755 (L g} ~Fem ) (8) of the number of active transmitters in the network, their
n . _ . . set of actions, their utility function and moreover, it is
Let fip_ (t) = Hfﬂvpj (t) be the probability with able to observe the action played by each one of all
. J7k . , the other transmitters. Clearly, this assumption is not
which playerk observes the action profile_,, € A_x practically appealing since it would require a massive
attimet > 0, forall & € K. Let the|A_,| —dimensional sjgnaling between transmitters, which reduces the spec-
vector f,(t) = (ﬁwi‘ € A(A_y) be tral efficiency of the whole network. Additionally, as we
o Tk Vp €A shall see, in the high SNR regime, the CS problem has
the empirical probability distribution over the sét . the same structure of a potential coordination game [9].
observed by playek. In the following, we refer to the |n this kind of games, the set of probability distributions
vector f,(¢) as thebeliefsof playerk over the strategies ¢, vk e K, converges but not necessarily the actions,
of all its corresponding counterparts. Hence, based pa., fictitious play might converge to a strictly mixed
its own beliefs f.(¢), each playert chooses its action strategy profile. When FP converges to a mixed strategy,
at timet, p,(t) = pl(jk(t)), wheren, () satisfies that: it is possible that players cycle around a subset of action
profiles, which might lead to an expected utility which
nk(t) € argmax ax (es, f1(1)) , (9) is worse that the worst expected utility at the NE in
e . _ pure and mixed strategies. In the following section, we
where, for allk € K, uy, is defined in[(6). Fronf{8), it can present a simple study case where it is easy to evidence
be implied that playing FP, players become myopic, i.&his cycling effect.
they build beliefs on the strategies being used by all the
other players, and at each time- 0, players choose the \, styupy CASE: A 2 x 2 CHANNEL SELECTION

action that maximizes the instantaneous expected utility. GAME
Hence, a natural question arises: are players always able
to build their respective beliefs?, i.e., does the learningConsider the game& = (K, {Ax},cic - {wrtrerx)

process[(B) converges to a specific strategy profile? W&h K = 2 and S = 2. Assume also thatk € K
tackle these questions in the following subsection. p, = — 5~ andVs € S, 02 = 0% and B, = %_
e Denote bysnr=rmgx the average signal to noise ratio
B. Convergence of the Fictitious Play ] ) (SNR) of each active communication. Note that since
The gameG = (K, {Ai}rex > {ur}iex) i said 10 G is a PG (and more importantly a Best-Response PG
have the fictitious play property (FPP), if the following10]), the set of NE ofj is equivalent to the set of NE of

holds, for allk € K, and for allp,, € Ay, the gameg’ = (IC, {Ai}ex > {0 re)- In the_gameg’, _
lim fp (t) = f7 (10) all players have the same interest (same utility function)
t—o0 " Pk kipr and obtain the payoffs shown in Fig. 1.
and, f; = ¥ V¥p_, € A, is a time-
fk7p7k ]EI]C;I;UC} fjmj o ’ an\sz pzz(pmaxvo) p2:(07pma><)
invariant probability measure over the sdt . When | p,=(pu..0) | 22" f'“a"(“;””z”) %1“1’”(”22”’“""”)
condition [I0) holds for all players, it is said that the 3 loea(e?) _t3 oz (o pmos)
FP converges empirically to the probability distributionp, =(0,p....) 3 1082 (7 Frmaxsia) 3 tosa(o7 +rmax (912 +022))
_ ! +3 1085 (0% +pmaxg21) +3 logz(0?)
fi= (fl:p ) , for all &k € K. Now, from Def.
kNP €A ) . Fig. 1 Potential function ¢ of the game G =
[, the mixed strategy profiler = (7y,...,7g), with (K {Ar}por - {un}por), With K = 2 and S = 2. Player 1
T = f; (]),,,,7]"; (S)), for all £ € KC, is an NE chooses rows and pfayérchooses columns.
V4 Py,

strategy profile.



1) Nash Equilibria: We identify the NE in pure JuL
strategies of the gam@ (and thusQ) in the following
proposition:

Proposition 5 (Nash Equilibria in pure strategies):
Let the PA vectop* = (pj,p;) € A be one NE in P(ga1)
the gameg. Then, depending on the channel gains o
{gkyS}V(k,s)GICXS’ the NEp* can be written as follows : )

o Equilibrium 1: wheng € H4, with

12
B < 1 svmgn),

then’pT: (pmaX70) andp; = ((_)7pmax)-
o Equilibrium 2: Wheng € H,, with

p'l = (pma)yf’o.)
Py = (p'm'z‘i'xvo)

1/)(9122)
1
D) sew [

0 S 921
Ho={geR}: ZL>1+8NRg: and <k 21
B 5 1 ysNRgn ) (12) =
922 = nr Fig. 2. Nash equilibrium action profiles as a function of tharmnel
then,p’{ = (pmaX70) and ps = (pmaX,O). realization vectorg = (gi1, g12, g21, ge2) for the two-player-two-

il h - channel gamej. Here, the function) : R+ — Ry is defined as
« Equilibrium 3: wheng = (g11, 912, 921, 922) € A3, follows: 1) — 1 +sxk. Note that it has been arbitrarily assumed
W|th thatgzl > g11 andg12 > g22.

— 4. g 1
H3—{g€R+ Lgmand

i (13)
921 o 1
922 > T+SNRgis 2) Convergence of the FPIn the case the NE is
then, pi = (0, pmax) and p3 = (0, pmax)- unique in the CS game, the FP converges to the
« Equilibrium 4: wheng € H4, with uniqgue NE in pure strategies (Prop. 4). Nonetheless,

_ 4. gu when several NE simultaneously exist, the FP converges
Hi={g R : g12 st +SINR9” and (14) tothe NE either in pure strategies or mixed strategies. In
22 svEgn b the following, we show a case of convergence in mixed

. . strategies using the FP.

then, pi = (0, pmax) @nd p3 = (Pmax, 0). Assume that both players starts the game with the
The proof of Prop[}5 follows immediately from Défl 1, 21"\ oliefs Filte) = (f;p00(t0): f;po (o)), such
and Fig[d. The setd(y, ..., H4 are plotted in Figl2, in I J,P 0 FpB 0N 2
order to provide an insight on the different types of equibat f; , (to) = 3 and fje(to) = 17¢, With
librium. Note that regardless of the channel realizagon (0 < ¢; < 1, for all j € K. Hence, based on these beliefs,
there always exists an NE. Moreover, for certain channghh players coincide choosing the actipft) at ¢ = .
realizations, whery € {1 N4, bothp' = (p). p®))  Following (®), it yields,vk € K, andvn € {1,..., o0},
and pit = (p®,pM) with p) = (0,pmax) and

_ _ 1 ([ népt(n—1)
P® = (pmax, 0), are both NE. In fact, it is shown ifl][3] Jipt (fo2n=1) 2t §<"15?5*"§
that at high SNR, it is highly probable thate H; NH, frp@ (tot2n=1) = o5 (e (15)
and two NE in pure strategies are always observed. fopm(tot2n) = L <"+11+>§§+"
Now, following the result in[[11], it can be implied fopo(totn) = L (Lobin

that when there exist two NE in pure strategies, there
exists a third NE in mixed strategies. When, there exists aHere, as long as the following condition holds € K
unique NE in pure strategies, the NE in mixed strategiead a givenm € {1,...,00},

coincides with the NE in pure strategies. We summarize

this observation in the following proposition. ner)1 (e e0) o(pD0®) n(ginie (1)
Proposition 6 (NE in Mixed Strategies): Lef be a (e t)—ex = o (P p@) =0 (pM,pM) Sl )¢,

probability measure over the sety, Vi € K. Then, then, the following outcomes are observed,

w* = (7},..., 7} ) is an NE in mixed strategies of the

gameG = (K, {Ax}rexc > {uk}rerc), if @and only if, the p2n—1)=p" and p.(2n) =p?.

channel realizations{gk,s}v( s satisfy thatg €

2y O q k)€ This implies that transmitters will cycle around the
11714 and, outcomes(p!), pV) and (p'?, p@). Note that if
= #(2,1) = (2,2) T = $(1,2) =6 (1,1)
, 1,2 2,1)—¢(1,1)—¢(2,2) s 1,2 2,1)—¢(1,1)—$(2,2)°
e v ey B(p? . pM)—¢(p® p®)=¢(pV p@)—¢(p,p»),  (17)

T2 1= 510 D61, D) —0(2.2) 2,2 3T Fe(2 D—o(1.1)—6(2,2)

Note that under the assumptigne #; N #4, it holds then, the beliefs of each player convergenig, = 3
thatV(k, s) € K x S, > 0, and thus, the gamé’ ( for all (k,s) € K x S and players perpetually iterate

5

and sogG) possesses two NE in pure strategies and ohstween actionﬁp(l),p(l)) and (p(z),p@))- Here, even

NE in mixed strategies. thoughm, = (3, 3), for all k € K, is an NE in mixed



strategies according to Projpl 6, the achieved expectgdm [19), it holds thaty(k,s) € K x S,

utility can be worse than the worst expected utility at

NE in pure and mixed strategies. This can be explainedg,  (t) = Z Fep. (t) vk (P;(:)ar (p_k))
by the fact that the pure strategies corresponding to o A e

the NE, i.e.,pf = (p(l),p(z)) and pit = (p(z),p(l) : e

are never played. Hence, if the channel realizations are = Z Jrp_, (1) ug (p,(:),p_k)
those such that sharing the same channel is always worse

R K p_LEA i
than using orthogonal channels, i.e.(p»,p)) >>
¢ (p?, p<2>2 and¢ (pV, p?) >> ¢ (p, p1)), then, = (es,fk,p,k(t))- (21)
a worse utility than the worst NE either in pure or mixed
strategies is observed. Hence, the myopic response I (9)s(t) = plgnk(t))’
Interestingly, if the differences ¢ (p®,p™) — where,

sufficiently close, then, a large number in (18)

is required for the FP to quit the cycle mentionedndVv(k,s) € K x S at timet > 0, the calculation of
above. This implies that a long time is required),  (¢) requires only the knowledge of the channel real-
for players to play the four actions profiles angzations over the respective transmitter and the capbilit

thus, obtain the expected utility correspondingf calculating the utility function based on the message
to the NE in mixed strategies. Here, as long ag(t).

¢(p<2),p<1))_¢(p<2>,p<2>)¢¢(p<1)7p<2))_¢(p<1),p<1>), there
always exists amg < oo, such thatvn > ng, condition VII. CONCLUSIONS
(L7) does not hold, and thus, the cycling effect is not | this paper, we have shown that fictitious play (FP)
longer observed. is a feasible and simple algorithm to tackle the prob-
VI. ON THE INFORMATION ASSUMPTIONS lem channel selection in decentralized multiple access
In this section, we assume that transmitters do Fr\tworks. It has been shown that FP always converges

observe the actions taken by all the other transmitte Nash equilibrium (NdE) in the CShgame egher n
All the knowledge about the other transmitters’ actio re strategies or mixed strategies. Whenever there exist
S : veral NE in the CS game, the FP might converge to
is given by a common message sent by the receiver . - . -

all the transmitters. Such a message) ¢ RS consists ed strategies and cycles of action profiles might be

i binati fth i fallt it observed. Using @ x 2 game, it is shown that such
on a finear combination of the actions ot all tranSMitteray cles might lead to a performance which is worse than
i.e.,v(t) = (11(t),...,vs(t)), wherevVs € S,

the worst performance achieved at NE in pure and mixed

2 , , strategies for both players. Finally, we show that the CS
Vs(t) = o5 + ij,s(t)gj,s, problem has the structure of an aggregation game, which
jex facilitates the implementation of FP requiring only local

which is simply the multiple access interference at trigformation and minimum feedback.
receiver over channel at time¢.
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