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Abstract. An evolution problem for abstract differential equatioasiudied. The typical problem
is:

. . du

u=A(t)u+F(t,u), t>0;u(0)=up; u:a (%)
HereA(t) is a linear bounded operator in a Hilbert spaiceandF is a nonlinear operatoF (t,u)|| <
Col[u]|P, p > 1, co, p = const> 0. It is assumed that R&(t)u,u) < —y(t)|lul|? Yu € H, where
y(t) > 0, and the case when lim, y(t) = 0 is also considered. An estimate of the rate of decay
of solutions to problem (*) is given. The derivation of thistimate uses a nonlinear differential
inequality.
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1 Introduction
Let
ut) =AMu+F(tu), t>0; ut):=u=— (1.1)
u(0) = up, (1.2)

whereu € H, H is a Hilbert spaceA(t) is a bounded linear operator k, F(t,u) is a nonlinear
operator,
IFE Wl <colull®, p>1, (1.3)

Co and p are positive constants, ang € H.
One says thad\(t) € B(p,N) if every solution to the equation

v(t) = A(t)v (1.4)

satisfies the estimate
IVt <N J|v(s)], t>s>0, (1.5)
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whereN > 0 andp are real numbers. This definition is discussed_in [1] and @aek to P. Bohl
(see the historical remarks inl [1]). Uf(t,s) is an operator that solves the problem

U(t,s) = At)U(t,s), t>s U(ss) =I, (1.6)

wherel is the identity operator, thef (1.5) is equivalent (by thex&@zh-Steinhaus theorem) to the
estimate
lU(t,s) <Ne®s t>s>0. (1.7)

Let us define, following[]], the notion of upper general exgotk for the solutions to(114):

In||U(t+s9)|

K= mt,s—wo t )

t,s>0. (1.8)
If k <0, then||v(t)|| = O(e" ') ast — «, s being fixed.
The following result is obtained in[1], Theorem 3.1, Chapte

Proposition 1.1. If k < 0 and assumptiorf1.3) holds, then the zero solution to equatid) is
asymptotically stable.

Recall that the zero solution to equatign {1.1) is calledpwwov stable if for everg > 0, one
can find ad = d(€) > 0, such that ifjug|| < J, then the solution to problerh (1-2f1.7) satisfies
the estimate syp, ||u(t)|| < &. If, in addition, lim_,. [[u(t)|| = O, then the zero solution to equation
(@0) is called asymptotically stable in the Lyapunov sense

As one can see from our proof of Theorem 1.2, the conditiomudlkess of the initial data
|lup|| < & can be replaced by a different condition:||ifp|| is arbitrary fixed, then one still derives
the relation lim_, ||u(t)|| = O from (2.8) (see below), provided thais sufficiently small.

In Proposition 1.1, the exponekit< 0 is a constant. For example Aft) = A*(t) is a selfadjoint
compact operator, andlj(t) are its eigenvalues)j(t) < Am(t) <0 if j>m, j =1,2,3,..., then
Ai(t) <k <O.

Our goal is to derive an analog of Proposition 1.1 such that Ji, A1(t) = O is allowed, that is,
we do not assume that the spectraifA(t)) of A(t) lies in a half-plane Re < k, wherek < 0 is a
fixedconstant independent of

It is known (see, e.g.| [1]) that i is a bounded linear operator kh with the spectruno (A),
which lies in the half-plane Re< —|k|, |k| > 0, then there is a positive-definite operaférsuch
that R&WA= —V, whereV is an arbitrary given positive-definite operatorHn In other words, if
m=const> 0, 0(A) C {z: Rez< —|k| < 0} andV =V* >m> 0, thatis,(Vu,u) > m(u,u) Yue H,
then the operator equatigxiww + WA= —2V is solvable foW. In fact, there is an explicit formula
forW: W = 2 [ eV tveldt (see[1]). By R& one understands the operator defined by the formula
ReA := Ar := (A+A*)/2, andA = AR+ IA|, whereAgr and A are selfadjoint operators that are
called the real and imaginary partsAflf Ag < —a, a= const> 0, thena(A) lies in the half-plane
Rez < —a. The notatiolA < —ameangAu,u) < —a(u,u) Vue H.

The converse is not true: it is not true that if the spectruna dihear bounded operatax
lies in the half-plane Re < —a, then the inequalityAzr < —a holds. A simple counterexample is
given by the following 2< 2 matrixAin R2, A= ( Oa bl
—0.5+iv/ab— 0.25, and ifab > 0.25, then the spectrumi(A) of Alies in the half-plane Re< —0.5.
On the other hand, if, for exampla= 1 andb =5, u; = up = 0.5, then(Agu,u) > 0.

Inequality RéAu, u) < 0 means that the operatAft) is dissipative Such operators often arise
in applications (see, e.gL.l[9]). The dissipativity prdpedefined by the above inequality, usually

> . The eigenvalues of this matrix are
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means that the energy in the system is dissipating, thdtassytstem is passive. In/[7] a wide class
of passive nonlinear networks is studied, see also [8], @nap

Our basic results on the stability of the solutions to prob{@.1)-[1.2) with dissipative operator
A(t) are formulated in Theorems 1.2 and 1.4. Theorem 1.2 congairaixiliary result used in the
proofs of Theorems 1.2 and 1.4. This result is of interestdsifiand useful in applications.

Theorem 1.2. Assume that RAu,u) < —|k|||u||? for every uc H and inequality3) holds. Then
the solution to problen{I.1)—(1.2) satisfies an estimatu(t)|| = O(e (KI=é)1) as t — w. Here
0 < £ < |[k| can be chosen arbitrarily small jfug|| is sufficiently small.

This theorem implies asymptotic stability in the sense apynov of the zero solution to equa-
tion (I.1). Our proof of Theorem 1.2 is new and very short.

We first prove Theorem 1.2 and Theorem 1.4 in Section 2, bedtgsideas of our proofs of
these theorems are quite similar. Theorem 1.4 contains aemuit, and it is not assumed in the
formulation of this theorem that the spectrumAtgf) lies in a half-plane Re< —|k| with |k| >0
being a constant independenttof

Then we prove Theorem 1.3. The result of this theorem is usdte proofs of Theorems
1.2 and 1.4, and is of general interest. It gives a bound autisnk to a nonlinear differential
inequality. Results of this type, but considerably lessegehwere used extensively (A [6], where the
Dynamical Systems Method (DSM) for solving operator edquretj especially nonlinear equations,
was developed.

The ideas of our proofs are quite different from thesé in [1].

Theorem 1.3. Let gt) > O be defined on an intervgd,T), T > 0, and have a bounded derivative
from the right at every point of this intervadyt) := Iims_>+owgg(t). Assume that (@) satisfies
the following inequality

g(t) < —y(t)g(t) +a(t,gt)) +B(t), t<[0,T); 9(0)=do, (1.9)

wheref(t) > 0and y(t) > 0 are continuous functions, defined ffae), anda(t,v) > 0 is defined
on [0,) x [0,), a(t,v) is non-decreasing as a function of v, locally Lipschitz wehpect to v,
and continuous with respect to t @, := [0, ).

If there exists a functiop > 0, continuously differentiable oR . , such that

1 1 i1t
a(t o)+ B0 < s (v(t) - W) . w0 (1.10)
and 1
g(0) < o (1.11)

then dt) exists for all t> 0, that is, dt) can be extended froff), T) to [0,), and dt) satisfies the
following inequality:
1
0<gt) < —, vt > 0. 1.12
<90 <75 (112)
1 1
Ifg(0) < o) then0 < g(t) < OE vt > 0.
Inequality [I.12) was formulated inl[5] under some différassumptions, but not proved there.
We sketch its proof at the end of this paper.
In [4] inequality [1.9) is studied in the case that include$, g) = cogP, wherep > 1 andcy > 0
are constants, as a particular case: the coefficigint [4] was a function of time.
Our second stability result is the following theorem.
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Theorem 1.4. Assume that inequalitfd.3) holds,

Re(A(t)u,u) < —y(t)[[ul?>,  Vt>0, (1.13)

and o1
y(t) 00 g<1; ci,g=const>0 (1.14)
Suppose that € (0,c;) is an arbitrary fixed numbed = (%)1/(’)_1), (p—1)(c1—¢)>q, and

lu(Q)]| < 3.
Then the unique solution {@.1)-(L.2) exists on all ofR ; and
1
< <— = :

0< U0l < yrpee (1.15)

Remark 1. One may change the formulation of Theorem 1.4 as followsriséme positive
constantsA and v > 0 inequalities (Z2.12) and (2.7) (see below) hold, then inequalitju(t)| <
m holds for all t > 0 for the solution to problenfI.1)-(1.2), as follows from the proof of
Theorem 1.4, given in Section 3.

The rate of decay of the solutiarft) ast — o, obtained in Theorem 1.4, is not necessarily the
best possible. The result in Theorem 1.4 is novel and irtiagebecause no assumption of the type
y(t) > yo > 0, whereyy is a constant, is made. This allows one to study, for instaeeelution
problems with elliptic operatoré\(t) the ellipticity constantA (t) of which may tend to zero as
t — . HereA(t) is the smallest eigenvalue of the matex(t) of the elliptic operatoiA(t). An
example is given in Remark 2, at the end of the paper.

We have assumed above tigt) is a bounded linear operator, since this assumption is basic
the book [1], and in the Introduction to our paper a comparisas made with the results in| [1].
However, boundedness Aft) was not used in our arguments.Aft) is a bounded linear operator
satisfying the assumptions of Theorems 1.2 or 1.4, then anegyuarantee the global existence of
the solution to evolution problerh (1 41.2). If A(t) is an unbounded linear operator for which the
global existence ofi(t) holds, then our arguments, which lead to estimate {1.16)aire valid. In
the example given in Remark 2, the operaidr) = y(t)(A—1), whereA is a selfadjoint realization
of the Laplacian irH = L2(R®), andl is the identity operator ill. For thisA(t) one knows that the
solutionu(t) to problem [(T.11}- (1.2) exists globally, so Theorem 1.4 is applicable.

In Section 2 proofs are given.

2 Proofs

Proof. (Proof of Theorem 1.2)

Multiply (L) by u, denoteg = g(t) := |ju(t)
with y(t) = |k| = const> 0, to get

, take the real part, and use the assumpfion {1.13)

09 < —|K|g® +cog”™t,  p>1 (2.1)

If g(t) > O then the derivativg does exist, as one can easily checlg(t) = 0 on an open subset of
R, then the derivativg does exist on this subset ag) = 0 on this subset. I§(t) = 0 but in any
neighborhoodt — d,t + &) there are points at whiapdoes not vanish, then lgwe understand the
derivative from the right, that is,

o) = Jim, H 00 < i S22



This limit does exist and is equal fo(t)||. Indeed, the function(t) is continuously differentiable,
> Jut+3)

. u(t+s . . :

Jim S = lim ) +o(D)] = a)]l.
The assumption about the existence of the bounded deewg(tiy from the right in Theorem 1.3
was made because the functifpm(t)|| does not have, in general, a derivative in the usual sense at
the pointsr at which|ju(T)|| = 0, no matter how smooth the functioit) is at the pointr. However,
as we have proved above, the derivative from the right does exist always,ft) is continuously
differentiable at the poirit
Sinceg > 0, the inequality[(Z]1) yields inequaliti (1.9) witht) = |k| = const> 0, B(t) = 0,

anda(t,g) = cogP. Inequality [1.10) takes the form

G _ 1 _@>
wmﬁum<”‘um =0 =2
Let
put)=Ae",  A,b=const> 0, (2.3)

and choose the constartsandb later. Then inequality (2]2) takes the form

Co

This inequality holds if .
m+b§|K| (2.5)
Let &€ > 0 be an arbitrary small fixed number. Chodse |k| — € > 0. Then[(2.5) holds if
Az (D)o (2.6)
Condition [1.11) holds if
1
Juoll = (0) < - @.7)
From [2.6),[(2.V) and(1.12) one gets
e ([k|-e)t
0<g(t) = Jut)| < =——, V=0, (2.8)
Theorem 1.2 is proved. O
Proof. (Proof of Theorem 1.4.)
We start with inequality((2]2), let
pt) =A(1+1)Y, A,v =const> 0, (2.9)

and choose the constartsandv later. Inequality[(ZR) holds if

Co 1% C1

< t>0. 2.10
AP-1(141t)(P-Dv * 1+t = (1+0)@ vtz ( )

q<l, (p—1v=>q, (2.11)
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then inequality[(2.710) holds if

Co
m +v <. (2.12)

Let € > 0 be an arbitrary small number. Choose
V=C —E. (2.13)

Then [2.12) holds if[(2]6) holds. Inequalify (111) hold¢2f7) holds. Combinind (216)._(2.7) and

(d.12), one obtains
1

W, vt 2 0- (2.14)

0<lut)[=g(t) <

1

ChooseA = (2)71. Then inequality[(2.12) holds because [0f (2.13). Inequdlit11) holds be-
cause we have assumed in Theorem 1.4th@)| < 4. Thus, the desired inequalify {1]15) holds
by Theorem 1.3.

Theorem 1.4 is proved. O

Proof. (Proof of Theorem 1.3.)
Define

vit) = g(Dalt), a(t) = efo’®% .= AU (2.15)

Then inequality[(1.9) takes the form

ut) < at)[a (t, %) LBM) W(0) =g(0) =g, (2.16)

and .
n(t) = —=Svt) — —=1. (2.17)
From inequalities[{1.11) an@(1]10) one gets

V0) < 7 = n(0). ¥(0) <A (0) (2.18)

Thus,v(t) < n(t) on some interval0, T|. Inequalities[(2.16)[(2.17), and (1]110) imply

V(t) <At), telo,T]. (2.19)
It follows from inequalities[(2.118) an@ (2.119) that

v(t) < n(t), vt > 0. (2.20)
From inequalities[(2.20) anf (Z2]15) one obtains

alt)g(t) =v(t) <n() = %, vt > 0. (2.22)
Sincea(t) > 0, inequality [2.211) is equivalent to inequalify (1.12). i§ kssentially completes the
major part of the proof of inequality (1.1.2). The last corsatun of Theorem 1.3 can be obtained by
a standard limiting procedure.
Let us explain in detail why inequality (2.21) holds fortalt 0. The right-hand side of inequal-
ity (2.27) is defined for alt > 0. The functiong(t), a solution to inequality{(1]9), exists on every
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interval on whichv(t) exists, and/(t), the solution to inequality (Z.16), exists on every intéwa
which the solutiorw(t) to the problem
, w(t)
w(t) = a(t)[at, an " Bt),  w(0)=v(0) (2.22)
exists. It follows from inequality((2.16) and equatién (Z) 2hatv(t) < w(t) on every interva[0, T)
on whichw exists. We have already proved that the solution to prob22) (which also is a
solution to problem[{2.16)) satisfies the estimate
a(t)
w(t) < —= 2.23
026 (2.23)
on every interval on whickv exists. We claim that estimafe (2123) implies thagxists for allt > 0,
in other words, thall = ». Indeed, according to the known result (see, €.g., [2], Tdrad.1 in
Chapter 2), if the maximal interva, T) of the existence of the solution to probleim (2.22) is finite,
that isT < o, then lim_,t_ow(t) = . This, however, cannot happen because of the inequality
(2.23), since the functio@% is bounded for every > 0.
Theorem 1.3 is proved. O

Remark 2. Let H = L2(R®), A(t) = y(t)A, whereA = A* is a selfadjoint operator ikl which
is the closure of a symmetric operatar- | with the domain of definitiorCg (R%). HereA is
the Laplacian. Lety(t) be defined in[(1.14) witle; =1, q=0.5. lete =0.01, p=3, ¢ =
1,2 =10, v = 0.99. Assume thafiug| < (0.99)~1. Theorem 1.4 yields the following estimate
u®)|| < 0.1(1+1)7999 for the solutionu(t) to problem [(T11)-(L.2) with the defined abovA(t)
and a nonlinearity satisfying conditiopn (1.3).
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