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Some estimates for Bochner-Riesz operators on the

weighted Herz-type Hardy spaces

Hua Wang ∗

School of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract

In this paper, by using the atomic decomposition and molecular
characterization of the homogeneous and non-homogeneous weighted
Herz-type Hardy spaces HK̇α,p

q
(w1, w2)(HKα,p

q
(w1, w2)), we obtain

some weighted boundedness properties of the Bochner-Riesz opera-
tor and the maximal Bochner-Riesz operator on these spaces for α =
n(1/p− 1/q), 0 < p ≤ 1 and 1 < q < ∞.
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1. Introduction

The Bochner-Riesz operators of order δ > 0 in Rn are defined initially
for Schwartz functions in terms of Fourier transforms by

(
T δ
Rf
)
ˆ(ξ) =

(
1−

|ξ|2

R2

)δ
+
f̂(ξ),

where f̂ denotes the Fourier transform of f . The associated maximal Bochner-
Riesz operator is defined by

T δ
∗ f(x) = sup

R>0
|T δ

Rf(x)|.

These operators were first introduced by Bochner [3] in connection with sum-
mation of multiple Fourier series and played an important role in harmonic
analysis. As for their Hp boundedness, Sjölin [21] and Stein, Taibleson and
Weiss [22] proved the following theorem(see also [10, page 121]).
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Theorem I. Suppose that 0 < p ≤ 1 and δ > n/p − (n + 1)/2. Then there

exists a constant C independent of f and R such that

‖T δ
R(f)‖Hp ≤ C‖f‖Hp .

In [22], the authors also showed

Theorem II. Suppose that 0 < p < 1 and δ = n/p− (n+1)/2. Then there

exists a constant C independent of f such that

sup
λ>0

λp
∣∣{x ∈ Rn : T δ

∗ f(x) > λ}
∣∣ ≤ C‖f‖pHp .

In 1995, Sato [20] considered the weighted case and obtained the follow-
ing weighted weak type estimate for the maximal operator T δ

∗ .

Theorem III. Let w ∈ A1(Muckenhoupt weight class), 0 < p < 1 and

δ = n/p− (n+ 1)/2. Then there exists a constant C independent of f such

that

sup
λ>0

λpw
(
{x ∈ Rn : T δ

∗ f(x) > λ}
)
≤ C‖f‖p

Hp
w
.

In 2006, Lee [9] considered values of δ greater than the critical index
n/p− (n+ 1)/2 and proved the following weighted strong type estimate.

Theorem IV. Let w ∈ A1, 0 < p ≤ 1 and δ > n/p− (n+1)/2. Then there

exists a constant C independent of f such that

‖T δ
∗ (f)‖Lp

w
≤ C‖f‖Hp

w
.

Using the above Hp
w–L

p
w boundedness of the maximal operator T δ

∗ , Lee
also obtained the Hp

w boundedness of the Bochner-Riesz operator.

Theorem V. Let w ∈ A1 with critical index rw for the reverse Hölder

condition, 0 < p ≤ 1 and δ > max{n/p− (n+1)/2, [n/p]rw/(rw − 1)− (n+
1)/2}. Then there exists a constant C independent of f and R such that

‖T δ
R(f)‖Hp

w
≤ C‖f‖Hp

w
.

The main purpose of this paper is to discuss some corresponding esti-
mates of Bochner-Riesz operators on the homogeneous and non-homogeneous
weighted Herz-type Hardy spacesHK̇α,p

q (w1, w2)(HKα,p
q (w1, w2)). Our main

results are stated as follows.
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Theorem 1. Let w1, w2 ∈ A1 and 1 < q < ∞. If 0 < p ≤ 1, α =
n(1/p−1/q), δ > n/p−(n+1)/2, then there exists a constant C independent

of f such that

‖T δ
∗ (f)‖K̇α,p

q (w1,w2)
≤ C‖f‖HK̇α,p

q (w1,w2)

‖T δ
∗ (f)‖Kα,p

q (w1,w2) ≤ C‖f‖HKα,p
q (w1,w2),

where K̇α,p
q (w1, w2)(K

α,p
q (w1, w2)) denotes the homogeneous(non-homogeneo-

us)weighted Herz space.

Theorem 2. Let w1, w2 ∈ A1 and 1 < q < ∞. If 0 < p < 1, α =
n(1/p−1/q), δ = n/p−(n+1)/2, then there exists a constant C independent

of f such that

‖T δ
∗ (f)‖WK̇α,p

q (w1,w2)
≤ C‖f‖HK̇α,p

q (w1,w2)

‖T δ
∗ (f)‖WKα,p

q (w1,w2) ≤ C‖f‖HKα,p
q (w1,w2),

where WK̇α,p
q (w1, w2)(WKα,p

q (w1, w2)) denotes the homogeneous(non-homo-

geneous)weak weighted Herz space.

Theorem 3. Let w ∈ A1 and 1 < q < ∞. If 0 < p ≤ 1, α = n(1/p − 1/q),
δ > max{n/p− (n+1)/2, [n/p]rw/(rw − 1)− (n+1)/2}, then there exists a

constant C independent of f and R such that

‖T δ
R(f)‖HK̇α,p

q (w,w) ≤ C‖f‖HK̇α,p
q (w,w)

‖T δ
R(f)‖HKα,p

q (w,w) ≤ C‖f‖HKα,p
q (w,w),

where rw denotes the critical index of w for the reverse Hölder condition.

2. Notations and definitions

First, let’s recall some standard definitions and notations. The classi-
cal Ap weight theory was first introduced by Muckenhoupt in the study of
weighted Lp boundedness of Hardy-Littlewood maximal functions in [19]. A
weight w is a locally integrable function on Rn which takes values in (0,∞)
almost everywhere. B = B(x0, r) denotes the ball with the center x0 and
radius r. We say that w ∈ Ap, 1 < p < ∞, if

(
1

|B|

∫

B
w(x) dx

)(
1

|B|

∫

B
w(x)

− 1

p−1 dx

)p−1

≤ C for every ball B ⊆ Rn,
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where C is a positive constant which is independent of B.
For the case p = 1, w ∈ A1, if

1

|B|

∫

B
w(x) dx ≤ C ess inf

x∈B
w(x) for every ball B ⊆ Rn.

A weight function w is said to belong to the reverse Hölder class RHr if
there exist two constants r > 1 and C > 0 such that the following reverse
Hölder inequality holds

(
1

|B|

∫

B
w(x)r dx

)1/r

≤ C

(
1

|B|

∫

B
w(x) dx

)
for every ball B ⊆ Rn.

It is well known that if w ∈ Ap with 1 < p < ∞, then w ∈ Ar for all r > p,
and w ∈ Aq for some 1 < q < p. If w ∈ Ap with 1 ≤ p < ∞, then there exists
r > 1 such that w ∈ RHr. It follows from Hölder’s inequality that w ∈ RHr

implies w ∈ RHs for all 1 < s < r. Moreover, if w ∈ RHr, r > 1, then we
have w ∈ RHr+ε for some ε > 0. We thus write rw ≡ sup{r > 1 : w ∈ RHr}
to denote the critical index of w for the reverse Hölder condition.

Given a ball B and λ > 0, λB denotes the ball with the same center
as B whose radius is λ times that of B. For a given weight function w, we
denote the Lebesgue measure of B by |B| and the weighted measure of B
by w(B), where w(B) =

∫
B w(x) dx.

We give the following results that we will use in the sequel.

Lemma A ([5]). Let w ∈ Ap, p ≥ 1. Then, for any ball B, there exists an

absolute constant C such that

w(2B) ≤ Cw(B).

In general, for any λ > 1, we have

w(λB) ≤ Cλnpw(B),

where C does not depend on B nor on λ.

Lemma B ([5,6]). Let w ∈ Ap ∩ RHr, p ≥ 1 and r > 1. Then there exist

constants C1, C2 > 0 such that

C1

(
|E|

|B|

)p

≤
w(E)

w(B)
≤ C2

(
|E|

|B|

)(r−1)/r

for any measurable subset E of a ball B.
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Lemma C ([5]). Let w ∈ Aq and q > 1. Then, for all r > 0, there exists a

constant C independent of r such that

∫

|x|>r

w(x)

|x|nq
dx ≤ Cr−nqw(B(0, r)).

Next we shall give the definitions of the weighted Herz space, weak
weighted Herz space and weighted Herz-type Hardy space. In 1964, Beurling
[2] first introduced some fundamental form of Herz spaces to study convo-
lution algebras. Later Herz [7] gave versions of the spaces defined below in
a slightly different setting. Since then, the theory of Herz spaces has been
significantly developed, and these spaces have turned out to be quite use-
ful in harmonic analysis. For instance, they were used by Baernstein and
Sawyer [1] to characterize the multipliers on the classical Hardy spaces, and
used by Lu and Yang [16] in the study of partial differential equations.

On the other hand, a theory of Hardy spaces associated with Herz spaces
has been developed in [4,14]. These new Hardy spaces can be regarded as
the local version at the origin of the classical Hardy spaces Hp(Rn) and
are good substitutes for Hp(Rn) when we study the boundedness of non-
translation invariant operators(see [15]). For the weighted case, in 1995,
Lu and Yang introduced the following weighted Herz-type Hardy spaces
HK̇α,p

q (w1, w2) (HKα,p
q (w1, w2)) and established their atomic decomposi-

tions. In 2006, Lee gave the molecular characterizations of these spaces, he
also obtained the boundedness of the Hilbert transform and the Riesz trans-
forms on HK̇

n(1/p−1/q),p
q (w,w) and HK

n(1/p−1/q),p
q (w,w) for 0 < p ≤ 1. For

the results mentioned above, we refer the readers to the book [18] and the
papers [8,12,13,17] for further details.

Let Bk = {x ∈ Rn : |x| ≤ 2k} and Ck = Bk\Bk−1 for k ∈ Z. Denote
χk = χ

Ck
for k ∈ Z, χ̃k = χk if k ∈ N and χ̃0 = χ

B0
, where χ

Ck
is

the characteristic function of Ck. Given a weight function w on Rn, for
1 ≤ p < ∞, we denote by Lp

w(Rn) the space of all functions satisfying

‖f‖Lp
w(Rn) =

(∫

Rn

|f(x)|pw(x) dx

)1/p

< ∞.

Definition 1. Let α ∈ R, 0 < p, q < ∞ and w1, w2 be two weight functions

on Rn.

(i) The homogeneous weighted Herz space K̇α,p
q (w1, w2) is defined by

K̇α,p
q (w1, w2) = {f ∈ Lq

loc(R
n\{0}, w2) : ‖f‖K̇α,p

q (w1,w2)
< ∞},
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where

‖f‖K̇α,p
q (w1,w2)

=

(∑

k∈Z

(w1(Bk))
αp/n‖fχk‖

p
Lq
w2

)1/p

.

(ii) The non-homogeneous weighted Herz space Kα,p
q (w1, w2) is defined by

Kα,p
q (w1, w2) = {f ∈ Lq

loc(R
n, w2) : ‖f‖Kα,p

q (w1,w2) < ∞},

where

‖f‖Kα,p
q (w1,w2) =

(
∞∑

k=0

(w1(Bk))
αp/n‖fχ̃k‖

p
Lq
w2

)1/p

.

For k ∈ Z and λ > 0, we set Ek(λ, f) = |{x ∈ Ck : |f(x)| > λ}|. Let
Ẽk(λ, f) = Ek(λ, f) for k ∈ N and Ẽ0(λ, f) = |{x ∈ B(0, 1) : |f(x)| > λ}|.

Definition 2. Let α ∈ R, 0 < p, q < ∞ and w1, w2 be two weight functions

on Rn.

(i) A measurable function f(x) on Rn is said to belong to the homogeneous

weak weighted Herz spaces WK̇α,p
q (w1, w2) if

‖f‖WK̇α,p
q (w1,w2)

= sup
λ>0

λ

(∑

k∈Z

w1(Bk)
αp/nw2(Ek(λ, f))

p/q

)1/p

.

(ii) A measurable function f(x) on Rn is said to belong to the non-homogeneo-

us weak weighted Herz spaces WKα,p
q (w1, w2) if

‖f‖WKα,p
q (w1,w2) = sup

λ>0
λ

(
∞∑

k=0

w1(Bk)
αp/nw2(Ẽk(λ, f))

p/q

)1/p

.

Let S (Rn) be the class of Schwartz functions and let S ′(Rn) be its dual
space. For f ∈ S ′(Rn), the grand maximal function of f is defined by

G(f)(x) = sup
ϕ∈AN

sup
|y−x|<t

|ϕt ∗ f(y)|,

where N > n + 1, AN = {ϕ ∈ S (Rn) : sup|α|,|β|≤N |xαDβϕ(x)| ≤ 1} and
ϕt(x) = t−nϕ(x/t).

Definition 3. Let 0 < α < ∞, 0 < p < ∞, 1 < q < ∞ and w1, w2 be two

weight functions on Rn.

6



(i) The homogeneous weighted Herz-type Hardy space HK̇α,p
q (w1, w2) asso-

ciated with the space K̇α,p
q (w1, w2) is defined by

HK̇α,p
q (w1, w2) = {f ∈ S

′(Rn) : G(f) ∈ K̇α,p
q (w1, w2)}

and we define ‖f‖HK̇α,p
q (w1,w2)

= ‖G(f)‖K̇α,p
q (w1,w2)

.

(ii) The non-homogeneous weighted Herz-type Hardy space HKα,p
q (w1, w2)

associated with the space Kα,p
q (w1, w2) is defined by

HKα,p
q (w1, w2) = {f ∈ S

′(Rn) : G(f) ∈ Kα,p
q (w1, w2)}

and we define ‖f‖HKα,p
q (w1,w2) = ‖G(f)‖Kα,p

q (w1,w2).

3. The atomic decomposition and molecular characterization

In this article, we will use atomic and molecular decomposition theory for
weighted Herz-type Hardy spaces in [8,12,13]. We first characterize weighted
Herz-type Hardy spaces in terms of atoms in the following way.

Definition 4. Let 1 < q < ∞, n(1−1/q) ≤ α < ∞ and s ≥ [α+n(1/q−1)].
(i) A function a(x) on Rn is called a central (α, q, s)-atom with respect to

(w1, w2)(or a central (α, q, s;w1, w2)-atom), if it satisfies
(a) supp a ⊆ B(0, R) = {x ∈ Rn : |x| < R},
(b) ‖a‖Lq

w2

≤ w1(B(0, R))−α/n,

(c)
∫
Rn a(x)x

β dx = 0 for every multi-index β with |β| ≤ s.
(ii) A function a(x) on Rn is called a central (α, q, s)-atom of restricted type

with respect to (w1, w2)(or a central (α, q, s;w1, w2)-atom of restricted type),
if it satisfies the conditions (b), (c) above and

(a′) supp a ⊆ B(0, R) for some R > 1.

Theorem D. Let w1,w2 ∈ A1, 0 < p < ∞, 1 < q < ∞ and n(1 − 1/q) ≤
α < ∞. Then we have

(i) f ∈ HK̇α,p
q (w1, w2) if and only if

f(x) =
∑

k∈Z

λkak(x), in the sense of S
′(Rn),

where
∑

k∈Z |λk|
p < ∞, each ak is a central (α, q, s;w1, w2)-atom. Moreover,

‖f‖HK̇α,p
q (w1,w2)

≈ inf

(∑

k∈Z

|λk|
p

)1/p

,

7



where the infimum is taken over all the above decompositions of f .
(ii) f ∈ HKα,p

q (w1, w2) if and only if

f(x) =
∞∑

k=0

λkak(x), in the sense of S
′(Rn),

where
∑∞

k=0 |λk|
p < ∞, each ak is a central (α, q, s;w1, w2)-atom of re-

stricted type. Moreover,

‖f‖HKα,p
q (w1,w2) ≈ inf

(
∞∑

k=0

|λk|
p

)1/p

,

where the infimum is taken over all the above decompositions of f .

Next we give the definition of central molecule and the molecular char-

acterization of HK̇
n(1/p−1/q),p
q (w,w)(HK

n(1/p−1/q),p
q (w,w)).

Definition 5. For 0 < p ≤ 1 < q < ∞, let w ∈ A1 with critical index rw for

the reverse Hölder condition. Set s ≥ [n(1/p−1)], ε > max{srw/n(rw − 1)+
1/(rw − 1), 1/p − 1}, a = 1− 1/p + ε and b = 1− 1/q + ε.
(i) A central (p, q, s, ε)-molecule with respect to w(or a central w-(p, q, s, ε)-
molecule) is a function M ∈ Lq

w(Rn) satisfying
(a) M(x) · w(B(0, |x|))b ∈ Lq

w(Rn),

(b) ‖M‖
a/b

Lq
w
· ‖M(·)w(B(0, | · |))b‖

1−a/b

Lq
w

≡ Nw(M) < ∞,

(c)
∫
Rn M(x)xγ dx = 0 for every multi-index γ with |γ| ≤ s.

(ii) A function M ∈ Lq
w(Rn) is called a central (p, q, s, ε)-molecule of re-

stricted type with respect to w(or a central w-(p, q, s, ε)-molecule of restricted

type) if it satisfies (a)–(c) and

(d)‖M‖Lq
w
≤ w(B(0, 1))1/q−1/p.

The above Nw(M) is called the molecular norm of M with respect to w(or
w-molecular norm of M).

Theorem E. Let (p, q, s, ε) be the quadruple in the definition of central w-
molecule, let w ∈ A1 and α = n(1/p − 1/q).
(i) Every central (p, q, s, ε)-molecule M centered at the origin with respect

to w belongs to HK̇α,p
q (w,w) and ‖M‖HK̇α,p

q (w,w) ≤ CNw(M), where the

constant C is independent of M .

(ii)Every central (p, q, s, ε)-molecule of restricted type M with respect to w
belongs to HKα,p

q (w,w) and ‖M‖HKα,p
q (w,w) ≤ CNw(M), where the constant

C is independent of M .
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Throughout this article, we will use C to denote a positive constant,
which is independent of the main parameters and not necessarily the same
at each occurrence. By A ∼ B, we mean that there exists a constant C > 1
such that 1

C ≤ A
B ≤ C.

4. Proof of Theorem 1

The Bochner-Riesz operators can be expressed as convolution operators

T δ
Rf(x) = (f ∗ φ1/R)(x),

where φ(x) = [(1 − | · |2)δ+]ˆ(x). It is well known that the kernel φ can be
represented as(see [11,23])

φ(x) = π−δΓ(δ + 1)|x|−(n
2
+δ)Jn

2
+δ(2π|x|),

where Jµ(t) is the Bessel function

Jµ(t) =
( t2)

µ

Γ(µ+ 1
2 )Γ(

1
2)

∫ 1

−1
eits(1− s2)µ−

1

2 ds.

We shall need the following estimate which can be found in [20].

Lemma 4.1. Let 0 < p < 1 and δ = n/p − (n + 1)/2. Then the kernel φ
satisfies the inequality

sup
x∈Rn

(1 + |x|)n/p|Dαφ(x)| ≤ C for all multi-indices α.

Proof of Theorem 1. First we observe that δ > n/p − (n + 1)/2, then we
are able to choose a number 0 < p1 < p such that δ = n/p1 − (n + 1)/2.
Set s = [n(1/p1 − 1)]. For any central (α, q, s;w1, w2)-atom a with supp a ⊆
B(0, r), we are going to prove that ‖T δ

∗ (a)‖K̇α,p
q (w1,w2)

≤ C, where C > 0 is

independent of the choice of a. For given r > 0, we can find an appropriate
number k0 ∈ Z satisfying 2k0−2 < r ≤ 2k0−1. Write

‖T δ
∗ (a)‖

p

K̇α,p
q (w1,w2)

=
∑

k∈Z

w1(Bk)
αp/n‖T δ

∗ (a)χk‖
p
Lq
w2

=

k0∑

k=−∞

w1(Bk)
αp/n‖T δ

∗ (a)χk‖
p
Lq
w2

+
∞∑

k=k0+1

w1(Bk)
αp/n‖T δ

∗ (a)χk‖
p
Lq
w2

=I1 + I2.

9



Note that 0 < p ≤ 1, δ > n/p− (n+ 1)/2, then δ > (n− 1)/2. In this case,
it is well known that(see [11,23])

T δ
∗ (a)(x) ≤ CM(a)(x), (1)

where M denotes the Hardy-Littlewood maximal operator.
The size condition of central atom a and the inequality (1) imply

I1 ≤ C

k0∑

k=−∞

w1(Bk)
αp/n‖a‖p

Lq
w2

≤ C

k0∑

k=−∞

w1(Bk)
αp/nw1(B(0, r))−αp/n.

Since w1 ∈ A1, then we know w ∈ RHµ for some µ > 1. When k ≤ k0, then
Bk ⊆ Bk0 . By Lemma B, we have

w1(Bk) ≤ Cw1(Bk0)|Bk|
θ|Bk0 |

−θ,

where θ = (µ− 1)/µ > 0. Hence

I1 ≤ C

k0∑

k=−∞

(
2(k−k0)αθpw1(Bk0)

αp/nw1(B(0, r))−αp/n
)

≤ C

k0∑

k=−∞

2(k−k0)αθp

= C
0∑

k=−∞

2kαθp

≤ C.

(2)

We now turn to estimate I2. For any given central (α, q, s;w1, w2)-atom
a, it is easy to verify that

a1(x) = w(B(0, r))1/p−1/p1a(x)

is a central (α1, q, s;w1, w2)-atom, where α1 = n(1/p1−1/q). We claim that
for any x ∈ Ck = Bk\Bk−1, the following inequality holds

T δ
∗ (a1)(x) ≤ C ·

rn/p1

|x|n/p1
w1(B(0, r))−α1/nw2(B(0, r))−1/q . (3)

In fact, for any ε > 0, we write

a1 ∗ φε(x) = ε−n

∫

B(0,r)
φ
(x− y

ε

)
a1(y) dy.

10



Let us consider the following two cases.
(i) 0 < ε ≤ r. Note that δ = n/p1 − (n+1)/2, then by Lemma 4.1, we have

∣∣a1 ∗ φε(x)
∣∣ ≤ C · εn/p1−n

∫

B(0,r)

|a1(y)|

|x− y|n/p1
dy.

Observe that when x ∈ Ck = Bk\Bk−1, k > k0, then we can easily get
|x| ≥ 2|y|, which implies |x− y| ∼ |x|. We also note that 0 < p1 < 1, then
n/p1 − n > 0. Thus

∣∣a1 ∗ φε(x)
∣∣ ≤ C · rn/p1−n 1

|x|n/p1

∫

B(0,r)
|a1(y)| dy. (4)

Denote the conjugate exponent of q > 1 by q′ = q/(q − 1). Using Hölder’s
inequality, Aq condition and the size condition of a1, we can get
∫

B(0,r)
|a1(y)| dy ≤

(∫

B(0,r)

∣∣a1(y)
∣∣qw2(y) dy

)1/q(∫

B(0,r)

(
w

−1/q
2

)q′
dy
)1/q′

≤ C‖a1‖Lq
w2

|B(0, r)|w2(B(0, r))−1/q

≤ C|B(0, r)|w1(B(0, r))−α1/nw2(B(0, r))−1/q . (5)

Substituting the above inequality (5) into (4), we thus obtain

∣∣a1 ∗ φε(x)
∣∣ ≤ C ·

rn/p1

|x|n/p1
w1(B(0, r))−α1/nw2(B(0, r))−1/q . (6)

(ii) ε > r. Since 0 < p1 < 1, then we can find a nonnegative integer N such
that n

n+N+1 ≤ p1 < n
n+N . It is easy to see that this choice of N implies

[n(1/p1 − 1)] ≥ N . Using the vanishing moment condition of a, Taylor’s
theorem and Lemma 4.1, we can get

∣∣a1 ∗ φε(x)
∣∣ = ε−n

∣∣∣∣
∫

B(0,r)
φ
(x− y

ε

)
−
∑

|γ|≤N

Dγφ(xε )

γ!

(y
ε

)γ
a1(y) dy

∣∣∣∣

≤ ε−n ·
( r

ε

)N+1
∫

B(0,r)

∑

|γ|=N+1

∣∣∣
Dγφ(x−θy

ε )

γ!

∣∣∣
∣∣a1(y)

∣∣ dy

≤ C ·
rN+1

εn+N+1

∫

B(0,r)

∣∣∣x− θy

ε

∣∣∣
−n/p1∣∣a1(y)

∣∣ dy,

where 0 < θ < 1. As in the first case (i), we have |x| ≥ 2|y|, which implies
|x− θy| ≥ 1

2 |x|. This together with the inequality (5) yield

∣∣a1 ∗ φε(x)
∣∣ ≤ C ·

rn+N+1

εn+N+1−n/p1

1

|x|n/p1
w1(B(0, r))−α1/nw2(B(0, r))−1/q .

11



Observe that n+N +1−n/p1 ≥ 0, then for ε > r, we have εn+N+1−n/p1 ≥
rn+N+1−n/p1 . Consequently

∣∣a1 ∗ φε(x)
∣∣ ≤ C ·

rn/p1

|x|n/p1
w1(B(0, r))−α1/nw2(B(0, r))−1/q . (7)

Summarizing the estimates (6) and (7) derived above and taking the supre-
mum over all ε > 0, we obtain the desired estimate (3).
Note that α = n(1/p − 1/q) and α1 = n(1/p1 − 1/q). It follows from the
inequality (3) that

I2 ≤
∞∑

k=k0+1

w1(Bk)
αp/nw1(B(0, r))p(1/p1−1/p)

·

(∫

2k−1<|x|≤2k

∣∣T δ
∗ (a1)(x)

∣∣qw2(x) dx

)p/q

≤C

∞∑

k=k0+1

rnp/p1w1(Bk)
1−p/qw1(B(0, r))−(1−p/q)w2(B(0, r))−p/q

·

(∫

2k−1<|x|≤2k

w2(x)

|x|nq/p1
dx

)p/q

≤C

∞∑

k=k0+1

(
rnp/p1

2knp/p1

)(
w1(Bk)

w1(B(0, r))

)1−p/q ( w2(Bk)

w2(B(0, r))

)p/q

.

When k > k0, then Bk ⊇ Bk0 . Using Lemma B again, we can get

wi(Bk) ≤ Cwi(Bk0)|Bk||Bk0 |
−1 for i = 1 or 2.

Therefore

I2 ≤ C
∞∑

k=k0+1

(
2k0np/p1

2knp/p1

)(
2kn

2k0n

)1−p/q (
2kn

2k0n

)p/q

= C
∞∑

k=k0+1

1

2(k−k0)(np/p1−n)

= C

∞∑

k=1

1

2k(np/p1−n)

≤ C,

(8)

12



where in the last inequality we have used the fact that np/p1 − n > 0.
Combining the above estimate (8) with (2), we get the desired result.

We are now in a position to complete the proof of Theorem 1. For every
f ∈ HK̇α,p

q (w1, w2), then by Theorem D, we have the decomposition f =∑
j∈Z λjaj, where

∑
j∈Z |λj |p < ∞ and each aj is a central (α, q, s;w1, w2)-

atom. Therefore

‖T δ
∗ (f)‖

p

K̇α,p
q (w1,w2)

≤ C
∑

k∈Z

w1(Bk)
αp/n

(∑

j∈Z

|λj |‖T
δ
∗ (aj)χk‖Lq

w2

)p

≤ C
∑

k∈Z

w1(Bk)
αp/n

(∑

j∈Z

|λj |
p‖T δ

∗ (aj)χk‖
p
Lq
w2

)

≤ C
∑

j∈Z

|λj|
p

≤ C‖f‖p
HK̇α,p

q (w1,w2)
.

5. Proof of Theorem 2

Proof of Theorem 2. For every f ∈ HK̇α,p
q (w1, w2), by Theorem D, we have

the decomposition f =
∑

j∈Z λjaj, where
∑

j∈Z |λj |
p < ∞ and each aj is a

central (α, q, [n(1/p − 1)];w1, w2)-atom. Without loss of generality, we may
assume that supp aj ⊆ B(0, rj) and rj = 2j . For any given σ > 0, we write

σp ·
∑

k∈Z

w1(Bk)
αp/nw2

(
{x ∈ Ck : |T δ

∗ f(x)| > σ}
)p/q

≤σp ·
∑

k∈Z

w1(Bk)
αp/nw2

(
{x ∈ Ck :

∞∑

j=k−1

|λj ||T
δ
∗ aj(x)| > σ/2}

)p/q

+ σp ·
∑

k∈Z

w1(Bk)
αp/nw2

(
{x ∈ Ck :

k−2∑

j=−∞

|λj ||T
δ
∗ aj(x)| > σ/2}

)p/q

=J1 + J2.

Observe that 0 < p < 1 and δ = n/p − (n + 1)/2, then δ > (n − 1)/2. It
follows from Chebyshev’s inequality and the inequality (1) that

J1 ≤
∑

k∈Z

w1(Bk)
αp/n

( ∞∑

j=k−1

|λj |‖T
δ
∗ (aj)χk‖Lq

w2

)p

13



≤
∑

k∈Z

w1(Bk)
αp/n

( ∞∑

j=k−1

|λj |
p‖T δ

∗ (aj)‖
p
Lq
w2

)

≤ C
∑

k∈Z

w1(Bk)
αp/n

( ∞∑

j=k−1

|λj |
p‖aj‖

p
Lq
w2

)
.

Changing the order of summation gives

J1 ≤ C
∑

j∈Z

|λj |
p
( j+1∑

k=−∞

w1(Bk)
αp/nw1(Bj)

−αp/n
)
.

Note that when k ≤ j+1, then Bk−1 ⊆ Bj . Let θ be the same as in Theorem
1, then by Lemma B, we can get

w1(Bk−1)

w1(Bj)
≤ C

(
|Bk−1|

|Bj |

)θ

. (9)

It follows from Lemma A and the above inequality (9) that

j+1∑

k=−∞

w1(Bk)
αp/nw1(Bj)

−αp/n

≤C

j+1∑

k=−∞

(w1(Bk−1)

w1(Bj)

)αp/n

≤C

j+1∑

k=−∞

2(k−j−1)αθp

≤C.

Hence
J1 ≤ C

∑

j∈Z

|λj|
p ≤ C‖f‖p

HK̇α,p
q (w1,w2)

. (10)

We now turn to deal with J2. Note that j ≤ k − 2, then for any y ∈ Bj

and x ∈ Ck = Bk\Bk−1, we have |x| ≥ 2|y|. By using the same arguments
as in the proof of Theorem 1, we can get

T δ
∗ (aj)(x) ≤ C ·

( 2j

|x |

)n/p
w1(Bj)

−α/nw2(Bj)
−1/q.

Since Bj ⊆ Bk−2, then by using Lemma B, we obtain

wi(Bj) ≥ Cwi(Bk−2)|Bj ||Bk−2|
−1 for i = 1 or 2.
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It follows immediately from our assumption α = n(1/p − 1/q) that

T δ
∗ (aj)(x) ≤ C

( 2j

2k−2

)n/p−α−n/q
w1(Bk−2)

−α/nw2(Bk−2)
−1/q

≤ Cw1(Bk−2)
−α/nw2(Bk−2)

−1/q.

(11)

Set Ak = w1(Bk−2)
−α/nw2(Bk−2)

−1/q.
If {x ∈ Ck :

∑k−2
j=−∞ |λj ||T

δ
∗ aj(x)| > σ/2} = Ø, then the inequality

J2 ≤ C‖f‖p
HK̇α,p

q (w1,w2)

holds trivially.
If {x ∈ Ck :

∑k−2
j=−∞ |λj ||T

δ
∗ aj(x)| > σ/2} 6= Ø, then by the inequality (11),

we have

σ < C ·Ak

(∑

j∈Z

|λj |
)

≤ C ·Ak

(∑

j∈Z

|λj |
p
)1/p

≤ C ·Ak‖f‖HK̇α,p
q (w1,w2)

.

Obviously, limk→∞Ak = 0. Then for any fixed σ > 0, we are able to find a
maximal positive integer kσ such that

σ < C ·Akσ‖f‖HK̇α,p
q (w1,w2)

.

Therefore

J2 ≤ σp ·
kσ∑

k=−∞

w1(Bk)
αp/nw2(Bk)

p/q

≤ C‖f‖p
HK̇α,p

q (w1,w2)

kσ∑

k=−∞

( w1(Bk)

w1(Bkσ−2)

)αp/n( w2(Bk)

w2(Bkσ−2)

)p/q
.

Since Bk−2 ⊆ Bkσ−2, then by using Lemma B again, we have

wi(Bk−2)

wi(Bkσ−2)
≤ C

( |Bk−2|

|Bkσ−2|

)θ
for i = 1 or 2. (12)

Applying Lemma A and the inequality (12), we finally get

J2 ≤ C‖f‖p
HK̇α,p

q (w1,w2)

kσ∑

k=−∞

1

2(kσ−k)nθ
≤ C‖f‖p

HK̇α,p
q (w1,w2)

. (13)
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Combining the above estimate (13) with (10) and taking the supremum over
all σ > 0, we complete the proof of Theorem 2.

6. Proof of Theorem 3

Proof of Theorem 3. As in Theorem 1, we first choose a number 0 < p1 < p
such that δ = n/p1 − (n+1)/2. Set s = [n(1/p1 − 1)] and N = [n(1/p− 1)].
By using Theorem D and Theorem E, it suffices to show that for every
central (α, q, s;w,w)-atom f with supp f ⊆ B(0, r), then T δ

Rf is a central w-
(p, q,N, ε)-molecule. Moreover, its w-molecular norm is uniformly bounded;
that is

Nw(T
δ
Rf) ≤ C,

where the constant C is independent of f and R.
Observe that δ > [n/p]rw/(rw−1)− (n+1)/2, then a simple calculation

shows that Nrw/n(rw − 1) + 1/(rw − 1) < 1/p1 − 1, thus we can choose a
suitable number ε > 0 satisfying max{Nrw/n(rw − 1)+1/(rw−1), 1/p−1} <
ε < 1/p1 − 1. Let a = 1− 1/p + ε and b = 1− 1/q + ε.
The size condition of central atom f and the inequality (1) imply

‖T δ
R(f)‖Lq

w
≤ ‖T δ

∗ (f)‖Lq
w
≤ C‖f‖Lq

w
≤ Cw(B(0, r))a−b. (14)

On the other hand,

‖T δ
R(f)w(B(0, | · |))b‖q

Lq
w
=

∫

|x|≤2r

∣∣T δ
Rf(x)

∣∣qw(B(0, |x|))bqw(x) dx

+

∫

|x|>2r

∣∣T δ
Rf(x)

∣∣qw(B(0, |x|))bqw(x) dx

=K1 +K2.

Using Lemma A, the inequality (1) and the size condition of f , we obtain

K1 ≤ w(B(0, 2r))bq‖T δ
∗ (f)‖

q
Lq
w

≤ Cw(B(0, r))bq‖f‖q
Lq
w

≤ Cw(B(0, r))bq+1−q/p

= Cw(B(0, r))aq .

(15)

Note that when |x| > 2r, y ∈ B(0, r), then we have |x| > 2|y|. By using the
same arguments as that of Theorem 1(w1 = w2 = w), we can deduce

T δ
∗ f(x) ≤ C ·

rn/p1

|x|n/p1
w(B(0, r))−1/p. (16)
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If |x| > 2r, then B(0, 2r) ⊆ B(0, |x|), by Lemma B, we get

w(B(0, |x|)) ≤ C ·
|x|n

(2r)n
w(B(0, 2r)). (17)

It follows from the inequalities (16) and (17) that

K2 ≤ C

∫

|x|>2r

rnq/p1

|x|nq/p1
w(B(0, r))−q/p ·

|x|nbq

(2r)nbq
w(B(0, 2r))bqw(x) dx

≤ C · rnq(1/p1−b)w(B(0, r))−q/p+bq

∫

|x|>2r

w(x)

|x|nq(1/p1−b)
dx.

Observe that ε < 1/p1− 1, then we have 1/p1− b > 1/q, which is equivalent
to q(1/p1 − b) > 1. Since w ∈ A1, then w ∈ Aq(1/p1−b). Consequently, by
Lemma C, we deduce

K2 ≤ Cw(B(0, r))−q/p+bq+1 = Cw(B(0, r))aq . (18)

Hence, by the inequalities (14), (15) and (18), we obtain

Nw(T
δ
Rf) = ‖T δ

R(f)‖
a/b

Lq
w
· ‖T δ

R(f)w(B(0, | · |))b‖
1−a/b

Lq
w

≤ Cw(B(0, r))(a−b)a/bw(B(0, r))(1−a/b)a

≤ C.

It remains to verify the vanishing moments of T δ
Rf(x). Note that s ≥ N .

Therefore, for every multi-index γ with |γ| ≤ N , we have

∫

Rn

T δ
Rf(x)x

γ dx = (T δ
Rf(x)x

γ)ˆ(0)

= C ·Dγ(T̂ δ
Rf)(0)

= C ·Dγ(φ̂1/R · f̂)(0)

= C ·
∑

|α|+|β|=|γ|

(Dαφ̂1/R)(0)(D
β f̂)(0)

= 0.

This completes the proof of Theorem 3.

Remark. The corresponding results for non-homogeneous weighted Herz-

type Hardy spaces can also be proved by atomic and molecular decomposition

theory. The arguments are similar, so the details are omitted here.

17



References

[1] A. Baernstein II, E. T. Sawyer, Embedding and multiplier theorems for
Hp(Rn), Mem. Amer. Math. Soc, 53(1985).

[2] A. Beurling, Construction and analysis of some convolution algebras,
Ann. Inst. Fourier Grenoble, 14(1964), 1-32.

[3] S. Bochner, Summation of multiple Fourier series by spherical means,
Trans. Amer. Math. Soc, 40(1936), 175-207.

[4] J. Garcia-Cuerva and M.-J. L. Herrero, A theory of Hardy spaces asso-
ciated to Herz spaces, Proc. London Math. Soc, 69(1994), 605-628.

[5] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities
and Related Topics, North-Holland, Amsterdam, 1985.

[6] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for
nontangential maximal function, Lusin area integral, and Walsh-Paley
series, Studia Math, 49(1974), 107-124.

[7] C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely con-
vergent Fourier transforms, J. Math. Mech, 18(1968), 283-324.

[8] M. Y. Lee, Convolution operators on the weighted Herz-type Hardy
spaces, J. Approx. Theory, 138(2006), 197-210.

[9] M. Y. Lee, Weighted norm inequalities of Bochner-Riesz means, J.
Math. Anal. Appl, 324(2006), 1274-1281.

[10] S. Lu, Four Lectures on Real Hp Spaces, World Scientific Publishing,
River Edge, N.J., 1995.

[11] S. Lu and K. Wang, Bochner-Riesz means(in Chinese), Beijing Normal
Univ Press, Beijing, 1988.

[12] S. Lu and D. Yang, The decomposition of the weighted Herz spaces and
its applications, Sci. China(Ser. A), 38(1995), 147-158.

[13] S. Lu and D. Yang, The weighted Herz-type Hardy spaces and its ap-
plications, Sci. China(Ser. A), 38(1995), 662-673.

[14] S. Lu and D. Yang, The local versions of Hp(Rn) spaces at the origin,
Studia Math, 116(1995), 103-131.

18



[15] S. Lu and D. Yang, Oscillatory singular integrals on Hardy spaces asso-
ciated with Herz spaces, Proc. Amer. Math. Soc, 123(1995), 1695-1701.

[16] S. Lu and D. Yang, Herz-type Sobolev and Bessel potential spaces and
their applications, Sci. China(Series. A), 40(1997), 113-129.

[17] S. Lu and D. Yang, Some characterizations of weighted Herz-type Hardy
spaces and its applications, Acta Math. Sinica(New Series), 13(1997),
45-58.

[18] S. Lu, D. Yang and G. Hu, Herz Type Spaces and Their Applications,
Science Press, Beijing, 2008.

[19] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal
function, Trans. Amer. Math. Soc, 165(1972), 207-226.

[20] S. Sato, Weak type estimates for some maximal operators on the
weighted Hardy spaces, Ark. Mat., 33(1995), 377-384.
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