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Abstract

In this paper, by using the atomic decomposition and molecular
characterization of the homogeneous and non-homogeneous weighted
Herz-type Hardy spaces HKg"p(wl,wz)(HKg"p(wl,wg)), we obtain
some weighted boundedness properties of the Bochner-Riesz opera-
tor and the maximal Bochner-Riesz operator on these spaces for a =
n(l/p—1/q),0<p<landl<gq<oo.
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1. Introduction
The Bochner-Riesz operators of order § > 0 in R™ are defined initially
for Schwartz functions in terms of Fourier transforms by

2.6 .
D) fe

(Ths) () = (
where f denotes the Fourier transform of f. The associated maximal Bochner-
Riesz operator is defined by

T) f(x) = sup [T f ()].
R>0

These operators were first introduced by Bochner [3] in connection with sum-
mation of multiple Fourier series and played an important role in harmonic
analysis. As for their H? boundedness, Sj6lin [21] and Stein, Taibleson and
Weiss [22] proved the following theorem(see also [10, page 121]).

*E-mail address: wanghua@pku.edu.cn.


http://arxiv.org/abs/1009.6142v1

Theorem I. Suppose that 0 < p <1 and § > n/p— (n+1)/2. Then there
exists a constant C independent of f and R such that

TPl < C|f | 5ro-
In [22], the authors also showed

Theorem II. Suppose that 0 < p <1 and § =n/p— (n+1)/2. Then there
exists a constant C' independent of f such that

sup)\p‘{a: ER™: TOf(x) > )\H < C|f -
A>0

In 1995, Sato [20] considered the weighted case and obtained the follow-
ing weighted weak type estimate for the maximal operator T2.

Theorem III. Let w € Aj(Muckenhoupt weight class), 0 < p < 1 and
d=n/p—(n+1)/2. Then there exists a constant C' independent of f such
that
iup)\pw({:r cR": Tff(x) > )\}) < C’||f||§’{p.
>0 v
In 2006, Lee [9] considered values of 0 greater than the critical index
n/p — (n+1)/2 and proved the following weighted strong type estimate.

Theorem IV. Letw € A1, 0<p<1andd >n/p—(n+1)/2. Then there
exists a constant C' independent of f such that

IT2(H)llzg, < Ol e,

Using the above HY L% boundedness of the maximal operator T, f , Lee
also obtained the HY, boundedness of the Bochner-Riesz operator.

Theorem V. Let w € Ai with critical index 1, for the reverse Holder
condition, 0 < p <1 and 6 > max{n/p— (n+1)/2,[n/plrw/(rv—1)— (n+
1)/2}. Then there exists a constant C' independent of f and R such that

TRz, < ClF g -

The main purpose of this paper is to discuss some corresponding esti-
mates of Bochner-Riesz operators on the homogeneous and non-homogeneous
weighted Herz-type Hardy spaces H Ko™ (w1, ws) (HKSP (w1, ws)). Our main
results are stated as follows.



Theorem 1. Let wi,ws € A; and 1 < g < oc0. If0 < p <1, a =
n(l/p—1/q), § > n/p—(n+1)/2, then there exists a constant C' independent
of f such that

”T*é(f)”K(?’p(whwz) S CHfHHK(?’p(wl,wz)

HTf(f)HKg’p(wl,wz) < OHfHHK(?'p(wl,wz)’

where Kg P (w1, wy) (K$P (w1, ws)) denotes the homogeneous(non-homogeneo-
us)weighted Herz space.

Theorem 2. Let wi,wy € A and 1 < ¢ < oc0. If0 < p <1, a =
n(1/p—1/q), 6 =n/p—(n+1)/2, then there exists a constant C independent
of f such that

||T>§(f)||WKg’p(w17wQ) é O||f||HK(?'p(w1’w2)

HTf(f)HWKf;"p(wl,wg) S CHfHHK?’p(wl,wgﬁ

where W K$P (w1, wo) (W K$P (wy,ws)) denotes the homogeneous(non-homo-
geneous)weak weighted Herz space.

Theorem 3. Letw € Aj and 1 < g<oo. If0<p<1,a=n(l/p—1/q),
0 >max{n/p—(n+1)/2,[n/plry/(re —1) — (n+1)/2}, then there exists a
constant C independent of f and R such that

TR e 2 iy < CNFrices o)

||T}%(f)”HKg"p(w,w) < CHfHHKg’p(w,w)v

where ry, denotes the critical index of w for the reverse Hélder condition.

2. Notations and definitions

First, let’s recall some standard definitions and notations. The classi-
cal A, weight theory was first introduced by Muckenhoupt in the study of
weighted LP boundedness of Hardy-Littlewood maximal functions in [19]. A
weight w is a locally integrable function on R™ which takes values in (0, 00)
almost everywhere. B = B(xzg,r) denotes the ball with the center zy and
radius r. We say that w € 4,,1 < p < o0, if

1 1 1 p—1
(@ /Bw(a:) dx) <®/Bw($) = dm) < C for every ball B CR",



where C is a positive constant which is independent of B.
For the case p =1, w € Ay, if

1
— / w(z)dr < Cessinfw(z) for every ball B C R".
|B| B zeB
A weight function w is said to belong to the reverse Holder class RH,. if
there exist two constants » > 1 and C' > 0 such that the following reverse
Hoélder inequality holds

1/r
<é/3w(x)r dm) <C <‘_;’/Bw(x) dg;) for every ball B C R".

It is well known that if w € A, with 1 < p < oo, thenw € A, for allr > p,
and w € A, forsome 1 < g < p. Ifw € A, with 1 < p < oo, then there exists
r > 1 such that w € RH,. It follows from Hoélder’s inequality that w € RH,
implies w € RH, for all 1 < s < r. Moreover, if w € RH,, r > 1, then we
have w € RH, . for some £ > 0. We thus write r, =sup{r > 1:w € RH,}
to denote the critical index of w for the reverse Holder condition.

Given a ball B and A > 0, AB denotes the ball with the same center
as B whose radius is A times that of B. For a given weight function w, we
denote the Lebesgue measure of B by |B| and the weighted measure of B
by w(B), where w(B) = [ w(x)dz.

We give the following results that we will use in the sequel.

Lemma A ([5]). Let w € Ay, p > 1. Then, for any ball B, there exists an
absolute constant C' such that

w(2B) < Cw(B).
In general, for any A > 1, we have
w(AB) < CA"Pw(B),
where C' does not depend on B nor on .

Lemma B ([5,6]). Let w € A,NRH,, p>1 and r > 1. Then there exist
constants Cq, Co > 0 such that

Q
T
|
N———

=
|

T

g
-

for any measurable subset E of a ball B.



Lemma C ([5]). Let w € A; and ¢ > 1. Then, for all r > 0, there exists a
constant C independent of r such that

/ w(z) dz < Cr~™w(B(0,r)).
|

x|>r ‘x’nq

Next we shall give the definitions of the weighted Herz space, weak
weighted Herz space and weighted Herz-type Hardy space. In 1964, Beurling
[2] first introduced some fundamental form of Herz spaces to study convo-
lution algebras. Later Herz [7] gave versions of the spaces defined below in
a slightly different setting. Since then, the theory of Herz spaces has been
significantly developed, and these spaces have turned out to be quite use-
ful in harmonic analysis. For instance, they were used by Baernstein and
Sawyer [1] to characterize the multipliers on the classical Hardy spaces, and
used by Lu and Yang [16] in the study of partial differential equations.

On the other hand, a theory of Hardy spaces associated with Herz spaces
has been developed in [4,14]. These new Hardy spaces can be regarded as
the local version at the origin of the classical Hardy spaces HP(R™) and
are good substitutes for HP(R™) when we study the boundedness of non-
translation invariant operators(see [15]). For the weighted case, in 1995,
Lu and Yang introduced the following weighted Herz-type Hardy spaces
HKGP(wy,wo) (HEKSP(wy,ws)) and established their atomic decomposi-
tions. In 2006, Lee gave the molecular characterizations of these spaces, he
also obtained the boundedness of the Hilbert transform and the Riesz trans-
forms on HKg(l/p_l/q)’p(w,w) and HK;(l/p_l/q)’p(w,w) for 0 < p < 1. For
the results mentioned above, we refer the readers to the book [18] and the
papers [8,12,13,17] for further details.

Let By = {x € R" : |z| < 2¥} and C}, = By\By_; for k € Z. Denote
Xk = Xe, for k € Z, x, = xx if K € N and g = Xp,s Where Xc, 18
the characteristic function of C%. Given a weight function w on R", for
1 < p < oo, we denote by L%, (R™) the space of all functions satisfying

1/p
fligger = ([ 1f@Puods) <o

Definition 1. Let a € R, 0 < p,q < o0 and wy, wy be two weight functions
on R™.

(i) The homogeneous weighted Herz space Kf;"p(wl,wg) is defined by

KgP(wy,we) = {f € L (R™\{0},w2) : [|fll or(upy ) < 0



where

1/p
1 eem (o 0) = <Z(w1(3k))ap/n”f>(k“1£g02> :

keZ

(it) The non-homogeneous weighted Herz space Kq'*(wy,ws) is defined by

KgP(wi,we) = {f € L, (R" w3) : |15 un ) < 0},

where
o0

1/p
11 ) = <Z<w1<Bk>>ap/"uf>zkuigu2) .

k=0

_ For k€ Zand A > 0, we set Ep(\, f) = [{z € Cy : |f(z)] > A}|. Let
Er(\ f) = Ex(\, f) for k € N and Ey(A, f) = [{z € B(0,1) : |f(z)] > A}

Definition 2. Let a € R, 0 < p,q < o0 and wy, wy be two weight functions
on R™.

(1) A measurable function f(x) on R™ is said to belong to the homogeneous
weak weighted Herz spaces WKg"p(wl, wa) if

1/p
HfHWKfj"p(wl,wg) = il;}g)\ <Z wl(Bk)ap/an(Ek()\, f))p/Q) .

kEZ

(73) A measurable function f(x) onR™ is said to belong to the non-homogeneo-
us weak weighted Herz spaces W Kg'F (wy,ws) if

e’} 1/17
1 lw ke? () = ililg)\ <Z wi (By) /™ wa (Eg (A, f))p/q) :
k=0

Let . (R™) be the class of Schwartz functions and let .#”/(R") be its dual
space. For f € /(R"), the grand maximal function of f is defined by

G(f)(z) = sup sup |or* f(y)l,

pedN ly—z|<t

where N > n+1, oy = {p € S(R") : sup|a‘,w|§N\anﬁcp(ﬂf)’ < 1} and
pi(x) = 17"p(2/t).

Definition 3. Let 0 < a <00, 0 < p < oo, 1< g< oo andwi, wy be two
weight functions on R™.



(i) The homogeneous weighted Herz-type Hardy space HKg"p(wl,wg) asso-
ciated with the space Kg'*(wy,ws) is defined by

HEZ (wy,wy) = {f € S/ (R") : G(f) € KgP(wy,wn)}

and we define ||f||HK§’p(w1,w2) = ||G(f)”1'<§”’(w1,w2)-
(i1) The non-homogeneous weighted Herz-type Hardy space HKg"P(wy,ws)
associated with the space Kg°f(wy,ws) is defined by

HE?(wy,wg) = {f € #'(R") : G(f) € KgP(wi,wn)}

and we deﬁne ”f”HKg’p(wl,wg) = ”G(f)HKg’p(wl,U)Q)'

3. The atomic decomposition and molecular characterization

In this article, we will use atomic and molecular decomposition theory for
weighted Herz-type Hardy spaces in [8,12,13]. We first characterize weighted
Herz-type Hardy spaces in terms of atoms in the following way.

Definition 4. Let 1 < g < oo, n(1-1/q) < a < oo and s > [a+n(1/q—1)].
(i) A function a(x) on R™ is called a central («,q, s)-atom with respect to
(w1, we)(or a central («, q, s;wy,wa)-atom), if it satisfies

(a) suppa € B(0,R) ={z € R" : |z| < R},

(b) llall g, < wi(B(0,R))=*/",

(¢) Jana(z)2? dz =0 for every multi-index B with |3| < s.
(73) A function a(z) on R™ is called a central (o, q, s)-atom of restricted type
with respect to (w1, ws)(or a central (o, q, s; w1, ws)-atom of restricted type),
if it satisfies the conditions (b), (c) above and

(') suppa C B(0, R) for some R > 1.

Theorem D. Let wi,wy € A1, 0 <p <oo, 1 <g<ooandn(l—1/q) <

a < 0. Then we have
(i) f € HKG"P (w1, ws) if and only if

flz)= Z)\kak(a:), in the sense of ./ (R™),
keZ

where Y | Ak|P < 00, each ay, is a central (a, q, 83 w1, wg)-atom. Moreover,

1/p
HfHHK(?’p(whwz) ~ inf <Z ‘)‘k‘p) ’

kEZ



where the infimum is taken over all the above decompositions of f.
(i1) f € HK P (wy,ws) if and only if

x) = Z)\kak(az), in the sense of %' (R"),

where Y 77 o [Mk|P < 00, each ay is a central (o, q, s; w1, ws)-atom of re-
stricted type. Moreover,

[e%s} 1/1’
IS 1l ke oy ) A Inf <Z Mk\”) ;
k=0

where the infimum is taken over all the above decompositions of f.

Next we give the definition of central molecule and the molecular char-
acterization of H K, n(1/p= 1/q)’p( w)(HKy n(1/p= 1/q)’p(w,w)).

Definition 5. For0 <p <1< q < oo, let w € Ay with critical index ry, for
the reverse Holder condition. Set s > [n(1/p—1)], € > max{sry/n(r, — 1)+
1/(rw —1),1/p—1},a=1—-1/p+ecandb=1—-1/qg+¢.
(i) A central (p,q, s,e)-molecule with respect to w(or a central w-(p,q, s,€)-
molecule) is a function M € LL,(R™) satisfying

(a) M(z) - w(B(0, |z]))" € L, (R™),

(WMW“HMO( (0.1 D)5 = Naw(M) < oo,

fRn x)x¥ dx =0 for every multi-index v with |y| < s.
(i) A functwn M € LL,(R™) is called a central (p,q,s,e)-molecule of re-
stricted type with respect to w(or a central w-(p, q, s,€)-molecule of restricted
type) if it satisfies (a)—(c) and
(@)1M]l 5, < w(B(O, )YV,
The above N (M) is called the molecular norm of M with respect to w(or
w-molecular norm of M).

Theorem E. Let (p,q,s,e) be the quadruple in the definition of central w-
molecule, let w € Ay and a =n(1/p—1/q).

(i) Every central (p,q,s,e)-molecule M centered at the origin with respect
to w belongs to HKSP(w,w) and IM | g eor ww) < CNw (M), where the
constant C' is independent of M.

(ii) Every central (p,q, s,e)-molecule of restricted type M with respect to w
belongs to HK ™" (w,w) and || M| g ger () < CNw(M), where the constant
C' is independent of M.



Throughout this article, we will use C to denote a positive constant,
which is independent of the main parameters and not necessarily the same
at each occurrence. By A ~ B, we mean that there exists a constant C' > 1
such that % < % < C.

4. Proof of Theorem 1
The Bochner-Riesz operators can be expressed as convolution operators

Thf(z) = (f * d1/r) (@),

where ¢(z) = [(1 — |- [2)%]"(x). It is well known that the kernel ¢ can be
represented as(see [11,23])

¢(x) = 7 °T(8 + )|z~ 27 Ja y5(27 ),

where J,,(t) is the Bessel function

1y\u 1
(2) / eztS(l _ S2)u—% ds.

O o b )

We shall need the following estimate which can be found in [20].

Lemma 4.1. Let 0 < p <1 and 6§ = n/p — (n+ 1)/2. Then the kernel ¢
satisfies the inequality

sup (1 + |z|)"P|DY(z)| < C  for all multi-indices a.

reR?
Proof of Theorem 1. First we observe that § > n/p — (n + 1)/2, then we
are able to choose a number 0 < p; < p such that 6 = n/p; — (n +1)/2.
Set s = [n(1/p1 — 1)]. For any central («, g, s; w1, ws)-atom a with suppa C
B(0,7), we are going to prove that ”Tf(a)HKg’p(wl,wg) < C, where C' > 0 is
independent of the choice of a. For given r > 0, we can find an appropriate
number ko € Z satisfying 2k0=2 < r < 2ko—1_ Write

L@,y = S 01 (BT @il
! kez
ko

= 3 wB)PIT @l

k=—o00
00
FY i BPIT @l
k=ko+1
=0 + I>.



Note that 0 <p <1, >n/p— (n+1)/2, then 6 > (n —1)/2. In this case,
it is well known that(see [11,23])

T)(a)(z) < CM(a)(), (1)

where M denotes the Hardy-Littlewood maximal operator.
The size condition of central atom a and the inequality (1) imply

ko ko
H<C Y wn(B ally <C 3 wn(B P e (B(0.r) 0"

k=—00 k=—00

Since w; € Ay, then we know w € RH,, for some > 1. When k£ < ko, then
By, C By,. By Lemma B, we have

wi(B) < Cwi(Bio)|Bi|’ By | ™,
where 0 = (u—1)/u > 0. Hence

ko
[1 < C Z <2(k—ko)a0pwl(Bko)ap/nwl(B(()’ T))—ap/n)

k=—0oc0

ko
<C Z 9(k—ko)abp

k=—o00 (2)
0
- C Z 2ka€p
k=—00
<C.

We now turn to estimate Io. For any given central (o, ¢, s; w1, we)-atom
a, it is easy to verify that

a1 (z) = w(B(0, r))l/p_l/pla(x)

is a central (a1, q, s;wy, we)-atom, where oy = n(1/p; —1/q). We claim that
for any x € Cy = By \Bj—1, the following inequality holds
rn/pl

T%(a1)(z) < C

<C- le(B(O,r))_o‘l/"wg(B(O,r))_l/q. (3)

In fact, for any € > 0, we write

a; x g (x) =" /B(OW) ¢<l’ - y)al(y) dy.

€

10



Let us consider the following two cases.
(1) 0 < e <r. Note that § = n/p; — (n+1)/2, then by Lemma 4.1, we have

asouto)| <cemon [ )

Wl g
B0,y |T — y[/P

Observe that when x € Cp = By\Bi_1, k > ko, then we can easily get
|z| > 2|y|, which implies |z — y| ~ |z|. We also note that 0 < p; < 1, then
n/p1 —n > 0. Thus

n —n 1
‘al *¢€(x)| < C.p/m W/B(o )\al(y)]dy. (4)

Denote the conjugate exponent of ¢ > 1 by ¢’ = ¢q/(q — 1). Using Holder’s
inequality, A, condition and the size condition of a;, we can get

/B(O’T) la1(y)| dy < (/B(OJ) |a1(y)|"wa(y) dy)l/q(/B(O’r) (wy /1) dy)l/q'

< Cllasllyg, |BO, 1) ws (B0, 1)~/

< C|B(0,r)|wi(B(0,7)) ="/ wy(B(0,r)) /. (5)
Substituting the above inequality (5) into (4), we thus obtain
'r'"/pl
|ay * ¢ (2)| < C- Tl wy(B(0,7)) ™ ™wy (B(0, 7)) 4. (6)

(1i) e > 7. Since 0< p1 < 1, then we can find a nonnegative integer /N such
that —— AT 7 <1< 5 —x- It is easy to see that this choice of N implies
[n(1/p1 —1)] > N. Using the vanishing moment condition of a, Taylor’s
theorem and Lemma 4.1, we can get

Xr — D“/(b %
/B(or)¢< £ y) N Z 7!( )<g)7a1(y) dy‘

—n

‘al * ¢€($)‘ =€

<N
N+1
< (57 % ()] dy
BOm) = N+1
N+1 _
T x — Oy |—n/p1
<C- 7/ ‘ a1(y)| dy
gn—l—N—I—l B(0) e ‘ ‘ ’

where 0 < 6 < 1. As in the first case (¢), we have |z| > 2|y|, which implies
|z — y| > %|z|. This together with the inequality (5) yield

T,n-i-N—i-l 1

o1 % 0:(2)| < € S, O wi(B(0, 7))~/ wy(B(0,7)) 71/,

11



Observe that n+ N +1—n/p; > 0, then for & > r, we have "+ N+1=n/p1 >
prtN+1=n/p1 - Consequently

',"n/pl

|1 % 6e(2)] < C wi(B(0, 7))~ Mwy(B(0,) V7. (7)

. |g;|"/p1

Summarizing the estimates (6) and (7) derived above and taking the supre-
mum over all ¢ > 0, we obtain the desired estimate (3).

Note that « = n(1/p — 1/q) and oy = n(1/p1 — 1/q). It follows from the
inequality (3) that

I < Z wy (By)*Mwy (B(0, r))P1/p1=1/p)
k=ko+1

p/q
: (/ T2 (a1) ()| "wa(2) dw)
2k—1< || <2k

<C Z PPl (By) P 9wy (B0, 7)) P Dy (B(0, 7)) TP/4
k=ko+1

p/q
. / wa(2) dx
2k71<‘x‘S2k |x|nq/p1

o 5 (50) () ™ ()

k=ko+1

When k > kg, then By, O By,. Using Lemma B again, we can get
w;i(By) < Cwi(Bk0)|Bk||Bko|_l for i=1 or 2.

Therefore

> okonp/p1 okn 1-p/q okn p/q
12 = C Z <2knp/p1 > <2kon> <2kon>

k=ko+1

1
C Z 2(k— —
k—ko)(n: n

k=ko+1 ( 0)np/p1—m) (8)

> 1
- Ckz_l ok(np/p1—n)

<,

12



where in the last inequality we have used the fact that np/p; — n > 0.
Combining the above estimate (8) with (2), we get the desired result.

We are now in a position to complete the proof of Theorem 1. For every
feH Kff P(wy,ws), then by Theorem D, we have the decomposition f =
ZjeZ Ajaj, where ZjeZ |\j|P < oo and each a; is a central («,q, s;wi,wa)-
atom. Therefore

p
W2y ) < € D wa (B (32 I IITE () g, )

keZ JEZ

<C> w(B) (Y ’)\j‘PHTf(aj)XkHiZQ)

keZ JEL

<CY NP

JEZ

p
S C”f”Hkg,P(wth)‘

5. Proof of Theorem 2

Proof of Theorem 2. For every f € HKSP(wy,wy), by Theorem D, we have
the decomposition f = 37, Aja;, where > .7 [A;|P < oo and each a; is a
central (a, q, [n(1/p — 1)]; w1, we)-atom. Without loss of generality, we may
assume that suppa; C B(0,7;) and r; = 2. For any given o > 0, we write

o> wi(By) P wy ({w € Cp : [T f(2)] > o))"

kEZ
<o " wi (B ws ({x € Cy. - Z I\ ||T0ay(z)| > o/2})""
keZ j=k—1
k—2
+ 0?3 wi (B wy({z € Cp s Y INIIT ()] > 0/2})"*
keZ j=—00
=1+ Ja.

Observe that 0 < p < 1 and § = n/p — (n+1)/2, then 6 > (n —1)/2. It
follows from Chebyshev’s inequality and the inequality (1) that

he Yo ( S Wz els, )
=k—1

keZ ji=k

13



o0

<Y B WPIT )l )

kezZ j=k—1
o0
/ . ||P
<Oy wB)( X Wl lalyy ).
kEZ j=k—1

Changing the order of summation gives

Jj+1
B2 INP( Y wB () ).
JEZL k=—00

Note that when £ < j+1, then B;_; C B;. Let 0 be the same as in Theorem
1, then by Lemma B, we can get

w1 (Bg—1) 1Br_1]\?
“un(B)) SC( 5] ) ' ©)

It follows from Lemma A and the above inequality (9) that

Jj+1
> wi(By)* Mwi (By) P
k=—o00

Jj+1

<C Z <w1 (Bg—-1 )ap/n

J-‘rl

<CZ k]locﬁp

k=—00

<C.

Hence
|p P
Jl é CZ |)\J| é CHfHHK(}l,P(th)Q)‘
JEZL
We now turn to deal with J;. Note that j < k — 2, then for any y € B;
and x € Cy = By \Bg_1, we have |z| > 2|y|. By using the same arguments
as in the proof of Theorem 1, we can get

(10)

T (aj)(x) < C- ( )n/pwl(Bj)_a/"wz(Bj)_l/q-

E2
Since B; C Bj_2, then by using Lemma B, we obtain

w;(Bj) > Cw;(By_2)|B;||Br_a|™" for i =1 or 2.

14



It follows immediately from our assumption o = n(1/p — 1/q) that

27 >n/p—a—n/q

T2(a;)(@) < C (5

< Cwi(By—2) ™ Mwa(Bj_o) 4.

wl(Bk—Q)_a/nw2(Bk—2)_1/q (11)

Set A = wn(By—2)” /My (By,—a) 1.
If {z € Cp: 522 |I\||T0a;(2)| > 0/2} = @, then the inequality

Jo < C|IfIE

]_—OO

Ka Pwy,wa)

holds trivially.
If {x € Cf : Z

we have

I\l Toaj(z)| > 0/2} # @, then by the inequality (11),

0<C’-Ak<Z|)\j|>

JEZ
1/p
< C'Ak<z |)\j|p>
JEZ
<(C- Ak”f”HK?’p(whwz)’

]_OO

Obviously, limy_,o, Ar = 0. Then for any fixed o > 0, we are able to find a
maximal positive integer k, such that

0 < C A | fll o

(w1,w2)"
Therefore
ko
Jo < oP Z w1 (By,) P/ ™ ws By, )P/
k=—0c0

k
- B ) ap/n w (Bk) p/q

. ) w1 (B, 2 .

ClIf HEKZP (w1 ,w2) k;oo <w1(Bka_2)> <w2(Bk0_2))

Since By_o C By, _2, then by using Lemma B again, we have

w;(Br—2) < C( | Bi—2|
w;(Bg,—2) ~—  \|Bg,—2]

Applying Lemma A and the inequality (12), we finally get

0
) for i =1 or 2. (12)

ko

Jo < C”f”HKa P (wy w2) Z (ko —k)nf = CHfHHKf;"p(whwz).
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Combining the above estimate (13) with (10) and taking the supremum over
all ¢ > 0, we complete the proof of Theorem 2. O

6. Proof of Theorem 3

Proof of Theorem 3. As in Theorem 1, we first choose a number 0 < p; < p
such that 6 =n/p1 — (n+1)/2. Set s = [n(1/p; —1)] and N = [n(1/p—1)].
By using Theorem D and Theorem E, it suffices to show that for every
central («, ¢, s;w, w)-atom f with supp f C B(0,7), then Tgf is a central w-
(p,q, N,e)-molecule. Moreover, its w-molecular norm is uniformly bounded;
that is

Nu(Thf) < C,

where the constant C' is independent of f and R.

Observe that § > [n/p|ry/(rw —1) — (n+1)/2, then a simple calculation
shows that Nr,/n(ry, —1) 4+ 1/(ry, —1) < 1/p; — 1, thus we can choose a
suitable number € > 0 satisfying max{Nr,,/n(ry, — 1)+1/(ry—1),1/p—1} <
e<l/pr—1. Leta=1—-1/p+ecandb=1—-1/qg+e¢.

The size condition of central atom f and the inequality (1) imply

ITRzg, < 1T (N)llng, < Cllfllg, < Cw (B0, 7)), (14)

On the other hand,

ITR(F)w(BO. |- 1)°l1F, =/ | T5.f ()] "w(B(0, 2]) " w(z) de

|| <2r

+ / T8 £ ()]0 (B(O, |2])) M (z) da
|z|>2r

=K + K>.

Using Lemma A, the inequality (1) and the size condition of f, we obtain

Ky < w(B(0,20) T2 (Il
< Cu(B(0,7)"f 7 (15)
< Cw(B(0,r))"H 1l
= Cw(B(0,m)".

Note that when |z| > 2r, y € B(0,r), then we have |z| > 2|y|. By using the
same arguments as that of Theorem 1(w; = wy = w), we can deduce

T f(e) < € 20 (B(0,1) 7, (16)

‘x’"/m
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If |z| > 2r, then B(0,2r) C B(0,|z|), by Lemma B, we get
|z["
(2r)"
It follows from the inequalities (16) and (17) that

w(B(0,|z])) < C - w(B(0,2r)). (17)

rna/p1 o/ || b .
Ky <C o Ww(B(O,T)) ap. (2r)anw(B(0, 2r))"w(z) dx
. pna(1/p1=b) —a/p+ba w(z)
<C-r w(B(0,7)) /x>2r 217D dx.

Observe that ¢ < 1/p; — 1, then we have 1/p; —b > 1/q, which is equivalent
to q(1/p1 —b) > 1. Since w € Ay, then w € Ay(y/p,—p). Consequently, by
Lemma C, we deduce

Ky < Cw(B(0,r))"9/Prbatl — Cuw(B(0,r)). (18)
Hence, by the inequalities (14), (15) and (18), we obtain

NuTR) = TN TR (B, ] D)l 5"
< Cw(B(0,r) D w(B(0, )~/
<C.

It remains to verify the vanishing moments of 7% f(x). Note that s > N.
Therefore, for every multi-index v with |y| < N, we have

[ Tt @) do = (T35 1) 0)

=C - D(Tyf)(0)
= C-D"(Gy/r- FO)
=C- Y (D) 0)(DP)0)

laf+[81=[7]
=0.

This completes the proof of Theorem 3. O

Remark. The corresponding results for non-homogeneous weighted Herz-
type Hardy spaces can also be proved by atomic and molecular decomposition
theory. The arguments are similar, so the details are omitted here.
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