ON THE SYMMETRY OF PRIMES

Giovanni Coppola

Abstract

We prove a kind of "almost all symmetry" result for the primes, i.e. we give non-trivial bounds for the "symmetry integral", say $I_{\Lambda}(N, h)$, of the von Mangoldt function $\Lambda(n)\left(:=\log p\right.$ for prime-powers $n=p^{r}, 0$ otherwise $)$. Here we get $I_{\Lambda}(N, h) \ll N h L^{5}$, with $L:=\log N$; then, as a Corollary, we bound non-trivially the Selberg integral of the primes, i.e. the mean-square of $\sum_{x<n \leq x+h} \Lambda(n)-h$, over $x \in[N, 2 N]$, to get the "Prime Number Theorem in short intervals" of (log-powers!) length $h \geq L^{\overline{11} / 2+\varepsilon}\left(\varepsilon>0\right.$, arbitrarily small). We trust the improvement $c<\frac{11}{2}$ in the exponent.

1. Introduction and statement of the results.

We give, here, a concrete example of "essentially bounded"(see [C1]), i.e. bounded by arbitrarily small powers, arithmetic function for the problem of "almost all" (abbreviated a.a. now on) symmetry in short intervals (see [C1]), namely the von-Mangoldt function

$$
\Lambda(n) \stackrel{\text { def }}{=} \begin{cases}\log p & \text { if } n=p^{r}, p \text { prime and } r \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

We mean, by almost all the short intervals $[x-h, x+h]$ (or even $[x, x+h]$, here), all of them, for $x \in[N, 2 N]$, except possibly $o(N)$ of them (everywhere in this paper $N \rightarrow \infty$) and "short" since $h=h(N) \rightarrow \infty$ and $h=o(N)$.
Then, the Selberg integral of the primes, namely

$$
J(N, h) \stackrel{\text { def }}{=} \int_{N}^{2 N}\left|\sum_{x<n \leq x+h} \Lambda(n)-h\right|^{2} d x
$$

counts the deviations of the number of primes in a.a. short intervals $[x, x+h]$, giving the well-known Prime Number Theorem in a.a.s.i. (short intervals)

$$
(P N T \text { a.a.s.i. }) \quad \pi(x+h)-\pi(x) \sim \frac{h}{\log x} \forall x \in[N, 2 N] \text { but } o(N)
$$

where $\pi(x):=\mid\{p \leq x: p$ prime $\} \mid$ is the number of primes up to x, since

$$
J(N, h)=o\left(N h^{2}\right) \Longleftrightarrow \text { PNT a.a.s.i. }[x, x+h]
$$

while the symmetry integral of the primes, say (as usual, $t \neq 0 \Rightarrow \operatorname{sgn}(t):=|t| / t, \operatorname{sgn}(0):=0$)

$$
\int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x
$$

checks the a.a. symmetry of primes in short intervals $[x-h, x+h]$, around the center-point x.
Actually, for arithmetic functions $f: \mathbb{N} \rightarrow \mathbb{C}$, we define [C1] the discrete variant, $x \sim N$ is $N<x \leq 2 N$,

$$
I_{f}(N, h) \stackrel{\text { def }}{=} \sum_{x \sim N}\left|\sum_{|n-x| \leq h}^{\prime} f(n) \operatorname{sgn}(n-x)\right|^{2}
$$

where the dash means: the terms $n=x \pm h$ are taken with weight $\frac{1}{2}$; for essentially bounded f, this discrete mean-square is close to the continuous one, see [C1]. For example, $f=\Lambda$ gives, writing hereafter $L:=\log N$,

$$
\int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x \ll \int_{N}^{2 N}\left|\sum_{|n-[x]| \leq h}^{\prime} \Lambda(n) \operatorname{sgn}(n-[x])\right|^{2} d x+N L^{2}
$$

Mathematics Subject Classification (2010) : 11N37, 11N25.
from the trivial $\Lambda(n) \ll \log N$; then, since the integral on the right is the sum over $N \leq x<2 N$, we have to count the terms for $x=N$ and $x=2 N$ as $\ll\left|\sum_{|n-2 N| \leq h}^{\prime} \Lambda(n) \operatorname{sgn}(n-2 N)\right|^{2} \ll h^{2} L^{2}$, in order to get

$$
\int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x \ll \sum_{x \sim N}\left|\sum_{|n-x| \leq h}^{\prime} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2}+N L^{2}+h^{2} L^{2} \ll I_{\Lambda}(N, h)+\left(N+h^{2}\right) L^{2}
$$

where the remainders are $\ll N h L^{2}$, negligible (see Theorem, following), from the hypothesis of short intervals $h \rightarrow \infty$ and $h=o(N)$, when $N \rightarrow \infty$. In the same way,

$$
I_{\Lambda}(N, h) \ll \int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x+\left(N+h^{2}\right) L^{2}
$$

remainders still negligible, for the same reasons. So, we'll work with I_{Λ}, see Theorem proof beginning.
We give our main result.
Theorem. Fix $\varepsilon>0$, small. Let $N, h \in \mathbb{N}$, with $h \leq N^{2 / 3} L$ and $h \rightarrow \infty$ when $N \rightarrow \infty$. Then

$$
\int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x \ll N h L^{5}+N^{\varepsilon} h^{3}
$$

Also, in the same hypotheses, assuming $h \leq \sqrt{N} / N^{\varepsilon}$,

$$
\int_{N}^{2 N}\left|\sum_{|n-x| \leq h} \Lambda(n) \operatorname{sgn}(n-x)\right|^{2} d x \ll N h L^{5}
$$

The new form of the Riemann-von Mangoldt formula, [CLap, Th.m], in [Lang, Th.m 4] then proves the Corollary. Fix $\varepsilon>0$, small. Let $N, H \in \mathbb{N}$, with $H=H(N) \geq L^{11 / 2+\varepsilon}$ and $N \rightarrow \infty$. Then PNT for a.a. short intervals of length H, i.e.

$$
J(N, H)=o\left(N H^{2}\right)
$$

We trust the possibility to get $J(N, H)$ lower bounds from $I_{\Lambda}(N, H)$ lower bounds, [C], in a future paper.
We'll prove the Theorem in $\S 3$ and the Corollary in $\S 4$. First, some elementary Lemmas.

2. Lemmas.

Here $*$ is the Dirichlet product, μ Möbius function, $\mathbf{1}(n)=1$ in his inversion formula $f=g * \mathbf{1} \Leftrightarrow g=f * \mu$. For a generic $f: \mathbb{N} \rightarrow \mathbb{C}$, with $g:=f * \mu$ of finite support, say $\operatorname{supp}(g)$, the Ramanujan coefficients

$$
R_{\ell}(f) \stackrel{\text { def }}{=} \sum_{m \equiv 0(\bmod \ell)} \frac{g(m)}{m} \quad \forall \ell \in \mathbb{N}
$$

are well-defined. If $\operatorname{supp}(g) \subset[1, Q],\|g\|_{\infty}:=\max _{q \in \operatorname{supp}(g)}|g(q)|$ and $\mathbf{1}_{\mathcal{D}}$ is \mathcal{D} characteristic function,

$$
\begin{equation*}
|g| \ll\|g\|_{\infty} \Rightarrow R_{\ell}(g * \mathbf{1})=\frac{1}{\ell} \sum_{q \leq \frac{Q}{\ell}} \frac{g(\ell q)}{q} \ll\|g\|_{\infty} R_{\ell}\left(\mathbf{1}_{[1, Q]} * \mathbf{1}\right) \ll\|g\|_{\infty} R_{\ell}(d) \ll \frac{L}{\ell}\|g\|_{\infty} \tag{0}
\end{equation*}
$$

Here $d=d(n)=(\mathbf{1} * \mathbf{1})(n)$ is the divisor function, supported in $[1,3 N]$, say, so uniformly $\forall Q \leq 3 N$

$$
R_{\ell}\left(\mathbf{1}_{[1, Q]} * \mathbf{1}\right)=\frac{1}{\ell} \sum_{q \leq \frac{Q}{\ell}} \frac{1}{q} \ll \frac{L}{\ell}, \quad R_{\ell}(d)=R_{\ell}(\mathbf{1} * \mathbf{1})=\frac{1}{\ell} \sum_{q \leq \frac{3 N}{\ell}} \frac{1}{q} \ll \frac{L}{\ell}
$$

Define the Fourier coefficients $F_{h}^{ \pm}$as follows in $\S 3$, in the Theorem proof. Until next section, $f: \mathbb{N} \rightarrow \mathbb{R}$. Set

$$
\Sigma_{f}^{(1)}(A):=\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(f) R_{t}(f) \sum_{\substack{j \leq \frac{\ell}{2} \\ \delta:=\left\|\frac{j}{\ell}-\frac{r}{t}\right\|>\frac{1}{A}}}^{*} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x
$$

for $Q \ll N$; here, as usual, $\|\alpha\|:=\min _{n \in \mathbb{Z}}|\alpha-n|$ is the distance to the integers. Here and in the sequel, \sum^{*} denotes restriction to reduced residue classes: $(j, \ell)=1=(r, t)$, whence j / ℓ and r / t are Farey fractions.

Here we want to bound this $\Sigma_{f}^{(1)}(A)$ applying a well-spaced argument, resembling the one used to prove the Large Sieve inequality. This is possible, since the Farey fractions appearing here are both in $] 0,1 / 2[$ (say, both positive). We wish to treat also the following term in the same way.

Defining in fact

$$
\Sigma_{f}^{(2)}(A):=\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(f) R_{t}(f) \sum_{\substack{j \leq \frac{\ell}{2} \\ \sigma:=\left\|\frac{j}{\ell}+\frac{r}{t}\right\|>\frac{t}{A}}}^{*} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \sigma x,
$$

this can be expressed in terms of δ again, changing sign to r and using the fact: $F_{h}^{ \pm}$is odd, see below (§3),

$$
\Sigma_{f}^{(2)}(A)=-\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(f) R_{t}(f) \sum_{\substack{j \leq \frac{\ell}{2}-\frac{t}{2} \leq r \leq-1 \\ \delta=\left\|\frac{j}{\ell}-\frac{r}{t}\right\|>\frac{1}{A}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x
$$

here we have the problem of two different Farey fractions in two different intervals, now, and this prevents us from applying the same well-spaced argument possible for the previous term; but this trouble can be avoided, expressing this double sum over Farey fractions in distinct intervals through double sums over distinct fractions in the same interval. In fact, here in $\Sigma_{f}^{(2)}(A)$, one is positive and the other is negative, whence, looking at all the cases for the signs of $\frac{j}{\ell}$ and $\frac{r}{t}$ (first, exchange them), we may write

$$
2 \Sigma_{f}^{(2)}(A)=-\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(f) R_{t}(f) \sum_{\substack{|j| \leq \frac{\ell}{2} \\ \delta:=\left\|\frac{j}{\ell}-\frac{r}{t}\right\|>\frac{t}{4}}}^{*} \sum_{h}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x+2 \Sigma_{f}^{(1)}(A)
$$

obtaining: $\quad \Sigma_{f}^{(1)}(A)-\Sigma_{f}^{(2)}(A)=\frac{1}{2} \Sigma_{f}(A)$, with Farey fractions $\mathcal{F}=\mathcal{F}_{Q} \subset[0,1]$ of denominators in $\left.] 2, Q\right]$, and

$$
\Sigma_{f}(A) \stackrel{\text { def }}{=} \sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(f) R_{t}(f) \sum_{\substack{\frac{j}{t} \in \mathcal{F} \\ \delta=\| \frac{j}{\ell}-\frac{r}{t} \in \mathcal{F} \\ t}>\frac{1}{A}}^{*} \sum_{h}^{*} F^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x
$$

In all, we can bound the difference $\Sigma_{f}^{(1)}(A)-\Sigma_{f}^{(2)}(A)$ through $\Sigma_{f}(A)$ bound, following.
We can state and show our
Lemma A. Let $A, N, h, Q \in \mathbb{N}$, with $Q \leq 2 N$ and $A \rightarrow \infty, h \rightarrow \infty, h=o(N)$, when $N \rightarrow \infty$. Assume $g: \mathbb{N} \rightarrow \mathbb{R}$ is supported in $[1, Q]$. Then

$$
\Sigma_{g * \mathbf{1}}(A) \ll A L \sum_{2<\ell \leq 2 h}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2}+A L h \sum_{2 h<\ell \leq Q} \frac{1}{\ell}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2}
$$

and, even better, as a consequence of Montgomery $\S \mathcal{G}$ Vaghan generalization of Hilbert's inequality,

$$
\Sigma_{g * 1}(A) \ll A \sum_{2<\ell \leq 2 h}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2}+A h \sum_{2 h<\ell \leq Q} \frac{1}{\ell}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2}
$$

Remark. Of course, in case $Q \leq 2 h$ we have the second sum over ℓ empty, i.e. not counted.
Proof. The first's [C0] elementary Lemma (only Cauchy inequality), see [CS,Lemma 2]. Corollary 2 [M] is:

$$
\left\|\alpha_{m}-\alpha_{n}\right\| \geq \Delta>0 \Rightarrow\left|\sum_{m \neq n} u_{m} \overline{u_{n}} \frac{\sin t\left(\alpha_{m}-\alpha_{n}\right)}{\sin \pi\left(\alpha_{m}-\alpha_{n}\right)}\right| \leq \frac{1}{\Delta} \sum_{m}\left|u_{m}\right|^{2}, \quad \forall t \in \mathbb{R} \forall u_{m} \in \mathbb{C}
$$

which follows [MV] Hilbert's inequality: gives the second, once applied to $\Delta:=1 / A$ well-spaced Farey fractions $\alpha_{m}:=\frac{j}{\ell}, \alpha_{n}:=\frac{r}{t}$, numbering them with $1 \leq m, n \ll Q^{2}, u_{m}:=R_{\ell}(f) F_{h}^{ \pm}\left(\frac{j}{\ell}\right)$; in fact, from

$$
\sum_{Q<x \leq 2 N} \cos 2 \pi \delta x=\sum_{Q<x \leq 2 N} \cos 2 \pi\left(\alpha_{m}-\alpha_{n}\right) x=\frac{1}{2}\left[\frac{\sin t\left(\alpha_{m}-\alpha_{n}\right)}{\sin \pi\left(\alpha_{m}-\alpha_{n}\right)}\right]_{t=2 \pi Q+\pi / 2}^{t=4 \pi N+\pi / 2}
$$

and, see (2), Theorem proof in $\S 3$, using $F_{h}^{ \pm}$is odd,

$$
\frac{1}{\ell^{2}} \sum_{|j| \leq \frac{\ell}{2}}^{*}\left|F_{h}^{ \pm}\left(\frac{j}{\ell}\right)\right|^{2} \leq \frac{2}{\ell^{2}} \sum_{j \leq \frac{\ell}{2}} F_{h}^{ \pm}\left(\frac{j}{\ell}\right)^{2} \ll \min \left(1, \frac{h}{\ell}\right)
$$

recalling the above definition of Ramanujan coefficients $R_{\ell}(f)=R_{\ell}(g * \mathbf{1})$, with $\overline{R_{\ell}(f)}=R_{\ell}(g * \mathbf{1})$,

$$
\sum_{m}\left|u_{m}\right|^{2}=\sum_{2<\ell \leq Q}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2} \frac{1}{\ell^{2}} \sum_{|j| \leq \frac{\ell}{2}}^{*}\left|F_{h}^{ \pm}\left(\frac{j}{\ell}\right)\right|^{2} \ll \sum_{2<\ell \leq Q}\left|\sum_{d \leq \frac{Q}{\ell}} \frac{g(\ell d)}{d}\right|^{2} \min \left(1, \frac{h}{\ell}\right)
$$

We need, now, an upper bound for the symmetry integral of the divisor function $d(n)$; actually, we have it from the asymptotic results of [CS] (see Theorem 1 and Corollary 1 there), but in the hypothesis $h<\frac{\sqrt{N}}{2}$; here, we can confine to bounds, but in a longer range for h and we'll accomplish this in a faster way (no asymptotic estimates are required!). However, the tiny details of calculation come from [CS], like the idea to apply the Large Sieve inequality (here, use Lemma A).

We give and prove the following (see [C2] bounds)
Lemma B. Let $N, h \in \mathbb{N}$ with $h \rightarrow \infty$ and $h \ll N^{2 / 3} L$, when $N \rightarrow \infty$. Then

$$
I_{d}(N, h), \quad \int_{N}^{2 N}\left|\sum_{|n-x| \leq h} d(n) \operatorname{sgn}(n-x)\right|^{2} \ll N h L^{3}
$$

PROOF. Since $I_{d}(N, h)$ differs from the integral for two kind of terms, see the above, we estimate them, i.e.: that for $x=2 N$ giving the negligible $\ll N^{\varepsilon} h^{2} \ll N h L^{3}$, due to $d(n) \ll{ }_{\varepsilon} n^{\varepsilon / 2}$ (see [D]), while we keep that for $n=x$ and $n=x \pm h$, see above \& remark in $\S 3$ on the $\chi_{q}(x)$ "edges", giving $d(x) \& d(x \pm h)$:

$$
d(n)=2 \sum_{d \mid n, d<\sqrt{n}} 1+\mathbf{1}_{\mathbb{N}}(\sqrt{n}) \Rightarrow\left|S_{d}^{ \pm}(x)\right| \ll\left|\sum_{d \leq \sqrt{x}} \chi_{d}(x)\right|+d(x)+d(x \pm h)+\sum_{\sqrt{x-h} \leq d \leq \sqrt{x+h}}\left(\frac{h}{d}+1\right),
$$

see [CS] for details, with $S_{d}^{ \pm}(x)=S_{d}^{ \pm}(x, h):=\sum_{|n-x| \leq h}^{\prime} \operatorname{sgn}(n-x) d(n)$ the symmetry sum of $d(n)$, so

$$
I_{d}(N, h) \ll \sum_{x \sim N}\left|\sum_{d \leq \sqrt{x}} \chi_{d}(x)\right|^{2}+\sum_{x \sim N} d(x)^{2}+\sum_{x \sim N} d(x \pm h)^{2}+\sum_{x \sim N}\left|\sum_{\sqrt{x-h} \leq d \leq \sqrt{x+h}}\left(\frac{h}{d}+1\right)\right|^{2}
$$

where, by Cauchy inequality, this last remainder contributes to $I_{d}(N, h)$ as, see esp. [CS],

$$
\ll \sum_{x \sim N}\left(\frac{h}{\sqrt{N}}+1\right) \sum_{\sqrt{x-h} \leq d \leq \sqrt{x+h}}\left(\frac{h^{2}}{d^{2}}+1\right) \ll \frac{h^{4}}{N}+N \ll N h L^{3}
$$

using our hypotheses on h; the other remainder terms can be estimated using the elementary

$$
\sum_{n \leq x} d(n)^{2}=\sum_{n \leq x} \sum_{d_{1} \mid n} \sum_{d_{2} \mid n} 1=\sum_{d \leq x} \sum_{m_{1} \leq \frac{x}{d}} \sum_{\substack{m_{2} \leq x / d \\\left(m_{1}, m_{2}\right)=1}}\left[\frac{x}{d m_{1} m_{2}}\right] \ll \sum_{d \leq x} \sum_{m_{1} \leq x} \sum_{m_{2} \leq x} \frac{x}{d m_{1} m_{2}}=x\left(\sum_{d \leq x} \frac{1}{d}\right)^{3}
$$

for $[t]$ the integer part of $t, \forall t \in \mathbb{R}$, trivially from the trivial

$$
\sum_{d \leq x} \frac{1}{d} \leq 1+\int_{1}^{x} \frac{d t}{t} \ll \log x
$$

to get

$$
\sum_{x \sim N} d(x-h)^{2}+\sum_{x \sim N} d(x)^{2}+\sum_{x \sim N} d(x+h)^{2} \ll \sum_{n \leq 3 N} d(n)^{2} \ll N L^{3} \ll N h L^{3}
$$

since $h \rightarrow \infty$. Then we are left with (here $c_{j, q}^{ \pm}=-\frac{i}{2 q} F_{h}^{ \pm}(j / q)$, see $\S 3$, compare [CS] coefficients $c_{j, q}$)

$$
\begin{gathered}
\sum_{x \sim N}\left|\sum_{q \leq \sqrt{x}} \chi_{q}(x)\right|^{2} \ll \sum_{x \sim N}\left|\sum_{q \leq \sqrt{N}} \chi_{q}(x)\right|^{2}+\sum_{x \sim N}\left|\sum_{\sqrt{N}<q \leq \sqrt{x}} \chi_{q}(x)\right|^{2} \ll \\
\ll \sum_{x \sim N}\left|\sum_{2<d \leq \sqrt{N}}\left(\sum_{k \leq \frac{\sqrt{N}}{d}} \frac{1}{k}\right) \sum_{j \leq d}^{*} c_{j, d}^{ \pm} \sin \frac{2 \pi x j}{d}\right|^{2}+\sum_{x \sim N}\left|\sum_{2<d \leq \sqrt{x}}\left(\sum_{\frac{\sqrt{N}}{d}<k \leq \frac{\sqrt{x}}{d}} \frac{1}{k}\right) \sum_{j \leq d}^{*} c_{j, d}^{ \pm} \sin \frac{2 \pi x j}{d}\right|^{2} \\
=\Sigma_{1}+\Sigma_{2},
\end{gathered}
$$

say, applying for both of them $\sum_{j \leq d}{ }^{*}\left|c_{j, d}^{ \pm}\right|^{2} \leq \sum_{0<j<d}\left|c_{j, d}^{ \pm}\right|^{2} \ll \min (1, h / d)$, compare (2) in $\S 3$,

$$
\Sigma_{1}:=\sum_{x \sim N}\left|\sum_{2<d \leq \sqrt{N}}\left(\sum_{k \leq \frac{\sqrt{N}}{d}} \frac{1}{k}\right) \sum_{j \leq d}^{*} c_{j, d}^{ \pm} \sin \frac{2 \pi x j}{d}\right|^{2} \ll N h L^{3}
$$

Lemma A, second, or [CS,Lemma 1]; whilst, esp., Lemma A first bound or [C0,Lemma],[CS,Lemma 3]

$$
\Sigma_{2}:=\sum_{x \sim N}\left|\sum_{2<d \leq \sqrt{x}}\left(\sum_{\frac{\sqrt{N}}{d}<k \leq \frac{\sqrt{x}}{d}} \frac{1}{k}\right) \sum_{j \leq d}^{*} c_{j, d}^{ \pm} \sin \frac{2 \pi x j}{d}\right|^{2} \ll N h L^{2}
$$

because w.r.t. Σ_{1} we lose one L (see the Lemma A 1st-2nd bounds difference), but now (see [D])

$$
\sum_{\frac{\sqrt{N}}{d}<k \leq \frac{\sqrt{x}}{d}} \frac{1}{k} \ll 1
$$

(recall $x \ll N$) gains L^{2}, with respect to [T]

$$
\sum_{k \leq \frac{\sqrt{N}}{d}} \frac{1}{k} \ll L
$$

Thus

$$
I_{d}(N, h) \ll \Sigma_{1}+\Sigma_{2}+N h L^{3} \ll N h L^{3}
$$

We explicitly remark that elementary methods can't go beyond the remainder $\mathcal{O}\left(h^{4} / N\right)$: this fixes the range of uniformity for the symmetry integral bound of the divisor function, see the above.

Finally, we obtain here that the terms with Farey fractions $\frac{j}{\ell}, \frac{r}{t}$ such that $\|j / \ell+r / t\| \leq 1 / A<1 / 6 N$ can't have $\ell, t>2$, so they give empty sums (choosing denominators >2, now on, comes from $F_{h}^{ \pm}(1 / 2)=0$).

We state and prove the following
Lemma C. Let $A, N \in \mathbb{N}$ with $A>6 N$. Let $j / \ell, r / t \in] 0,1 / 2]$ be Farey fractions and $\ell, t \leq Q \leq 3 N$. Then

$$
\ell, t>2 \Rightarrow\left\|\frac{j}{\ell}+\frac{r}{t}\right\|>\frac{1}{A}
$$

Proof. Assuming $\sigma:=\left\|\frac{j}{\ell}+\frac{r}{t}\right\| \leq 1 / A$ we'll get the absurd $\frac{j}{\ell}=\frac{1}{2}=\frac{r}{t}$ (in Farey fractions $\Rightarrow \ell, t=2$). So,

$$
\sigma \leq \frac{1}{A} \Rightarrow 0<\frac{j}{\ell}+\frac{r}{t} \leq \frac{1}{A} \text { or we have } 0 \leq 1-\frac{j}{\ell}-\frac{r}{t} \leq \frac{1}{A}
$$

first case gives in particular $0<j \leq \frac{\ell}{A} \leq \frac{Q}{A} \leq \frac{3 N}{A}<1, \quad 0<r \leq \frac{t}{A} \leq \frac{Q}{A} \leq \frac{3 N}{A}<1$, i.e., absurd at once. Hence

$$
0 \leq\left(\frac{1}{2}-\frac{j}{\ell}\right)+\left(\frac{1}{2}-\frac{r}{t}\right) \leq \frac{1}{A} \Rightarrow 0 \leq \frac{1}{2}-\frac{j}{\ell} \leq \frac{1}{A}, 0 \leq \frac{1}{2}-\frac{r}{t} \leq \frac{1}{A}
$$

whence (use $\ell / A, t / A<1$, here)

$$
\frac{\ell}{2}-\frac{\ell}{A} \leq j \leq \frac{\ell}{2}, \quad \frac{t}{2}-\frac{t}{A} \leq r \leq \frac{t}{2}, \Rightarrow j=\left[\frac{\ell}{2}\right], r=\left[\frac{t}{2}\right]
$$

that, see the above for $1-j / \ell-r / t$, give, this time from $A>6 N$,

$$
0 \leq \frac{1}{\ell}\left\{\frac{\ell}{2}\right\}+\frac{1}{t}\left\{\frac{t}{2}\right\} \leq \frac{1}{A} \Rightarrow\{\ell / 2\}=0=\{t / 2\} \Rightarrow 2|\ell, 2| t \Rightarrow \frac{j}{\ell}=\frac{1}{2}=\frac{r}{t}
$$

3. Proof of the Theorem.

PROOF. Write $f=g * \mathbf{1}$, i.e. open $f(n)=\sum_{q \mid n} g(q): q \mid n, n \leq x+h \Rightarrow q \leq x+h$,

$$
I_{f}(N, h)=\sum_{x \sim N}\left|\sum_{q \leq x+h} g(q) \chi_{q}(x)\right|^{2}
$$

with the "character-like" (compare [CS], esp.) $\chi_{q}(x)$, defined below $\forall q \in \mathbb{N}$ (vanishes whenever $\left.q>x+h\right)$:

$$
\chi_{q}(x) \stackrel{\text { def }}{=}-\sum_{\substack{|n-x| \leq h \\ n \equiv 0(\bmod q)}}^{\prime} \operatorname{sgn}(n-x)=-\sum_{\frac{x-h}{q} \leq m \leq \frac{x+h}{q}}^{\prime} \operatorname{sgn}\left(m-\frac{x}{q}\right) \in\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}
$$

we remark that, actually, $\left.\chi_{q}(x)=\mp \frac{1}{2} \Leftrightarrow q \right\rvert\, x \pm h$, the "edges" of $\chi_{q}(x)$; also, cases $\chi_{q}(x) \neq 0$ are "rare".
Here we have, first, to prepare the symmetry sums to further calculations.

In fact, the symmetry sum of our f is, in the hypothesis $x>N+2 h$,

$$
S_{f}^{ \pm}(x, h) \stackrel{\text { def }}{=} \sum_{|n-x| \leq h}^{\prime} \operatorname{sgn}(n-x) f(n)=-\sum_{q \leq N+h} g(q) \chi_{q}(x)-\sum_{N+h<q<x-h} g(q) \chi_{q}(x)-\sum_{x-h \leq q \leq x+h} g(q) \chi_{q}(x)
$$

from $x \leq 2 N<2 N+h$ we get $N+h<q<x-h \Rightarrow 1<\frac{x-h}{q}<\frac{x+h}{q}<2 \Rightarrow \chi_{q}(x)=0$, since $\left.\nexists m \in\right] 1,2[$; and $x-h \leq q \leq x+h \Rightarrow m=1$, i.e. $-\sum_{x-h \leq q \leq x+h} g(q) \chi_{q}(x)=S_{g}^{ \pm}(x, h)$. For general $g: \mathbb{N} \rightarrow \mathbb{C}, f=g * \mathbf{1}$
(1) $S_{f}^{ \pm}(x, h)=S_{g}^{ \pm}(x, h)-\sum_{q \leq N+h} g(q) \chi_{q}(x) \Rightarrow\left|S_{f-g}^{ \pm}(x, h)\right|=\left|S_{g-f}^{ \pm}(x, h)\right|=\left|\sum_{q \leq N+h} g(q) \chi_{q}(x)\right| \forall x>N+2 h$.

Now on we'll work in order to express the sum over q in terms of Farey fractions, i.e. reduced fractions j / ℓ (meaning the g.c.d. (j, ℓ) is 1). For the sake of clarity, we assume that g and its support don't depend on x. From the orthogonality of additive characters:

$$
\chi_{q}(x)=-\sum_{\substack{|s| \leq h \\ s+x \equiv 0(\bmod q)}}^{\prime} \operatorname{sgn}(s)=\frac{1}{q} \sum_{j(\bmod q)}\left(-2 i \sum_{s \leq h}^{\prime} \sin \frac{2 \pi j s}{q}\right) e_{q}(x j)
$$

where the symmetric dashed sum means: $s= \pm h$ terms have weight $\frac{1}{2}$ and the last sum halves only $s=h$;

$$
\chi_{q}(x)=\frac{1}{q} \sum_{j \leq q / 2}\left(4 \sum_{s \leq h}^{\prime} \sin \frac{2 \pi j s}{q}\right) \sin \frac{2 \pi x j}{q}
$$

since $j=0$ gives 0 , also, $j=q / 2$ gives $\sin \frac{2 \pi j s}{q}=\sin \pi s=0, \forall s \in \mathbb{N}$. We define, say, the Fourier coefficients

$$
F_{h}^{ \pm}\left(\frac{j}{q}\right) \stackrel{\text { def }}{=} 4 \sum_{s \leq h}^{\prime} \sin \frac{2 \pi j s}{q}
$$

in the finite Fourier expansion (we need it for $j \leq q / 2$ for the following reason on the non-negativity of $F_{h}^{ \pm}$):

$$
\chi_{q}(x)=\frac{1}{q} \sum_{j \leq q / 2} F_{h}^{ \pm}\left(\frac{j}{q}\right) \sin \frac{2 \pi x j}{q},
$$

where we see immediately that the Fourier coefficients are positive (better, non-negative):

$$
\sum_{s \leq h}^{\prime} \sin \frac{2 \pi j s}{q}=\sum_{s \leq h} \sin \frac{2 \pi j s}{q}-\frac{1}{2} \sin \frac{2 \pi j h}{q}=\cot \frac{\pi j}{q} \sin ^{2} \frac{\pi j h}{q}
$$

from the geometric sum of $e(\alpha s), \forall \alpha \notin \mathbb{Z}$, taking $\alpha:=j / q$. Hence, $F_{h}^{ \pm}$is odd and non-negative in $] 0,1 / 2[$

$$
F_{h}^{ \pm}\left(\frac{j}{q}\right)=4 \cot \frac{\pi j}{q} \sin ^{2} \frac{\pi j h}{q} \geq 0 \quad \forall j \leq \frac{q}{2}
$$

but, also, $\|\alpha\|=\min (\{\alpha\}, 1-\{\alpha\})$ gives

$$
F_{h}^{ \pm}\left(\frac{j}{q}\right)=4 \sum_{s \leq h}^{\prime} \sin \frac{2 \pi j s}{q}=4 \sum_{s \leq q\|h / q\|} \sin \frac{2 \pi j s}{q}+\mathcal{O}(1)=-2 i \sum_{|s|<q\|h / q\|} \operatorname{sgn}(s) e_{q}(j s)+\mathcal{O}(1)
$$

and we need, say, Parseval identity for these coefficients:

$$
\frac{1}{q^{2}} \sum_{j \leq q}\left|\sum_{|s|<q\left\|\frac{h}{q}\right\|} \operatorname{sgn}(s) e_{q}(j s)\right|^{2}=\sum_{\left|s_{1}\right|<q\left\|\frac{h}{q}\right\|} \operatorname{sgn}\left(s_{1}\right) \sum_{\left|s_{2}\right|<q\left\|\frac{h}{q}\right\|} \operatorname{sgn}\left(s_{2}\right) \frac{1}{q^{2}} \sum_{j \leq q} e_{q}\left(j\left(s_{1}-s_{2}\right)\right)=\frac{1}{q} \sum_{0<|s|<q\left\|\frac{h}{q}\right\|} 1,
$$

whence

$$
\begin{equation*}
\frac{1}{q^{2}} \sum_{j \leq \frac{q}{2}} F_{h}^{ \pm}\left(\frac{j}{q}\right)^{2} \ll \min \left(1, \frac{h}{q}\right) \quad \forall q>2 \tag{2}
\end{equation*}
$$

In order to apply a kind of Large Sieve inequality (see Lemma A) we need to express $\chi_{q}(x)$ in terms of Farey fractions (i.e., we need a kind of Ramanujan expansion for it), so we collect in terms of g.c.d. (j, q)

$$
\chi_{q}(x)=\frac{1}{q} \sum_{\substack{d \mid q \\ d<q}} \sum_{\substack{j \leq q / 2 \\(j, q)=d}} F_{h}^{ \pm}\left(\frac{j}{q}\right) \sin \frac{2 \pi x j}{q}=\frac{1}{q} \sum_{\substack{d \mid q \\ d<q}} \sum_{\substack{j^{\prime} \leq q / 2 d \\\left(j^{\prime}, q / d\right)=1}} F_{h}^{ \pm}\left(\frac{j^{\prime}}{q / d}\right) \sin \frac{2 \pi x j^{\prime}}{q / d}
$$

and setting $\ell:=q / d$ we get

$$
\chi_{q}(x)=\frac{1}{q} \sum_{\substack{\ell \mid q \\ \ell>1}} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell} \quad \forall q \in \mathbb{N}
$$

but, actually, since $F_{h}^{ \pm}\left(\frac{1}{2}\right)=0$, we can discard the only denominator giving $1 / 2$ in Farey fractions, i.e. $\ell=2$:

$$
\chi_{q}(x)=\frac{1}{q} \sum_{\substack{\ell \mid q \\ \ell>2}} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell} \quad \forall q \in \mathbb{N} .
$$

Coming back to (1), for generic $f: \mathbb{N} \rightarrow \mathbb{C}$, with (choose $g:=f * \mu$ here) $f=g * \mathbf{1}$, the bound is

$$
I_{f-g}(N, h)=I_{g-f}(N, h) \ll \sum_{N+2 h<x \leq 2 N}\left|\sum_{2<\ell \leq N+h} \sum_{d \leq \frac{N+h}{\ell}} \frac{g(\ell d)}{\ell d} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell}\right|^{2}+h^{3}\|f-g\|_{\infty}^{2}
$$

where $\|f\|_{\infty}:=\max _{n \leq 3 N}|f(n)|$; from Ramanujan coefficients definition, adapted here to $Q=N+h$, i.e.

$$
R_{\ell}(f)=\sum_{d \leq \frac{N+h}{\ell}} \frac{g(\ell d)}{\ell d}
$$

we get

$$
\begin{equation*}
I_{f-g}(N, h)=I_{g-f}(N, h) \ll \sum_{x \sim N}\left|\sum_{2<\ell \leq N+h} R_{\ell}(f) \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell}\right|^{2}+h^{3}\|f-g\|_{\infty}^{2} \tag{3}
\end{equation*}
$$

We may say these symmetry integrals have this Fourier-Ramanujan expansion, for any $f: \mathbb{N} \rightarrow \mathbb{C}, g:=f * \mu$.
Now the idea is very simple, once opened the square and taken sum over x inside: distinguish between terms on the diagonal and "near the diagonal" (in a suitable sense) on one side, giving a kind of majorant principle, opposed to all the others, far from the diagonal, for which we apply a kind of well-spaced argument.

Of course, this can be done for general f. Here, we confine to the case $g=\Lambda, f=\Lambda * \mathbf{1}=\log$, with the abbreviation $Q \stackrel{\text { def }}{=} N+h$:

$$
I_{\Lambda}(N, h) \ll \sum_{x \sim N}\left|\sum_{|n-x| \leq h}^{\prime} \operatorname{sgn}(n-x) \log n\right|^{2}+\sum_{x \sim N}\left|\sum_{2<\ell \leq Q}\left(\sum_{d \leq \frac{Q}{\ell}} \frac{\Lambda(\ell d)}{d}\right) \frac{1}{\ell} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell}\right|^{2}+h^{3} L^{2}
$$

use $\log n=\log x+\mathcal{O}(h / x)$ in the first term, while $\Lambda(n) \ll L$ above and for the $N<x \leq Q$ terms ("tails"),

$$
I_{\Lambda}(N, h) \ll \sum_{Q<x \leq 2 N}\left|\sum_{2<\ell \leq Q}\left(\sum_{d \leq \frac{Q}{\ell}} \frac{\Lambda(\ell d)}{d}\right) \frac{1}{\ell} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \sin \frac{2 \pi x j}{\ell}\right|^{2}+h^{3} L^{2}+\frac{h^{4}}{N}
$$

Last term's negligible; we omit also $\mathcal{O}\left(h^{3} L^{2}\right)$, in final bound. Open the square, take the x-sum inside:

$$
\begin{aligned}
I_{\Lambda}(N, h) & =\sum_{2<\ell, t \leq Q} \sum_{d \leq \frac{Q}{\ell}}\left(\sum_{i=\frac{\Lambda}{l}} \frac{\Lambda(\ell d)}{d}\right)\left(\sum_{q \leq \frac{Q}{t}} \frac{\Lambda(t q)}{q}\right) \frac{1}{\ell} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) \frac{1}{t} \sum_{r \leq \frac{t}{2}}^{*} F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \sin \frac{2 \pi x j}{\ell} \sin \frac{2 \pi x r}{t} \\
& =D_{\log }^{ \pm}(N, h)+\sum_{2<\ell, t \leq Q} \sum_{d \leq \frac{Q}{\ell}}\left(\sum_{\substack{j \leq \frac{\ell}{2} \\
\ell \neq \frac{r}{t}}} \frac{\Lambda(\ell d)}{d}\right)\left(\sum_{q \leq \frac{Q}{t}} \frac{\Lambda(t q)}{q}\right) \frac{1}{\ell t} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{x}
\end{aligned}
$$

where in case $\frac{j}{\ell} \neq \frac{r}{t}$ we set $\sum_{x}:=\frac{1}{2} \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x-\frac{1}{2} \sum_{Q<x \leq 2 N} \cos 2 \pi \sigma x$, abbreviating (compare the above) $\delta:=\left\|\frac{j}{\ell}-\frac{r}{t}\right\|, \quad \sigma:=\left\|\frac{j}{\ell}+\frac{r}{t}\right\|,($ here $\left.\delta \in] 0,1 / 2[, \sigma \in] 0,1 / 2\right]$ from $\ell, t>2$) and we define the diagonal

$$
D_{\log }^{ \pm}(N, h) \stackrel{\text { def }}{=} \sum_{2<\ell \leq Q}\left(\sum_{d \leq \frac{Q}{\ell}} \frac{\Lambda(\ell d)}{d}\right)^{2} \frac{1}{\ell^{2}} \sum_{j \leq \frac{\ell}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right)^{2} \sum_{Q<x \leq 2 N} \sin ^{2} \frac{2 \pi x j}{\ell} \geq 0
$$

However, we may say that the diagonal amounts to $\delta=0$. Now,

$$
\begin{aligned}
& I_{\Lambda}(N, h)=D_{\log }^{ \pm}(N, h)+\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(\log) R_{t}(\log) \sum_{j \leq \frac{\ell}{2}}^{\delta>0} \sum_{r \leq \frac{t}{2}}^{*} F_{h}^{*}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{x}= \\
= & D_{\log }^{ \pm}(N, h)+\frac{1}{2} \sum_{2<\ell, t \leq Q} \sum_{\ell}(\log) R_{t}(\log) \sum_{\substack{j \leq \frac{\ell}{2} \\
0<\delta \leq 1 / A}}^{*} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x+ \\
& +\frac{1}{2} \Sigma_{\log }^{(1)}(A)-\frac{1}{2} \sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(\log) R_{t}(\log) \sum_{\substack{j \leq \frac{\ell}{2} \\
\delta>0, \sigma>1 / A}}^{*} \sum_{r \leq \frac{t}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \sigma x,
\end{aligned}
$$

from $\S 2$ definitions, since $A>6 N$ in Lemma C implies no sum over $\sigma \leq \frac{1}{A}$. From $\frac{j}{\ell} \neq \frac{1}{2} \Rightarrow\|2 j / \ell\| \neq 0$
$\sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(\log) R_{t}(\log) \sum_{\substack{j \leq \frac{\ell}{2} \\ \delta>0, \sigma>1 / A}}^{*} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \sigma x=\Sigma_{\log }^{(2)}(A)+\mathcal{O}\left(\sum_{2<\ell \leq Q} \frac{L^{4}}{\ell^{2}} \sum_{j \leq \frac{\ell}{2}}^{*} \frac{F_{h}^{ \pm\left(\frac{j}{\ell}\right)^{2}}}{\|2 j / \ell\|}\right)$
using the trivial $R_{\ell}(\log) \ll L^{2} / \ell$, see (0), and the elementary in Lemma A proof (compare [D,Chap.25] too)

$$
\sum_{Q<x \leq 2 N} \cos 2 \pi \sigma x \ll \frac{1}{|\sin \pi \sigma|} \ll \frac{1}{\|\sigma\|},
$$

where from the trivial bound $F_{h}^{ \pm}(j / \ell) \ll h$ we get

$$
\sum_{j \leq \ell / 2}^{*} \frac{F_{h}^{ \pm}(j / \ell)^{2}}{\|2 j / \ell\|} \ll h^{2}\left(\ell \sum_{j \leq \ell / 4} \frac{1}{j}+\sum_{\ell / 4<j<\ell / 2} \frac{\ell}{\ell-2 j}\right) \ll h^{2} \ell\left(L+\sum_{n<\ell / 2} \frac{1}{n}\right) \ll \ell h^{2} L
$$

This gives the negligible

$$
\mathcal{O}\left(L^{4} \sum_{2<\ell \leq Q} \frac{1}{\ell^{2}} \sum_{j \leq \frac{\ell}{2}}^{*} \frac{F_{h}^{ \pm}(j / \ell)^{2}}{\|2 j / \ell\|}\right)=\mathcal{O}\left(h^{2} L^{6}\right) .
$$

Hence, in case $A \ll N$, using $\S 2$ initial remarks, i.e. $\Sigma_{f}^{(1)}-\Sigma_{f}^{(2)} \ll\left|\Sigma_{f}\right|$, with Lemma A, (0) \& (2)
$I_{\Lambda}(N, h)=D_{\log }^{ \pm}(N, h)+\frac{1}{2} \sum_{2<\ell, t \leq Q} \sum_{\ell}(\log) R_{t}(\log) \sum_{\substack{j \leq \frac{\ell}{2} \\ 0<\delta \leq 1 / A}}^{*} \sum_{r \leq \frac{t}{2}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x+\mathcal{O}\left(N h L^{5}\right)$.
Recall the inner sum over x in the diagonal $D_{\text {log }}^{ \pm}$is positive, like the sum $\sum_{x} \cos 2 \pi \delta x$ for $0<\delta \leq 1 / A$ which is positive, assuming $A>8 N$ (better, it's $\gg N$ whenever $A \geq 9 N$); we may apply a majorant principle, here, with $R_{\ell}(\log) \ll L R_{\ell}(d)$ from (0), in order to get the following:
$I_{\Lambda}(N, h) \ll L^{2}\left(D_{d}^{ \pm}(N, h)+\frac{1}{2} \sum_{2<\ell, t \leq Q} \sum_{\ell} R_{\ell}(d) R_{t}(d) \sum_{\substack{j \leq \frac{\ell}{2} \\ 0<\delta \leq 1 / A}}^{*} \sum_{\substack{r \leq \frac{t}{2}}}^{*} F_{h}^{ \pm}\left(\frac{j}{\ell}\right) F_{h}^{ \pm}\left(\frac{r}{t}\right) \sum_{Q<x \leq 2 N} \cos 2 \pi \delta x\right)+N h L^{5}$.
The expression in parentheses is, making the same considerations as above with $f(n)=d(n)$ instead of $f(n)=\log n$, applying again Lemma A, same hypotheses on A, simply $I_{d}(N, h)+\mathcal{O}\left(N h L^{3}\right)$, because $I_{d-\mathbf{1}}(N, h)=I_{d}(N, h)$, applying (3) to $g=\mathbf{1}, f=g * \mathbf{1}=\mathbf{1} * \mathbf{1}=d$; then, from Lemma B, with hypotheses that set the range of h-upper bound, after inserting omitted terms, from $I_{d-\mathbf{1}}(N, h)$ and $d(n) \ll N^{\varepsilon / 4}$, too:

$$
I_{\Lambda}(N, h) \ll L^{2}\left(I_{d}(N, h)+N h L^{3}+N^{\varepsilon / 2} h^{3}\right)+N h L^{5}+h^{3} L^{2} \ll N h L^{5}+N^{\varepsilon} h^{3} .
$$

4. Proof of the Corollary.

In order to prove the Corollary, we first give a consequence of the Theorem of [CLap], i.e., see the Proposition, following, giving an explicit formula for $\psi(x) \stackrel{\text { def }}{=} \sum_{n \leq x} \Lambda(n)$ in which the error-term has a very good behavior, both in the discrete and the continuous mean-square over $[N, 2 N]$.

We need, for this reason, to apply and adapt the Theorem of [CLap] to the present situation.
First of all, see that instead of the weight G_{Y}, see [CLap], we may use the following modified version,

$$
\widetilde{G}_{Y}(x, T, t):=\frac{1}{\int_{\frac{T}{2}}^{T} \phi_{Y}(\tau) d \tau} \int_{\frac{T}{2}}^{T} \phi_{Y}(\tau) \int_{\frac{\tau|x-t|}{x}}^{\infty} \frac{\sin u}{u} d u d \tau
$$

since (recall $|x-t| \ll H=o(x)$, here) the formula $\left|\log \frac{x}{t}\right|=\frac{|x-t|}{x}+\mathcal{O}\left((x-t)^{2} / x^{2}\right)$ gives errors

$$
\left|G_{Y}(x, T, t)-\widetilde{G}_{Y}(x, T, t)\right|<_{Y} T\left(\frac{|x-t|}{x}\right)^{2}
$$

which contribute, in the final symmetry integrals, as

$$
\left|I_{f G_{Y}}(N, H)-I_{f \widetilde{G}_{Y}}(N, H)\right| \lll{ }_{Y} \frac{H^{6} T^{2}}{N^{3}}\|f\|_{\infty}^{2} \Rightarrow\left|I_{\Lambda G_{Y}}(N, H)-I_{\Lambda \widetilde{G}_{Y}}(N, H)\right|<_{Y} \frac{H^{6} T^{2} L^{2}}{N^{3}}
$$

(We used the trivial bound $\Lambda(n) \ll L$: Brun-Tichmarsh inequality's poor for H smaller than N powers.)
Recall we abbreviate, as soon before (3) above, $\|f\|_{\infty}=\max _{n \leq 3 N}|f(n)|$.
The weight \widetilde{G}_{Y} doesn't influence the symmetry integral, i.e. with the above definitions, we have the following Lemma D. Let $A, B, C \geq 0$. Assume $L^{\varepsilon} \ll H \ll N^{1 / 2}$ as $N \rightarrow \infty$. Then $\forall f: \mathbb{N} \rightarrow \mathbb{C}$

$$
I_{f}(N, h) \ll N h N^{A} L^{B} \log ^{C} L, \forall h \in\left[L^{\varepsilon}, H\right] \Rightarrow I_{f \widetilde{G}_{Y}}(N, H) \ll Y_{Y} N H N^{A} L^{B} \log ^{C} L+N L^{2}\|f\|_{\infty}^{2}
$$

PROOF. First of all, since $\widetilde{G}_{Y}<_{Y} 1$, compare [CLap], let's use the symmetry of n in \widetilde{G}_{Y} with respect to x :

$$
\sum_{|n-x| \leq H}^{\prime} f(n) \widetilde{G}_{Y}(x, T, n) \operatorname{sgn}(n-x)=\sum_{m \leq H}(f(x+m)-f(x-m)) \widetilde{G}_{Y}(x, T, x+m)+\mathcal{O}_{Y}\left(\|f\|_{\infty}\right)
$$

and apply partial summation $[\mathrm{T}]$:

$$
\begin{aligned}
& \sum_{|n-x| \leq H}^{\prime} f(n) \widetilde{G}_{Y}(x, T, n) \operatorname{sgn}(n-x)=\widetilde{G}_{Y}(x, T, x+H) \sum_{|n-x| \leq H}^{\prime} f(n) \operatorname{sgn}(n-x)+\mathcal{O}_{Y}\left(\|f\|_{\infty}\right) \\
- & \int_{1}^{H} \sum_{|n-x| \leq[t]}^{\prime} f(n) \operatorname{sgn}(n-x) \frac{d}{d t} \widetilde{G}_{Y}(x, T, x+t) d t+\mathcal{O}_{Y}\left(\|f\|_{\infty} \int_{1}^{H}\left|\frac{d}{d t} \widetilde{G}_{Y}(x, T, x+t)\right| d t\right)
\end{aligned}
$$

Hence, abbreviating (see above) the "symmetry sum" $S_{f}^{ \pm}(x,[t])=\sum_{|n-x| \leq[t]}^{\prime} f(n) \operatorname{sgn}(n-x)$,

$$
\begin{gathered}
I_{f \widetilde{G}_{Y}}(N, H) \ll_{Y} I_{f}(N, H)+N L^{2}\|f\|_{\infty}^{2}+ \\
+\int_{1}^{H} \int_{1}^{H} \sum_{x \sim N} S_{f}^{ \pm}\left(x,\left[t_{1}\right]\right) S_{f}^{ \pm}\left(x,\left[t_{2}\right]\right) \frac{d}{d t_{1}} \widetilde{G}_{Y}\left(x, T, x+t_{1}\right) \frac{d}{d t_{2}} \widetilde{G}_{Y}\left(x, T, x+t_{2}\right) d t_{1} d t_{2}
\end{gathered}
$$

due to $\widetilde{G}_{Y}(x, T, m)<_{Y} 1$ and opening of the square, after

$$
\frac{d}{d t} \widetilde{G}_{Y}(x, T, x+t)=-\frac{1}{t} \frac{1}{\int_{\frac{T}{2}}^{T} \phi_{Y}(\tau) d \tau} \int_{\frac{T}{2}}^{T} \phi_{Y}(\tau) \sin \frac{t \tau}{x} d \tau \lll{ }_{Y} \frac{1}{t} \forall t \geq 1
$$

then

$$
I_{f \widetilde{G}_{Y}}(N, H) \ll_{Y} I_{f}(N, H)+N L^{2}\|f\|_{\infty}^{2}+\left(\int_{1}^{H} \frac{1}{t} \sqrt{I_{f}(N,[t])} d t\right)^{2}
$$

applying the Cauchy inequality and, splitting the integral at L^{ε}, we get

$$
I_{f \widetilde{G}_{Y}}(N, H)<_{Y} I_{f}(N, H)+N L^{2}\|f\|_{\infty}^{2}+\left(\int_{L^{\varepsilon}}^{H} \frac{1}{t} \sqrt{I_{f}(N,[t])} d t\right)^{2}
$$

where we used the trivial $I_{f}(N,[t]) \ll N t^{2}\|f\|_{\infty}^{2}$; applying our hypothesis finally gives

$$
I_{f \widetilde{G}_{Y}}(N, H) \ll_{Y} N L^{2}\|f\|_{\infty}^{2}+N H N^{A} L^{B} \log ^{C} L
$$

We need a suitable corollary to the Theorem of [CLap] since that Corollary [CLap] is given for T limited to some N-powers; we want it for T as general as possible, like (see [CLap] for ϕ_{Y}, G_{Y} and w_{Y}) in the following
Proposition. Fix $Y \in \mathbb{N}$. Let $16 \leq N \leq x \leq 2 N, 4 \leq T \leq N / 4,1 \leq M \leq \min \left(T^{\frac{1}{r+1}},\left(\frac{N^{\frac{1}{16}}}{L^{3}}\right)^{1 / Y},\left(\frac{T^{\frac{1}{5}}}{L^{8}}\right)^{1 / Y}\right)$. Then

$$
\psi(x)=x-\sum_{|\gamma| \leq T} w_{Y}\left(\frac{|\gamma|}{T}\right) \frac{x^{\rho}}{\rho}+E_{Y}(x, T, H)
$$

where we assume $\frac{N}{T} \ll h \ll \frac{N}{T}$ and set $H:=[M h]$, for the "symmetry sum"

$$
S_{\Lambda G_{Y}}^{ \pm}(x, H) \stackrel{\text { def }}{=} \sum_{|n-x| \leq H}^{\prime} \Lambda(n) G_{Y}(x, T, n) \operatorname{sgn}(n-x)
$$

with, in the hypothesis $H=o(N)$, both

$$
\sum_{x \sim N}\left|E_{Y}(x, T, H)\right|^{2} \ll_{Y} \sum_{x \sim N}\left|S_{\Lambda G_{Y}}^{ \pm}(x, H)\right|^{2}+N L+N h^{2}\left(\frac{L}{M^{Y}}\right)^{2}
$$

and

$$
\int_{N}^{2 N}\left|E_{Y}(x, T, H)\right|^{2} d x<_{Y} \sum_{N \leq x \leq 2 N}\left|S_{\Lambda G_{Y}}^{ \pm}(x, H)\right|^{2}+N L+N h^{2}\left(\frac{L}{M^{Y}}\right)^{2}
$$

Proof. The same procedure from Theorem [CLap] to Corollary [CLap] gives a slight change, due to T range,

$$
\begin{gathered}
\psi(x)=x-\sum_{|\gamma| \leq T} w_{Y}\left(\frac{|\gamma|}{T}\right) \frac{x^{\rho}}{\rho}+\frac{1}{\pi} S_{\Lambda G_{Y}}^{ \pm}(x, H)+\mathcal{O}(\Lambda([x]-H)+\Lambda([x])+\Lambda([x]+H)+1)+ \\
+\mathcal{O}_{Y}\left(N L / T M^{Y}\right)
\end{gathered}
$$

one L more because $\log N / T \gg 1$, now (hence, a different M); the remainder $\mathcal{O}(N L)$ in the mean-squares is due to the terms:

$$
\left|\psi_{0}(x)-\psi(x)\right| \ll \Lambda(x),-\frac{\zeta^{\prime}(0)}{\zeta(0)} \ll 1
$$

passing from [CLap] formula to the present, with those (see that $H \in \mathbb{N}$, here) $\Lambda(x-H), \Lambda(x), \Lambda(x+H)$, see R_{1} [CLap], from Chebyshev inequality for ψ with $x \in \mathbb{N}$ and $H=o(N)$, all giving to mean-squares:

$$
\ll \sum_{N \leq x \leq 2 N} \Lambda^{2}(x-H)+\sum_{N \leq x \leq 2 N} \Lambda^{2}(x)+\sum_{N \leq x \leq 2 N} \Lambda^{2}(x+H)+N \ll L \sum_{n \leq 3 N} \Lambda(n)+N \ll N L
$$

We are ready to prove our Corollary. Hereafter $\varepsilon>0$ is a fixed, arbitrarily small absolute constant. PROOF. Take $L^{11 / 2+\varepsilon} \leq H \leq N^{1 / 2-\varepsilon}$. We want to estimate the j-sum in Th. 4 [Lang], so the mean-square

$$
I\left(N, T_{j}\right):=\int_{N}^{2 N}\left|E_{Y}\left(x, T_{j},\left[M H_{j}\right]\right)\right|^{2} d x
$$

in it, don't confuse with symmetry integral; $E_{Y}\left(x, T_{j},\left[M H_{j}\right]\right)$ is in the Proposition, $\frac{N}{T_{j}} \ll H_{j} \ll \frac{N}{T_{j}}$, say. We may apply in Th. 4 [Lang] our formula, instead of [KP] one: in place of w there, we'll use w_{Y} here. (Estimates over the zeros are unaffected by these weights, both w and w_{Y}, since we use $w, w_{Y}<_{Y} 1$.) Here Kaczorowski \& Perelli formula corresponds to $Y=1$ in the Proposition; while $Y=[2 / \varepsilon]$ gives $\mathcal{O}_{Y}\left(N L / T_{j} M^{Y}\right)$ negligible: choose $M:=L^{\varepsilon / 2}$, it's $\mathcal{O}_{Y}\left(H_{j} / L^{B}\right), B>1 / 2$, good. Remains $\mathcal{O}_{Y}(N L)$ in
(*) $\sum_{j \leq J} \frac{H^{2}}{H_{j}^{2}} I\left(N, T_{j}\right)=\sum_{j \leq J} \frac{H^{2}}{H_{j}^{2}} \int_{N}^{2 N}\left|E_{Y}\left(x, T_{j},\left[M H_{j}\right]\right)\right|^{2} d x \lll_{Y} \sum_{j \leq J} \frac{H^{2}}{H_{j}^{2}}\left(I_{\Lambda G_{Y}}\left(N,\left[M H_{j}\right]\right)+N L\right)+M^{2} H^{2} L^{3}$
[cit.] $\frac{N}{T_{j}} \ll H_{j} \ll \frac{N}{T_{j}}$; but $M^{2} H^{2} L^{3}=o\left(N H^{2}\right)$ and $k_{1}:=L^{\varepsilon / 4} \Rightarrow H^{2} \sum_{j \leq J} H_{j}^{-2} \mathcal{O}_{Y}(N L)=o\left(N H^{2}\right)$. We are left with the estimate of:

$$
<_{Y} H^{2} \sum_{j \leq J} \frac{1}{H_{j}^{2}} I_{\Lambda G_{Y}}\left(N,\left[M H_{j}\right]\right)
$$

may say, bounded as (see H_{j} definition in [Th.m 4, Lang])

$$
<_{Y} H^{2} \sum_{j \leq J} \frac{1}{H_{j}^{2}}\left(I_{\Lambda} \widetilde{G}_{Y}\left(N,\left[M H_{j}\right]\right)+H_{j}^{4} L^{2+3 \varepsilon} / N\right)<_{Y} H^{2} \sum_{j \leq J} \frac{1}{H_{j}^{2}} N M H_{j} L^{5}+o\left(N H^{2}\right)
$$

as a consequence of our Theorem, after changing G_{Y} into \widetilde{G}_{Y} and Lemma D , with $A=0=C, B=5$. This term gives, into $(*),<_{Y} N H^{2} L^{5+\varepsilon / 2} \sum_{j \ll L} H_{j}^{-1}<_{Y} N H L^{11 / 2+3 \varepsilon / 4}=o\left(N H^{2}\right)$, again, $k_{1}=L^{\varepsilon / 4}$. We are done, since $k_{2}:=L^{\frac{3 \varepsilon}{4}}$ in other terms, after $(*)$, gives to Th.m 4 [Lang] a contribute to $J(N, H)$:

$$
\ll N H^{2}\left(1 / k_{1}+\left(L / H k_{1}\right)^{2}+1 / k_{2}\right)=o\left(N H^{2}\right)
$$

References

[C] Coppola, G. - On some lower bounds of some symmetry integrals - http://arxiv.org/abs/1003.4553v2
[C0] Coppola, G. - On the modified Selberg integral - http://arxiv.org/abs/1006.1229v1
[C1] Coppola, G. - On the symmetry integral - http://arxiv.org/abs/1007.1018v1
[C2] Coppola, G. - On the Correlations, Selberg integral and symmetry of sieve functions in short intervals, II - Int. J. Pure Appl. Math. 58.3(2010), 281-298.
[CLap] Coppola, G. and Laporta, M.B.S. - A new "weighted" form of the Riemann-von Mangoldt explicit formula - Note Mat. 14 (1994), no.2, 263-275 (1997). MR 98k:11118 - available online
[CS] Coppola, G. and Salerno, S. - On the symmetry of the divisor function in almost all short intervals Acta Arith. 113 (2004), no.2, 189-201. MR 2005a:11144 - available online
[D] Davenport, H. - Multiplicative Number Theory - Third Edition, GTM 74, Springer, New York, 2000. MR 2001f:11001
[KP] Kaczorowski, J. and Perelli, A. - On the distribution of primes in short intervals - J. Math. Soc. Japan 45 (1993), no. 3, 447-458. MR 94e:11100 - available online
[Lang] Languasco, A. - A note on primes and Goldbach numbers in short intervals - Acta Math. Hungar. 79 (1998), no. 3, 191-206. MR 99g:11104 - available online
[M] Montgomery, H.L. - The analytic principle of the large sieve - Bull. Amer. Math. Soc. 84 (1978), no. 4, 547-567. MR 57\#5931 - available online
[MV] Montgomery, H.L. and Vaughan, R.C. - Hilbert's inequality - J. London Math. Soc. 8(2) (1974), 73-82. MR 49\#2544
[T] Tenenbaum, G. - Introduction to Analytic and Probabilistic Number Theory - Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press, 1995. MR 97e: 11005b

Dr.Giovanni Coppola
DIIMA - Università degli Studi di Salerno 84084 Fisciano (SA) - ITALY
e-page : www.giovannicoppola.name
e-mail : gcoppola@diima.unisa.it

