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Abstract. An evolution problem for abstract differential equations is studied. The typical problem
is:

u̇= A(t)u+F(t,u), t ≥ 0; u(0) = u0; u̇=
du
dt

(∗)

HereA(t) is a linear bounded operator in a Hilbert spaceH, andF is a nonlinear operator,‖F(t,u)‖≤
c0‖u‖p, p > 1, c0, p = const> 0. It is assumed that Re(A(t)u,u) ≤ −γ(t)‖u‖2 ∀u ∈ H, where
γ(t) > 0, and the case when limt→∞ γ(t) = 0 is also considered. An estimate of the rate of decay
of solutions to problem (*) is given. The derivation of this estimate uses a nonlinear differential
inequality.
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1 Introduction

Let

u̇(t) = A(t)u+F(t,u), t ≥ 0; u̇(t) := u̇=
du
dt

, (1.1)

u(0) = u0, (1.2)

whereu ∈ H, H is a Hilbert space,A(t) is a bounded linear operator inH, F(t,u) is a nonlinear
operator,

‖F(t,u)‖ ≤ c0‖u‖p, p> 1, (1.3)

c0 andp are positive constants, andu0 ∈ H.
One says thatA(t) ∈ B(ρ ,N) if every solution to the equation

v̇(t) = A(t)v (1.4)

satisfies the estimate
‖v(t)‖ ≤ Neρ(t−s)‖v(s)‖, t ≥ s≥ 0, (1.5)
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whereN > 0 andρ are real numbers. This definition is discussed in [1] and goesback to P. Bohl
(see the historical remarks in [1]). IfU(t,s) is an operator that solves the problem

U̇(t,s) = A(t)U(t,s), t ≥ s; U(s,s) = I , (1.6)

whereI is the identity operator, then (1.5) is equivalent (by the Banach-Steinhaus theorem) to the
estimate

‖U(t,s)‖ ≤ Neρ(t−s), t ≥ s≥ 0. (1.7)

Let us define, following [1], the notion of upper general exponentκ for the solutions to (1.4):

κ = limt,s→∞
ln‖U(t +s,s)‖

t
, t,s≥ 0. (1.8)

If κ < 0, then‖v(t)‖ = O(e−|κ |t) ast → ∞, s being fixed.
The following result is obtained in [1], Theorem 3.1, Chapter 7.

Proposition 1.1. If κ < 0 and assumption(1.3) holds, then the zero solution to equation(1.1) is
asymptotically stable.

Recall that the zero solution to equation (1.1) is called Lyapunov stable if for everyε > 0, one
can find aδ = δ (ε) > 0, such that if‖u0‖ ≤ δ , then the solution to problem (1.1)−(1.2) satisfies
the estimate supt≥0‖u(t)‖ ≤ ε . If, in addition, limt→∞ ‖u(t)‖= 0, then the zero solution to equation
(1.1) is called asymptotically stable in the Lyapunov sense.

As one can see from our proof of Theorem 1.2, the condition of smallness of the initial data
‖u0‖ ≤ δ can be replaced by a different condition: if‖u0‖ is arbitrary fixed, then one still derives
the relation limt→∞ ‖u(t)‖ = 0 from (2.8) (see below), provided thatc0 is sufficiently small.

In Proposition 1.1, the exponentκ < 0 is a constant. For example, ifA(t) =A∗(t) is a selfadjoint
compact operator, andλ j(t) are its eigenvalues,λ j(t) ≤ λm(t) < 0 if j > m, j = 1,2,3, ..., then
λ1(t)≤ κ < 0.

Our goal is to derive an analog of Proposition 1.1 such that limt→∞ λ1(t) = 0 is allowed, that is,
we do not assume that the spectrumσ(A(t)) of A(t) lies in a half-plane Rez≤ κ , whereκ < 0 is a
fixedconstant independent oft.

It is known (see, e.g., [1]) that ifA is a bounded linear operator inH with the spectrumσ(A),
which lies in the half-plane Rez≤ −|κ |, |κ | > 0, then there is a positive-definite operatorW such
that ReWA= −V, whereV is an arbitrary given positive-definite operator inH. In other words, if
m= const> 0, σ(A)⊂{z : Rez≤−|κ |< 0} andV =V∗ ≥m> 0, that is,(Vu,u)≥m(u,u) ∀u∈H,
then the operator equationA∗W+WA=−2V is solvable forW. In fact, there is an explicit formula
for W: W = 2

∫ ∞
0 eA∗tVeAtdt (see [1]). By ReA one understands the operator defined by the formula

ReA := AR := (A+A∗)/2, andA = AR+ iAI , whereAR andAI are selfadjoint operators that are
called the real and imaginary parts ofA. If AR≤−a, a= const> 0, thenσ(A) lies in the half-plane
Rez≤−a. The notationA≤−a means(Au,u) ≤−a(u,u) ∀u∈ H.

The converse is not true: it is not true that if the spectrum ofa linear bounded operatorA
lies in the half-plane Rez≤ −a, then the inequalityAR ≤ −a holds. A simple counterexample is

given by the following 2×2 matrixA in R
2, A=

(

0 b
−a −1

)

. The eigenvalues of this matrix are

−0.5± i
√

ab−0.25, and ifab≥ 0.25, then the spectrumσ(A) of A lies in the half-plane Rez≤−0.5.
On the other hand, if, for example,a= 1 andb= 5, u1 = u2 = 0.5, then(ARu,u) > 0.

Inequality Re(Au,u) ≤ 0 means that the operatorA(t) is dissipative. Such operators often arise
in applications (see, e.g., [9]). The dissipativity property, defined by the above inequality, usually
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means that the energy in the system is dissipating, that is, the system is passive. In [7] a wide class
of passive nonlinear networks is studied, see also [8], Chapter 3.

Our basic results on the stability of the solutions to problem (1.1)-(1.2) with dissipative operator
A(t) are formulated in Theorems 1.2 and 1.4. Theorem 1.2 containsan auxiliary result used in the
proofs of Theorems 1.2 and 1.4. This result is of interest by itself and useful in applications.

Theorem 1.2. Assume that Re(Au,u)≤−|κ |‖u‖2 for every u∈ H and inequality(1.3)holds. Then
the solution to problem(1.1)−(1.2) satisfies an estimate‖u(t)‖ = O(e−(|κ |−ε)t) as t→ ∞. Here
0< ε < |κ | can be chosen arbitrarily small if‖u0‖ is sufficiently small.

This theorem implies asymptotic stability in the sense of Lyapunov of the zero solution to equa-
tion (1.1). Our proof of Theorem 1.2 is new and very short.

We first prove Theorem 1.2 and Theorem 1.4 in Section 2, because the ideas of our proofs of
these theorems are quite similar. Theorem 1.4 contains a newresult, and it is not assumed in the
formulation of this theorem that the spectrum ofA(t) lies in a half-plane Rez≤ −|κ | with |κ | > 0
being a constant independent oft.

Then we prove Theorem 1.3. The result of this theorem is used in the proofs of Theorems
1.2 and 1.4, and is of general interest. It gives a bound on solutions to a nonlinear differential
inequality. Results of this type, but considerably less general, were used extensively in [6], where the
Dynamical Systems Method (DSM) for solving operator equations, especially nonlinear equations,
was developed.

The ideas of our proofs are quite different from these in [1].

Theorem 1.3. Let g(t) ≥ 0 be defined on an interval[0,T), T > 0, and have a bounded derivative

from the right at every point of this interval,̇g(t) := lims→+0
g(t+s)−g(t)

s . Assume that g(t) satisfies
the following inequality

ġ(t)≤−γ(t)g(t)+α(t,g(t))+β (t), t ∈ [0,T); g(0) = g0, (1.9)

whereβ (t)≥ 0 andγ(t) ≥ 0 are continuous functions, defined on[0,∞), andα(t,v) ≥ 0 is defined
on [0,∞)× [0,∞), α(t,v) is non-decreasing as a function of v, locally Lipschitz withrespect to v,
and continuous with respect to t onR+ := [0,∞).

If there exists a functionµ > 0, continuously differentiable onR+, such that

α(t,
1

µ(t)
)+β (t)≤ 1

µ(t)

(

γ(t)− µ̇(t)
µ(t)

)

, ∀t ≥ 0, (1.10)

and

g(0) <
1

µ(0)
, (1.11)

then g(t) exists for all t≥ 0, that is, g(t) can be extended from[0,T) to [0,∞), and g(t) satisfies the
following inequality:

0≤ g(t)<
1

µ(t)
, ∀t ≥ 0. (1.12)

If g(0) ≤ 1
µ(0) , then0≤ g(t)≤ 1

µ(t) , ∀t ≥ 0.

Inequality (1.12) was formulated in [5] under some different assumptions, but not proved there.
We sketch its proof at the end of this paper.

In [4] inequality (1.9) is studied in the case that includesα(t,g) = c0gp, wherep> 1 andc0 > 0
are constants, as a particular case: the coefficientc0 in [4] was a function of time.

Our second stability result is the following theorem.
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Theorem 1.4. Assume that inequality(1.3)holds,

Re(A(t)u,u) ≤−γ(t)‖u‖2, ∀t ≥ 0, (1.13)

and
γ(t) =

c1

(1+ t)q , q≤ 1; c1,q= const> 0. (1.14)

Suppose thatε ∈ (0,c1) is an arbitrary fixed number,λ =
( c0

ε
)1/(p−1)

, (p− 1)(c1 − ε) ≥ q, and
‖u(0)‖ ≤ 1

λ .
Then the unique solution to(1.1)−(1.2)exists on all ofR+ and

0≤ ‖u(t)‖ ≤ 1
λ (1+ t)c1−ε . (1.15)

Remark 1. One may change the formulation of Theorem 1.4 as follows: if for some positive
constantsλ and ν > 0 inequalities(2.12) and (2.7) (see below) hold, then inequality‖u(t)‖ ≤

1
λ(1+t)ν holds for all t≥ 0 for the solution to problem(1.1)−(1.2), as follows from the proof of
Theorem 1.4, given in Section 3.

The rate of decay of the solutionu(t) ast → ∞, obtained in Theorem 1.4, is not necessarily the
best possible. The result in Theorem 1.4 is novel and interesting because no assumption of the type
γ(t) ≥ γ0 > 0, whereγ0 is a constant, is made. This allows one to study, for instance, evolution
problems with elliptic operatorsA(t) the ellipticity constantλ (t) of which may tend to zero as
t → ∞. Hereλ (t) is the smallest eigenvalue of the matrixai j (t) of the elliptic operatorA(t). An
example is given in Remark 2, at the end of the paper.

We have assumed above thatA(t) is a bounded linear operator, since this assumption is basicin
the book [1], and in the Introduction to our paper a comparison was made with the results in [1].
However, boundedness ofA(t) was not used in our arguments. IfA(t) is a bounded linear operator
satisfying the assumptions of Theorems 1.2 or 1.4, then one can guarantee the global existence of
the solution to evolution problem (1.1)−(1.2). If A(t) is an unbounded linear operator for which the
global existence ofu(t) holds, then our arguments, which lead to estimate (1.15), remain valid. In
the example given in Remark 2, the operatorA(t) = γ(t)(∆− I), where∆ is a selfadjoint realization
of the Laplacian inH = L2(R3), andI is the identity operator inH. For thisA(t) one knows that the
solutionu(t) to problem (1.1)−(1.2) exists globally, so Theorem 1.4 is applicable.

In Section 2 proofs are given.

2 Proofs

Proof. (Proof of Theorem 1.2).
Multiply (1.1) by u, denoteg= g(t) := ‖u(t)‖, take the real part, and use the assumption (1.13)

with γ(t) = |κ |= const> 0, to get

gġ≤−|κ |g2+c0gp+1, p> 1. (2.1)

If g(t)> 0 then the derivative ˙g does exist, as one can easily check. Ifg(t) = 0 on an open subset of
R+, then the derivative ˙g does exist on this subset and ˙g(t) = 0 on this subset. Ifg(t) = 0 but in any
neighborhood(t−δ , t +δ ) there are points at whichg does not vanish, then by ˙g we understand the
derivative from the right, that is,

ġ(t) := lim
s→+0

g(t +s)−g(t)
s

= lim
s→+0

g(t +s)
s

.
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This limit does exist and is equal to‖u̇(t)‖. Indeed, the functionu(t) is continuously differentiable,
so

lim
s→+0

‖u(t +s)‖
s

= lim
s→+0

‖u̇(t)+o(1)‖ = ‖u̇(t)‖.

The assumption about the existence of the bounded derivative ġ(t) from the right in Theorem 1.3
was made because the function‖u(t)‖ does not have, in general, a derivative in the usual sense at
the pointsτ at which‖u(τ)‖= 0, no matter how smooth the functionu(t) is at the pointτ . However,
as we have proved above, the derivative ˙g(t) from the right does exist always, ifu(t) is continuously
differentiable at the pointt.

Sinceg≥ 0, the inequality (2.1) yields inequality (1.9) withγ(t) = |κ | = const> 0, β (t) = 0,
andα(t,g) = c0gp. Inequality (1.10) takes the form

c0

µ p(t)
≤ 1

µ(t)

(

|κ |− µ̇(t)
µ(t)

)

, ∀t ≥ 0. (2.2)

Let
µ(t) = λebt, λ ,b= const> 0, (2.3)

and choose the constantsλ andb later. Then inequality (2.2) takes the form

c0

λ p−1e(p−1)bt
+b≤ |κ |, ∀t ≥ 0. (2.4)

This inequality holds if
c0

λ p−1 +b≤ |κ |. (2.5)

Let ε > 0 be an arbitrary small fixed number. Chooseb= |κ |− ε > 0. Then (2.5) holds if

λ ≥
(c0

ε
)

1
p−1 . (2.6)

Condition (1.11) holds if

‖u0‖= g(0) ≤ 1
λ
. (2.7)

From (2.6), (2.7) and (1.12) one gets

0≤ g(t) = ‖u(t)‖ ≤ e−(|κ |−ε)t

λ
, ∀t ≥ 0. (2.8)

Theorem 1.2 is proved.

Proof. (Proof of Theorem 1.4.)
We start with inequality (2.2), let

µ(t) = λ (1+ t)ν , λ ,ν = const> 0, (2.9)

and choose the constantsλ andν later. Inequality (2.2) holds if

c0

λ p−1(1+ t)(p−1)ν +
ν

1+ t
≤ c1

(1+ t)q , ∀t ≥ 0. (2.10)

If
q≤ 1, (p−1)ν ≥ q, (2.11)
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then inequality (2.10) holds if
c0

λ p−1 +ν ≤ c1. (2.12)

Let ε > 0 be an arbitrary small number. Choose

ν = c1− ε . (2.13)

Then (2.12) holds if (2.6) holds. Inequality (1.11) holds if(2.7) holds. Combining (2.6), (2.7) and
(1.12), one obtains

0≤ ‖u(t)‖ = g(t)≤ 1
λ (1+ t)c1−ε , ∀t ≥ 0. (2.14)

Chooseλ =
( c0

ε
)

1
p−1 . Then inequality (2.12) holds because of (2.13). Inequality (1.11) holds be-

cause we have assumed in Theorem 1.4 that‖u(0)‖ ≤ 1
λ . Thus, the desired inequality (1.15) holds

by Theorem 1.3.
Theorem 1.4 is proved.

Proof. (Proof of Theorem 1.3.)
Define

v(t) := g(t)a(t), a(t) := e
∫ t

t0
γ(s)ds

, η(t) :=
a(t)
µ(t)

. (2.15)

Then inequality (1.9) takes the form

v̇(t)≤ a(t)[α
(

t,
v(t)
a(t)

)

+β (t)], v(0) = g(0) := g0, (2.16)

and

η̇(t) =
a(t)
µ(t)

[γ(t)− µ̇(t)
µ(t)

]. (2.17)

From inequalities (1.11) and (1.10) one gets

v(0)<
1

µ(0)
= η(0), v̇(0) ≤ η̇(0). (2.18)

Thus,v(t) < η(t) on some interval[0,T]. Inequalities (2.16), (2.17), and (1.10) imply

v̇(t)≤ η̇(t), t ∈ [0,T]. (2.19)

It follows from inequalities (2.18) and (2.19) that

v(t)< η(t), ∀t ≥ 0. (2.20)

From inequalities (2.20) and (2.15) one obtains

a(t)g(t) = v(t) < η(t) =
a(t)
µ(t)

, ∀t ≥ 0. (2.21)

Sincea(t) > 0, inequality (2.21) is equivalent to inequality (1.12). This essentially completes the
major part of the proof of inequality (1.12). The last conclusion of Theorem 1.3 can be obtained by
a standard limiting procedure.

Let us explain in detail why inequality (2.21) holds for allt ≥ 0. The right-hand side of inequal-
ity (2.21) is defined for allt ≥ 0. The functiong(t), a solution to inequality (1.9), exists on every
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interval on whichv(t) exists, andv(t), the solution to inequality (2.16), exists on every interval on
which the solutionw(t) to the problem

ẇ(t) = a(t)[α(t,
w(t)
a(t)

+β (t)], w(0) = v(0) (2.22)

exists. It follows from inequality (2.16) and equation (2.22) thatv(t)≤ w(t) on every interval[0,T)
on whichw exists. We have already proved that the solution to problem (2.22) (which also is a
solution to problem (2.16)) satisfies the estimate

0≤ w(t)≤ a(t)
µ(t)

(2.23)

on every interval on whichw exists. We claim that estimate (2.23) implies thatw exists for allt ≥ 0,
in other words, thatT = ∞. Indeed, according to the known result (see, e.g., [2], Theorem 3.1 in
Chapter 2), if the maximal interval[0,T) of the existence of the solution to problem (2.22) is finite,
that isT < ∞, then limt→T−0w(t) = ∞. This, however, cannot happen because of the inequality
(2.23), since the functiona(t)µ(t) is bounded for everyt ≥ 0.

Theorem 1.3 is proved.

Remark 2. Let H = L2(R3), A(t) = γ(t)A, whereA= A∗ is a selfadjoint operator inH which
is the closure of a symmetric operator∆ − I with the domain of definitionC∞

0 (R
3). Here ∆ is

the Laplacian. Letγ(t) be defined in (1.14) withc1 = 1, q = 0.5. let ε = 0.01, p = 3, c0 =
1, λ = 10, ν = 0.99. Assume that‖u0‖ ≤ (0.99)−1. Theorem 1.4 yields the following estimate
‖u(t)‖ ≤ 0.1(1+ t)−0.99 for the solutionu(t) to problem (1.1)−(1.2) with the defined aboveA(t)
and a nonlinearity satisfying condition (1.3).
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