
ar
X

iv
:1

00
9.

61
21

v6
  [

m
at

h.
N

T
] 

 9
 N

ov
 2

01
0

ON THE SYMMETRY OF PRIMES

Giovanni Coppola

Abstract. We prove a kind of “almost all symmetry” result for the primes, i.e. we give non-trivial bounds for the

“symmetry integral”, say IΛ(N, h), of the von Mangoldt function Λ(n) (:= log p for prime-powers n = pr , 0 otherwise).

Here we get IΛ(N, h) ≪ NhL5, with L := logN ; then, as a Corollary, we bound non-trivially the Selberg integral of the

primes, i.e. the mean-square of
∑

x<n≤x+hΛ(n) − h, over x ∈ [N, 2N ], to get the “Prime Number Theorem in short

intervals” of (log-powers!) length h ≥ L11/2+ε (ε > 0, arbitrarily small). We trust the improvement c < 11
2 in the exponent.

1. Introduction and statement of the results.

We give, here, a concrete example of “essentially bounded”(see [C1]), i.e. bounded by arbitrarily small
powers, arithmetic function for the problem of “almost all”(abbreviated a.a. now on) symmetry in short
intervals (see [C1]), namely the von-Mangoldt function

Λ(n)
def
=
{
log p if n = pr, p prime and r ∈ N

0 otherwise

We mean, by almost all the short intervals [x−h, x+h] (or even [x, x+h], here), all of them, for x ∈ [N, 2N ],
except possibly o(N) of them (everywhere in this paper N → ∞) and “short” since h = h(N) → ∞ and
h = o(N).
Then, the Selberg integral of the primes, namely

J(N, h)
def
=

∫ 2N

N

∣∣∣
∑

x<n≤x+h

Λ(n)− h
∣∣∣
2

dx,

counts the deviations of the number of primes in a.a. short intervals [x, x+ h], giving the well-known Prime
Number Theorem in a.a.s.i. (short intervals)

(PNT a.a.s.i.) π(x+ h)− π(x) ∼ h

log x
∀x ∈ [N, 2N ] but o(N)

where π(x) := |{p ≤ x : p prime}| is the number of primes up to x, since

J(N, h) = o(Nh2) ⇐⇒ PNT a.a.s.i. [x, x+ h]

while the symmetry integral of the primes, say (as usual, t 6= 0 ⇒ sgn(t) := |t|/t, sgn(0) := 0)

∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n− x)
∣∣∣
2

dx,

checks the a.a. symmetry of primes in short intervals [x− h, x+ h], around the center-point x.
Actually, for arithmetic functions f : N → C, we define [C1] the discrete variant, x ∼ N is N < x ≤ 2N ,

If (N, h)
def
=
∑

x∼N

∣∣∣
∑′

|n−x|≤h

f(n)sgn(n− x)
∣∣∣
2

,

where the dash means: the terms n = x± h are taken with weight 1
2 ; for essentially bounded f , this discrete

mean-square is close to the continuous one, see [C1]. For example, f = Λ gives, writing hereafter L := logN ,

∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n− x)
∣∣∣
2

dx≪
∫ 2N

N

∣∣∣
∑′

|n−[x]|≤h

Λ(n)sgn(n− [x])
∣∣∣
2

dx+NL2,
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from the trivial Λ(n) ≪ logN ; then, since the integral on the right is the sum over N ≤ x < 2N , we have
to count the terms for x = N and x = 2N as ≪ |

∑′
|n−2N |≤hΛ(n)sgn(n− 2N)|2 ≪ h2L2, in order to get

∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n−x)
∣∣∣
2

dx≪
∑

x∼N

∣∣∣
∑′

|n−x|≤h

Λ(n)sgn(n−x)
∣∣∣
2

+NL2+h2L2 ≪ IΛ(N, h)+ (N +h2)L2,

where the remainders are ≪ NhL2, negligible (see Theorem, following), from the hypothesis of short intervals
h→ ∞ and h = o(N), when N → ∞. In the same way,

IΛ(N, h) ≪
∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n− x)
∣∣∣
2

dx+ (N + h2)L2,

remainders still negligible, for the same reasons. So, we’ll work with IΛ, see Theorem proof beginning.

We give our main result.

Theorem. Fix ε > 0, small. Let N, h ∈ N, with h ≤ N2/3L and h→ ∞ when N → ∞. Then

∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n− x)
∣∣∣
2

dx≪ NhL5 +Nεh3.

Also, in the same hypotheses, assuming h ≤
√
N/Nε,

∫ 2N

N

∣∣∣
∑

|n−x|≤h

Λ(n)sgn(n− x)
∣∣∣
2

dx≪ NhL5.

The new form of the Riemann-von Mangoldt formula, [CLap, Th.m], in [Lang, Th.m 4] then proves the

Corollary. Fix ε > 0, small. Let N,H ∈ N, with H = H(N) ≥ L11/2+ε and N → ∞. Then PNT for

a.a. short intervals of length H , i.e.
J(N,H) = o(NH2).

We trust the possibility to get J(N,H) lower bounds from IΛ(N,H) lower bounds, [C], in a future paper.

We’ll prove the Theorem in §3 and the Corollary in §4. First, some elementary Lemmas.

2. Lemmas.

Here ∗ is the Dirichlet product, µ Möbius function, 1(n) = 1 in his inversion formula f = g ∗ 1 ⇔ g = f ∗ µ.
For a generic f : N → C, with g := f ∗ µ of finite support, say supp (g), the Ramanujan coefficients

Rℓ(f)
def
=

∑

m≡0(mod ℓ)

g(m)

m
∀ℓ ∈ N

are well-defined. If supp (g) ⊂ [1, Q], ‖g‖∞ := maxq∈supp (g) |g(q)| and 1D is D characteristic function,

(0) |g| ≪ ‖g‖∞ ⇒ Rℓ(g ∗ 1) =
1

ℓ

∑

q≤Q
ℓ

g(ℓq)

q
≪ ‖g‖∞Rℓ(1[1,Q] ∗ 1) ≪ ‖g‖∞Rℓ(d) ≪

L

ℓ
‖g‖∞.

Here d = d(n) = (1 ∗ 1)(n) is the divisor function, supported in [1, 3N ], say, so uniformly ∀Q ≤ 3N

Rℓ(1[1,Q] ∗ 1) =
1

ℓ

∑

q≤Q
ℓ

1

q
≪ L

ℓ
, Rℓ(d) = Rℓ(1 ∗ 1) = 1

ℓ

∑

q≤ 3N
ℓ

1

q
≪ L

ℓ
.
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Define the Fourier coefficients F±
h as follows in §3, in the Theorem proof. Until next section, f : N → R.

Set

Σ
(1)
f (A) :=

∑∑

2<ℓ,t≤Q

Rℓ(f)Rt(f)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

δ:=‖ j
ℓ
− r

t ‖> 1
A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx,

for Q ≪ N ; here, as usual, ‖α‖ := minn∈Z |α − n| is the distance to the integers. Here and in the sequel,∑∗
denotes restriction to reduced residue classes: (j, ℓ) = 1 = (r, t), whence j/ℓ and r/t are Farey fractions.

Here we want to bound this Σ
(1)
f (A) applying a well-spaced argument, resembling the one used to prove

the Large Sieve inequality. This is possible, since the Farey fractions appearing here are both in ]0, 1/2[ (say,
both positive). We wish to treat also the following term in the same way.

Defining in fact

Σ
(2)
f (A) :=

∑∑

2<ℓ,t≤Q

Rℓ(f)Rt(f)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

σ:=‖ j
ℓ
+ r

t ‖> 1
A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πσx,

this can be expressed in terms of δ again, changing sign to r and using the fact: F±
h is odd, see below (§3),

Σ
(2)
f (A) = −

∑∑

2<ℓ,t≤Q

Rℓ(f)Rt(f)
∑∗ ∑∗

j≤ ℓ
2

− t
2
≤r≤−1

δ:=‖ j
ℓ
− r

t ‖> 1
A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx;

here we have the problem of two different Farey fractions in two different intervals, now, and this prevents
us from applying the same well-spaced argument possible for the previous term; but this trouble can be
avoided, expressing this double sum over Farey fractions in distinct intervals through double sums over

distinct fractions in the same interval. In fact, here in Σ
(2)
f (A), one is positive and the other is negative,

whence, looking at all the cases for the signs of j
ℓ and r

t (first, exchange them), we may write

2Σ
(2)
f (A) = −

∑∑

2<ℓ,t≤Q

Rℓ(f)Rt(f)
∑∗ ∑∗

|j|≤ ℓ
2

|r|≤ t
2

δ:=‖ j
ℓ
− r

t ‖> 1
A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx+ 2Σ
(1)
f (A),

obtaining: Σ
(1)
f (A) − Σ

(2)
f (A) = 1

2Σf (A), with Farey fractions F = FQ ⊂ [0, 1] of denominators in ]2, Q],
and

Σf (A)
def
=
∑∑

2<ℓ,t≤Q

Rℓ(f)Rt(f)
∑∗ ∑∗

j
ℓ
∈F r

t
∈F

δ:=‖ j
ℓ
− r

t ‖> 1
A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx.

In all, we can bound the difference Σ
(1)
f (A)− Σ

(2)
f (A) through Σf (A) bound, following.

We can state and show our

Lemma A. Let A,N, h,Q ∈ N, with Q ≤ 2N and A → ∞, h → ∞, h = o(N), when N → ∞. Assume

g : N → R is supported in [1, Q]. Then

Σg∗1(A) ≪ AL
∑

2<ℓ≤2h

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

+ALh
∑

2h<ℓ≤Q

1

ℓ

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

and, even better, as a consequence of Montgomery & Vaughan generalization of Hilbert’s inequality,

Σg∗1(A) ≪ A
∑

2<ℓ≤2h

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

+Ah
∑

2h<ℓ≤Q

1

ℓ

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

.
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Remark. Of course, in case Q ≤ 2h we have the second sum over ℓ empty, i.e. not counted.

proof.The first’s [C0] elementary Lemma (only Cauchy inequality), see [CS,Lemma 2]. Corollary 2 [M] is:

‖αm − αn‖ ≥ ∆ > 0 ⇒

∣∣∣∣∣∣

∑

m 6=n

umun
sin t(αm − αn)

sinπ(αm − αn)

∣∣∣∣∣∣
≤ 1

∆

∑

m

|um|2, ∀t ∈ R ∀um ∈ C,

which follows [MV] Hilbert’s inequality: gives the second, once applied to ∆ := 1/A well-spaced Farey
fractions αm := j

ℓ , αn := r
t , numbering them with 1 ≤ m,n≪ Q2, um := Rℓ(f)F

±
h

(
j
ℓ

)
; in fact, from

∑

Q<x≤2N

cos 2πδx =
∑

Q<x≤2N

cos 2π(αm − αn)x =
1

2

[
sin t(αm − αn)

sinπ(αm − αn)

]t=4πN+π/2

t=2πQ+π/2

and, see (2), Theorem proof in §3, using F±
h is odd,

1

ℓ2

∑∗

|j|≤ ℓ
2

∣∣∣∣F
±
h

(
j

ℓ

)∣∣∣∣
2

≤ 2

ℓ2

∑

j≤ ℓ
2

F±
h

(
j

ℓ

)2

≪ min

(
1,
h

ℓ

)
,

recalling the above definition of Ramanujan coefficients Rℓ(f) = Rℓ(g ∗ 1), with Rℓ(f) = Rℓ(g ∗ 1),

∑

m

|um|2 =
∑

2<ℓ≤Q

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

1

ℓ2

∑∗

|j|≤ ℓ
2

∣∣∣∣F
±
h

(
j

ℓ

)∣∣∣∣
2

≪
∑

2<ℓ≤Q

∣∣∣∣∣∣

∑

d≤Q
ℓ

g(ℓd)

d

∣∣∣∣∣∣

2

min

(
1,
h

ℓ

)
.

We need, now, an upper bound for the symmetry integral of the divisor function d(n); actually, we have

it from the asymptotic results of [CS] (see Theorem 1 and Corollary 1 there), but in the hypothesis h <
√
N
2 ;

here, we can confine to bounds, but in a longer range for h and we’ll accomplish this in a faster way (no
asymptotic estimates are required !). However, the tiny details of calculation come from [CS], like the idea
to apply the Large Sieve inequality (here, use Lemma A).

We give and prove the following (see [C2] bounds)

Lemma B. Let N, h ∈ N with h→ ∞ and h≪ N2/3L, when N → ∞. Then

Id(N, h),

∫ 2N

N

∣∣∣
∑

|n−x|≤h

d(n)sgn(n− x)
∣∣∣
2

≪ NhL3.

proof.Since Id(N, h) differs from the integral for two kind of terms, see the above, we estimate them, i.e.:
that for x = 2N giving the negligible ≪ Nεh2 ≪ NhL3, due to d(n) ≪ε n

ε/2 (see [D]), while we keep
that for n = x and n = x± h, see above & remark in §3 on the χq(x) “edges”, giving d(x) & d(x± h):

d(n) = 2
∑

d|n,d<√
n

1 + 1N(
√
n) ⇒

∣∣S±
d (x)

∣∣≪

∣∣∣∣∣∣

∑

d≤√
x

χd(x)

∣∣∣∣∣∣
+ d(x) + d(x± h) +

∑
√
x−h≤d≤

√
x+h

(
h

d
+ 1

)
,

see [CS] for details, with S±
d (x) = S±

d (x, h) :=
∑′

|n−x|≤h sgn(n− x)d(n) the symmetry sum of d(n), so

Id(N, h) ≪
∑

x∼N

∣∣∣∣∣∣

∑

d≤√
x

χd(x)

∣∣∣∣∣∣

2

+
∑

x∼N

d(x)2 +
∑

x∼N

d(x± h)2 +
∑

x∼N

∣∣∣∣∣∣

∑
√
x−h≤d≤

√
x+h

(
h

d
+ 1

)∣∣∣∣∣∣

2

,
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where, by Cauchy inequality, this last remainder contributes to Id(N, h) as, see esp. [CS],

≪
∑

x∼N

(
h√
N

+ 1

) ∑
√
x−h≤d≤

√
x+h

(
h2

d2
+ 1

)
≪ h4

N
+N ≪ NhL3,

using our hypotheses on h; the other remainder terms can be estimated using the elementary

∑

n≤x

d(n)2 =
∑

n≤x

∑

d1|n

∑

d2|n
1 =

∑

d≤x

∑

m1≤ x
d

∑

m2≤x/d

(m1,m2)=1

[
x

dm1m2

]
≪
∑

d≤x

∑

m1≤x

∑

m2≤x

x

dm1m2
= x



∑

d≤x

1

d




3

for [t] the integer part of t, ∀t ∈ R, trivially from the trivial

∑

d≤x

1

d
≤ 1 +

∫ x

1

dt

t
≪ log x,

to get ∑

x∼N

d(x− h)2 +
∑

x∼N

d(x)2 +
∑

x∼N

d(x+ h)2 ≪
∑

n≤3N

d(n)2 ≪ NL3 ≪ NhL3,

since h→ ∞. Then we are left with (here c±j,q = − i
2qF

±
h (j/q), see §3, compare [CS] coefficients cj,q)

∑

x∼N

∣∣∣∣∣∣

∑

q≤√
x

χq(x)

∣∣∣∣∣∣

2

≪
∑

x∼N

∣∣∣∣∣∣

∑

q≤
√
N

χq(x)

∣∣∣∣∣∣

2

+
∑

x∼N

∣∣∣∣∣∣

∑
√
N<q≤√

x

χq(x)

∣∣∣∣∣∣

2

≪

≪
∑

x∼N

∣∣∣∣∣∣∣

∑

2<d≤
√
N



∑

k≤
√

N
d

1

k



∑

j≤d

∗
c±j,d sin

2πxj

d

∣∣∣∣∣∣∣

2

+
∑

x∼N

∣∣∣∣∣∣∣

∑

2<d≤√
x




∑
√

N
d <k≤

√
x

d

1

k



∑

j≤d

∗
c±j,d sin

2πxj

d

∣∣∣∣∣∣∣

2

= Σ1 +Σ2,

say, applying for both of them
∑

j≤d
∗|c±j,d|2 ≤∑0<j<d |c±j,d|2 ≪ min(1, h/d), compare (2) in §3,

Σ1 :=
∑

x∼N

∣∣∣∣∣∣∣

∑

2<d≤
√
N



∑

k≤
√

N
d

1

k



∑

j≤d

∗
c±j,d sin

2πxj

d

∣∣∣∣∣∣∣

2

≪ NhL3,

Lemma A, second, or [CS,Lemma 1]; whilst, esp., Lemma A first bound or [C0,Lemma],[CS,Lemma 3]

Σ2 :=
∑

x∼N

∣∣∣∣∣∣∣

∑

2<d≤√
x




∑
√

N
d <k≤

√
x

d

1

k



∑

j≤d

∗
c±j,d sin

2πxj

d

∣∣∣∣∣∣∣

2

≪ NhL2,

because w.r.t. Σ1 we lose one L (see the Lemma A 1st-2nd bounds difference), but now (see [D])

∑
√

N
d <k≤

√
x

d

1

k
≪ 1

(recall x≪ N) gains L2, with respect to [T]

∑

k≤
√

N
d

1

k
≪ L.

5



Thus
Id(N, h) ≪ Σ1 + Σ2 +NhL3 ≪ NhL3.

We explicitly remark that elementary methods can’t go beyond the remainder O(h4/N) : this fixes the range
of uniformity for the symmetry integral bound of the divisor function, see the above.

Finally, we obtain here that the terms with Farey fractions j
ℓ ,

r
t such that ‖j/ℓ+ r/t‖ ≤ 1/A < 1/6N

can’t have ℓ, t > 2, so they give empty sums (choosing denominators > 2, now on, comes from F±
h (1/2) = 0).

We state and prove the following

Lemma C. Let A,N ∈ N with A > 6N . Let j/ℓ, r/t ∈]0, 1/2] be Farey fractions and ℓ, t ≤ Q ≤ 3N . Then

ℓ, t > 2 ⇒
∥∥∥∥
j

ℓ
+
r

t

∥∥∥∥ >
1

A
.

proof.Assuming σ :=
∥∥ j

ℓ +
r
t

∥∥ ≤ 1/A we’ll get the absurd j
ℓ = 1

2 = r
t (in Farey fractions ⇒ ℓ, t = 2). So,

σ ≤ 1

A
⇒ 0 <

j

ℓ
+
r

t
≤ 1

A
or we have 0 ≤ 1− j

ℓ
− r

t
≤ 1

A
;

first case gives in particular 0 < j ≤ ℓ
A ≤ Q

A ≤ 3N
A < 1, 0 < r ≤ t

A ≤ Q
A ≤ 3N

A < 1, i.e., absurd at once.
Hence

0 ≤
(
1

2
− j

ℓ

)
+

(
1

2
− r

t

)
≤ 1

A
⇒ 0 ≤ 1

2
− j

ℓ
≤ 1

A
, 0 ≤ 1

2
− r

t
≤ 1

A
,

whence (use ℓ/A, t/A < 1, here)

ℓ

2
− ℓ

A
≤ j ≤ ℓ

2
,
t

2
− t

A
≤ r ≤ t

2
, ⇒ j =

[
ℓ

2

]
, r =

[
t

2

]

that, see the above for 1− j/ℓ− r/t, give, this time from A > 6N ,

0 ≤ 1

ℓ

{
ℓ

2

}
+

1

t

{
t

2

}
≤ 1

A
⇒ {ℓ/2} = 0 = {t/2} ⇒ 2|ℓ, 2|t ⇒ j

ℓ
=

1

2
=
r

t
.

3. Proof of the Theorem.

proof.Write f = g ∗ 1, i.e. open f(n) =
∑

q|n g(q) : q|n, n ≤ x+ h ⇒ q ≤ x+ h,

If (N, h) =
∑

x∼N

∣∣∣
∑

q≤x+h

g(q)χq(x)
∣∣∣
2

,

with the “character-like”(compare [CS], esp.) χq(x), defined below ∀q ∈ N (vanishes whenever q > x+ h):

χq(x)
def
= −

∑′

|n−x|≤h

n≡0(mod q)

sgn(n− x) = −
∑′

x−h
q ≤m≤ x+h

q

sgn

(
m− x

q

)
∈
{
−1,−1

2
, 0,

1

2
, 1

}
;

we remark that, actually, χq(x) = ∓ 1
2 ⇔ q|x± h, the “edges” of χq(x); also, cases χq(x) 6= 0 are “rare”.

Here we have, first, to prepare the symmetry sums to further calculations.
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In fact, the symmetry sum of our f is, in the hypothesis x > N + 2h,

S±
f (x, h)

def
=

∑′

|n−x|≤h

sgn(n− x)f(n) = −
∑

q≤N+h

g(q)χq(x) −
∑

N+h<q<x−h

g(q)χq(x)−
∑

x−h≤q≤x+h

g(q)χq(x);

from x ≤ 2N < 2N + h we get N + h < q < x − h ⇒ 1 < x−h
q < x+h

q < 2 ⇒ χq(x) = 0, since 6 ∃m ∈]1, 2[;
and x−h ≤ q ≤ x+h ⇒ m = 1, i.e. −∑x−h≤q≤x+h g(q)χq(x) = S±

g (x, h). For general g : N → C, f = g ∗1

(1) S±
f (x, h) = S±

g (x, h)−
∑

q≤N+h

g(q)χq(x) ⇒ |S±
f−g(x, h)| = |S±

g−f (x, h)| =

∣∣∣∣∣∣

∑

q≤N+h

g(q)χq(x)

∣∣∣∣∣∣
∀x > N+2h.

Now on we’ll work in order to express the sum over q in terms of Farey fractions, i.e. reduced fractions j/ℓ
(meaning the g.c.d. (j, ℓ) is 1). For the sake of clarity, we assume that g and its support don’t depend on x.

From the orthogonality of additive characters:

χq(x) = −
∑′

|s|≤h

s+x≡0(mod q)

sgn(s) =
1

q

∑

j(mod q)

(
− 2i

∑′

s≤h

sin
2πjs

q

)
eq(xj),

where the symmetric dashed sum means: s = ±h terms have weight 1
2 and the last sum halves only s = h;

χq(x) =
1

q

∑

j≤q/2

(
4
∑′

s≤h

sin
2πjs

q

)
sin

2πxj

q
,

since j = 0 gives 0, also, j = q/2 gives sin 2πjs
q = sinπs = 0, ∀s ∈ N. We define, say, the Fourier coefficients

F±
h

(
j

q

)
def
= 4

∑′

s≤h

sin
2πjs

q
,

in the finite Fourier expansion (we need it for j ≤ q/2 for the following reason on the non-negativity of F±
h ):

χq(x) =
1

q

∑

j≤q/2

F±
h

(
j

q

)
sin

2πxj

q
,

where we see immediately that the Fourier coefficients are positive (better, non-negative):

∑′

s≤h

sin
2πjs

q
=
∑

s≤h

sin
2πjs

q
− 1

2
sin

2πjh

q
= cot

πj

q
sin2

πjh

q
,

from the geometric sum of e(αs), ∀α 6∈ Z, taking α := j/q. Hence, F±
h is odd and non-negative in ]0, 1/2[

F±
h

(
j

q

)
= 4 cot

πj

q
sin2

πjh

q
≥ 0 ∀j ≤ q

2

but, also, ‖α‖ = min({α}, 1− {α}) gives

F±
h

(
j

q

)
= 4

∑′

s≤h

sin
2πjs

q
= 4

∑

s≤q‖h/q‖
sin

2πjs

q
+O(1) = −2i

∑

|s|<q‖h/q‖
sgn(s)eq(js) +O(1)

and we need, say, Parseval identity for these coefficients:

1

q2

∑

j≤q

∣∣∣
∑

|s|<q‖h
q ‖

sgn(s)eq(js)
∣∣∣
2

=
∑

|s1|<q‖h
q ‖

sgn(s1)
∑

|s2|<q‖ h
q ‖

sgn(s2)
1

q2

∑

j≤q

eq(j(s1 − s2)) =
1

q

∑

0<|s|<q‖h
q ‖

1,
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whence

(2)
1

q2

∑

j≤ q
2

F±
h

(
j

q

)2

≪ min

(
1,
h

q

)
∀q > 2

In order to apply a kind of Large Sieve inequality (see Lemma A) we need to express χq(x) in terms of Farey
fractions (i.e., we need a kind of Ramanujan expansion for it), so we collect in terms of g.c.d. (j, q)

χq(x) =
1

q

∑

d|q
d<q

∑

j≤q/2

(j,q)=d

F±
h

(
j

q

)
sin

2πxj

q
=

1

q

∑

d|q
d<q

∑

j′≤q/2d

(j′ ,q/d)=1

F±
h

(
j′

q/d

)
sin

2πxj′

q/d

and setting ℓ := q/d we get

χq(x) =
1

q

∑

ℓ|q
ℓ>1

∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)
sin

2πxj

ℓ
∀q ∈ N

but, actually, since F±
h

(
1
2

)
= 0, we can discard the only denominator giving 1/2 in Farey fractions, i.e.

ℓ = 2:

χq(x) =
1

q

∑

ℓ|q
ℓ>2

∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)
sin

2πxj

ℓ
∀q ∈ N.

Coming back to (1), for generic f : N → C, with (choose g := f ∗ µ here) f = g ∗ 1, the bound is

If−g(N, h) = Ig−f (N, h) ≪
∑

N+2h<x≤2N

∣∣∣
∑

2<ℓ≤N+h

∑

d≤N+h
ℓ

g(ℓd)

ℓd

∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)
sin

2πxj

ℓ

∣∣∣
2

+ h3‖f − g‖2∞,

where ‖f‖∞ := maxn≤3N |f(n)|; from Ramanujan coefficients definition, adapted here to Q = N + h, i.e.

Rℓ(f) =
∑

d≤N+h
ℓ

g(ℓd)

ℓd
,

we get

(3) If−g(N, h) = Ig−f (N, h) ≪
∑

x∼N

∣∣∣∣∣∣

∑

2<ℓ≤N+h

Rℓ(f)
∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)
sin

2πxj

ℓ

∣∣∣∣∣∣

2

+ h3‖f − g‖2∞.

We may say these symmetry integrals have this Fourier-Ramanujan expansion, for any f : N → C, g := f ∗µ.
Now the idea is very simple, once opened the square and taken sum over x inside: distinguish between

terms on the diagonal and “near the diagonal” (in a suitable sense) on one side, giving a kind of majorant
principle, opposed to all the others, far from the diagonal, for which we apply a kind of well-spaced argument.

Of course, this can be done for general f . Here, we confine to the case g = Λ, f = Λ ∗1 = log, with the

abbreviation Q
def
= N + h:

IΛ(N, h) ≪
∑

x∼N

∣∣∣∣∣∣

∑′

|n−x|≤h

sgn(n− x) log n

∣∣∣∣∣∣

2

+
∑

x∼N

∣∣∣∣∣∣

∑

2<ℓ≤Q

( ∑

d≤Q
ℓ

Λ(ℓd)

d

)1
ℓ

∑∗

j≤ ℓ
2

F±
h

(j
ℓ

)
sin

2πxj

ℓ

∣∣∣∣∣∣

2

+ h3L2;

use logn = log x+O(h/x) in the first term, while Λ(n) ≪ L above and for the N < x ≤ Q terms (“tails”),

IΛ(N, h) ≪
∑

Q<x≤2N

∣∣∣∣∣∣

∑

2<ℓ≤Q

( ∑

d≤Q
ℓ

Λ(ℓd)

d

)1
ℓ

∑∗

j≤ ℓ
2

F±
h

( j
ℓ

)
sin

2πxj

ℓ

∣∣∣∣∣∣

2

+ h3L2 +
h4

N
.
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Last term’s negligible; we omit also O(h3L2), in final bound. Open the square, take the x−sum inside:

IΛ(N, h) =
∑∑

2<ℓ,t≤Q

( ∑

d≤Q
ℓ

Λ(ℓd)

d

)( ∑

q≤Q
t

Λ(tq)

q

)1
ℓ

∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)
1

t

∑∗

r≤ t
2

F±
h

(r
t

) ∑

Q<x≤2N

sin
2πxj

ℓ
sin

2πxr

t

= D±
log(N, h) +

∑∑

2<ℓ,t≤Q

( ∑

d≤Q
ℓ

Λ(ℓd)

d

)( ∑

q≤Q
t

Λ(tq)

q

) 1

ℓt

∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

j
ℓ
6= r

t

F±
h

(
j

ℓ

)
F±
h

(r
t

)∑

x

,

where in case j
ℓ 6= r

t we set
∑

x

:=
1

2

∑

Q<x≤2N

cos 2πδx− 1

2

∑

Q<x≤2N

cos 2πσx, abbreviating (compare the

above) δ :=
∥∥ j

ℓ − r
t

∥∥, σ :=
∥∥ j
ℓ +

r
t

∥∥, (here δ ∈]0, 1/2[, σ ∈]0, 1/2] from ℓ, t > 2) and we define the diagonal

D±
log(N, h)

def
=

∑

2<ℓ≤Q

( ∑

d≤Q
ℓ

Λ(ℓd)

d

)2 1

ℓ2

∑∗

j≤ ℓ
2

F±
h

(
j

ℓ

)2 ∑

Q<x≤2N

sin2
2πxj

ℓ
≥ 0.

However, we may say that the diagonal amounts to δ = 0. Now,

IΛ(N, h) = D±
log(N, h) +

∑∑

2<ℓ,t≤Q

Rℓ(log)Rt(log)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

δ>0

F±
h

(
j

ℓ

)
F±
h

(r
t

)∑

x

=

= D±
log(N, h) +

1

2

∑∑

2<ℓ,t≤Q

Rℓ(log)Rt(log)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

0<δ≤1/A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx+

+
1

2
Σ

(1)
log(A) −

1

2

∑∑

2<ℓ,t≤Q

Rℓ(log)Rt(log)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

δ>0,σ>1/A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πσx,

from §2 definitions, since A > 6N in Lemma C implies no sum over σ ≤ 1
A . From j

ℓ 6= 1
2 ⇒ ‖2j/ℓ‖ 6= 0

∑∑

2<ℓ,t≤Q

Rℓ(log)Rt(log)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

δ>0,σ>1/A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πσx = Σ
(2)
log(A)+O




∑

2<ℓ≤Q

L4

ℓ2

∑∗

j≤ ℓ
2

F±
h

(
j
ℓ

)2

‖2j/ℓ‖





using the trivial Rℓ(log) ≪ L2/ℓ, see (0), and the elementary in Lemma A proof (compare [D,Chap.25] too)

∑

Q<x≤2N

cos 2πσx≪ 1

| sinπσ| ≪
1

‖σ‖ ,

where from the trivial bound F±
h (j/ℓ) ≪ h we get

∑∗

j≤ℓ/2

F±
h (j/ℓ)

2

‖2j/ℓ‖ ≪ h2
(
ℓ
∑

j≤ℓ/4

1

j
+

∑

ℓ/4<j<ℓ/2

ℓ

ℓ− 2j

)
≪ h2ℓ

(
L+

∑

n<ℓ/2

1

n

)
≪ ℓh2L.

This gives the negligible

O



L4
∑

2<ℓ≤Q

1

ℓ2

∑∗

j≤ ℓ
2

F±
h (j/ℓ)

2

‖2j/ℓ‖



 = O
(
h2L6

)
.
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Hence, in case A≪ N , using §2 initial remarks, i.e. Σ
(1)
f − Σ

(2)
f ≪ |Σf |, with Lemma A, (0) & (2)

IΛ(N, h) = D±
log(N, h) +

1

2

∑∑

2<ℓ,t≤Q

Rℓ(log)Rt(log)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

0<δ≤1/A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx+O
(
NhL5

)
.

Recall the inner sum over x in the diagonal D±
log is positive, like the sum

∑
x cos 2πδx for 0 < δ ≤ 1/A which

is positive, assuming A > 8N (better, it’s ≫ N whenever A ≥ 9N); we may apply a majorant principle,
here, with Rℓ(log) ≪ LRℓ(d) from (0), in order to get the following:

IΛ(N, h) ≪ L2


D

±
d (N, h) +

1

2

∑∑

2<ℓ,t≤Q

Rℓ(d)Rt(d)
∑∗ ∑∗

j≤ ℓ
2

r≤ t
2

0<δ≤1/A

F±
h

(
j

ℓ

)
F±
h

(r
t

) ∑

Q<x≤2N

cos 2πδx


+NhL5.

The expression in parentheses is, making the same considerations as above with f(n) = d(n) instead of
f(n) = log n, applying again Lemma A, same hypotheses on A, simply Id(N, h) + O

(
NhL3

)
, because

Id−1(N, h) = Id(N, h), applying (3) to g = 1, f = g ∗ 1 = 1 ∗ 1 = d; then, from Lemma B, with hypotheses
that set the range of h−upper bound, after inserting omitted terms, from Id−1(N, h) and d(n) ≪ Nε/4, too:

IΛ(N, h) ≪ L2(Id(N, h) +NhL3 +Nε/2h3) +NhL5 + h3L2 ≪ NhL5 +Nεh3.
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4. Proof of the Corollary.

In order to prove the Corollary, we first give a consequence of the Theorem of [CLap], i.e., see the Proposition,

following, giving an explicit formula for ψ(x)
def
=
∑

n≤x Λ(n) in which the error-term has a very good behavior,
both in the discrete and the continuous mean-square over [N, 2N ].

We need, for this reason, to apply and adapt the Theorem of [CLap] to the present situation.
First of all, see that instead of the weight GY , see [CLap], we may use the following modified version,

G̃Y (x, T, t) :=
1

∫ T
T
2
φY (τ)dτ

∫ T

T
2

φY (τ)

∫ ∞

τ|x−t|
x

sinu

u
du dτ,

since (recall |x− t| ≪ H = o(x), here) the formula | log x
t | =

|x−t|
x +O((x − t)2/x2) gives errors

∣∣∣GY (x, T, t)− G̃Y (x, T, t)
∣∣∣≪Y T

( |x− t|
x

)2

which contribute, in the final symmetry integrals, as

∣∣∣IfGY (N,H)− I
fG̃Y

(N,H)
∣∣∣≪Y

H6T 2

N3
‖f‖2∞ ⇒

∣∣∣IΛGY (N,H)− I
ΛG̃Y

(N,H)
∣∣∣≪Y

H6T 2L2

N3
.

(We used the trivial bound Λ(n) ≪ L : Brun-Tichmarsh inequality’s poor for H smaller than N powers.)

Recall we abbreviate, as soon before (3) above, ‖f‖∞ = maxn≤3N |f(n)|.

The weight G̃Y doesn’t influence the symmetry integral, i.e. with the above definitions, we have the following

Lemma D. Let A,B,C ≥ 0. Assume Lε ≪ H ≪ N1/2 as N → ∞. Then ∀f : N → C

If (N, h) ≪ NhNALB logC L, ∀h ∈ [Lε, H ] ⇒ I
fG̃Y

(N,H) ≪Y NHNALB logC L+NL2‖f‖2∞.

proof.First of all, since G̃Y ≪Y 1, compare [CLap], let’s use the symmetry of n in G̃Y with respect to x:

∑′

|n−x|≤H

f(n)G̃Y (x, T, n)sgn(n− x) =
∑

m≤H

(f(x+m)− f(x−m))G̃Y (x, T, x+m) +OY (‖f‖∞)

and apply partial summation [T] :

∑′

|n−x|≤H

f(n)G̃Y (x, T, n)sgn(n− x) = G̃Y (x, T, x+H)
∑′

|n−x|≤H

f(n)sgn(n− x) +OY (‖f‖∞)

−
∫ H

1

∑′

|n−x|≤[t]

f(n)sgn(n− x)
d

dt
G̃Y (x, T, x+ t)dt+OY

(
‖f‖∞

∫ H

1

∣∣∣∣
d

dt
G̃Y (x, T, x+ t)

∣∣∣∣ dt
)
.

Hence, abbreviating (see above) the “symmetry sum” S±
f (x, [t]) =

∑′
|n−x|≤[t] f(n)sgn(n− x),

I
fG̃Y

(N,H) ≪Y If (N,H) +NL2‖f‖2∞+

+

∫ H

1

∫ H

1

∑

x∼N

S±
f (x, [t1])S

±
f (x, [t2])

d

dt1
G̃Y (x, T, x+ t1)

d

dt2
G̃Y (x, T, x+ t2)dt1dt2,

due to G̃Y (x, T,m) ≪Y 1 and opening of the square, after

d

dt
G̃Y (x, T, x+ t) = −1

t

1
∫ T

T
2
φY (τ)dτ

∫ T

T
2

φY (τ) sin
tτ

x
dτ ≪Y

1

t
∀t ≥ 1;
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then

I
fG̃Y

(N,H) ≪Y If (N,H) +NL2‖f‖2∞ +

(∫ H

1

1

t

√
If (N, [t])dt

)2

,

applying the Cauchy inequality and, splitting the integral at Lε, we get

I
fG̃Y

(N,H) ≪Y If (N,H) +NL2‖f‖2∞ +

(∫ H

Lε

1

t

√
If (N, [t])dt

)2

,

where we used the trivial If (N, [t]) ≪ Nt2‖f‖2∞; applying our hypothesis finally gives

I
fG̃Y

(N,H) ≪Y NL2‖f‖2∞ +NHNALB logC L.

We need a suitable corollary to the Theorem of [CLap] since that Corollary [CLap] is given for T limited
to some N−powers; we want it for T as general as possible, like (see [CLap] for φY , GY and wY ) in the
following

Proposition. Fix Y ∈ N. Let 16 ≤ N ≤ x ≤ 2N , 4 ≤ T ≤ N/4, 1 ≤M ≤ min(T
1

Y +1 , (N
1
16

L3 )1/Y , (T
1
5

L8 )
1/Y ).

Then

ψ(x) = x−
∑

|γ|≤T

wY

( |γ|
T

)
xρ

ρ
+ EY (x, T,H),

where we assume N
T ≪ h≪ N

T and set H := [Mh], for the “symmetry sum”

S±
ΛGY

(x,H)
def
=

∑′

|n−x|≤H

Λ(n)GY (x, T, n)sgn(n− x),

with, in the hypothesis H = o(N), both

∑

x∼N

|EY (x, T,H)|2 ≪Y

∑

x∼N

∣∣S±
ΛGY

(x,H)
∣∣2 +NL+Nh2

(
L

MY

)2

and ∫ 2N

N

|EY (x, T,H)|2 dx≪Y

∑

N≤x≤2N

∣∣S±
ΛGY

(x,H)
∣∣2 +NL+Nh2

(
L

MY

)2

.

proof.The same procedure from Theorem [CLap] to Corollary [CLap] gives a slight change, due to T range,

ψ(x) = x−
∑

|γ|≤T

wY

( |γ|
T

)
xρ

ρ
+

1

π
S±
ΛGY

(x,H) +O (Λ([x]−H) + Λ([x]) + Λ([x] +H) + 1)+

+OY

(
NL/TMY

)
,

one Lmore because logN/T ≫ 1, now (hence, a differentM); the remainderO(NL) in the mean-squares
is due to the terms:

|ψ0(x)− ψ(x)| ≪ Λ(x), −ζ
′(0)

ζ(0)
≪ 1,

passing from [CLap] formula to the present, with those (see that H ∈ N, here) Λ(x−H),Λ(x),Λ(x+H),
see R1 [CLap], from Chebyshev inequality for ψ with x ∈ N and H = o(N), all giving to mean-squares:

≪
∑

N≤x≤2N

Λ2(x−H) +
∑

N≤x≤2N

Λ2(x) +
∑

N≤x≤2N

Λ2(x+H) +N ≪ L
∑

n≤3N

Λ(n) +N ≪ NL.
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We are ready to prove our Corollary. Hereafter ε > 0 is a fixed, arbitrarily small absolute constant.

proof.Take L11/2+ε ≤ H ≤ N1/2−ε. We want to estimate the j−sum in Th.4 [Lang], so the mean-square

I(N, Tj) :=

∫ 2N

N

|EY (x, Tj , [MHj ])|2 dx,

in it, don’t confuse with symmetry integral; EY (x, Tj , [MHj ]) is in the Proposition,NTj
≪ Hj ≪ N

Tj
,say.

We may apply in Th.4 [Lang] our formula, instead of [KP] one: in place of w there, we’ll use wY here.
(Estimates over the zeros are unaffected by these weights, both w and wY , since we use w,wY ≪Y 1.)
Here Kaczorowski & Perelli formula corresponds to Y = 1 in the Proposition; while Y = [2/ε] gives
OY (NL/TjM

Y ) negligible: choose M := Lε/2, it’s OY (Hj/L
B), B > 1/2, good. Remains OY (NL) in

(∗)
∑

j≤J

H2

H2
j

I(N, Tj) =
∑

j≤J

H2

H2
j

∫ 2N

N

|EY (x, Tj , [MHj ])|2dx≪Y

∑

j≤J

H2

H2
j

(IΛGY (N, [MHj ])+NL)+M
2H2L3

[cit.] N
Tj

≪ Hj ≪ N
Tj
; but M2H2L3 = o(NH2) and k1 := Lε/4 ⇒ H2

∑
j≤J H

−2
j OY (NL) = o(NH2).

We are left with the estimate of:

≪Y H2
∑

j≤J

1

H2
j

IΛGY (N, [MHj ]),

may say, bounded as (see Hj definition in [Th.m 4, Lang])

≪Y H2
∑

j≤J

1

H2
j

(I
ΛG̃Y

(N, [MHj ]) +H4
jL

2+3ε/N) ≪Y H2
∑

j≤J

1

H2
j

NMHjL
5 + o(NH2),

as a consequence of our Theorem, after changing GY into G̃Y and Lemma D, with A = 0 = C, B = 5.
This term gives, into (∗), ≪Y NH2L5+ε/2

∑
j≪LH

−1
j ≪Y NHL11/2+3ε/4 = o(NH2), again, k1 = Lε/4.

We are done, since k2 := L
3ε
4 in other terms, after (∗), gives to Th.m 4 [Lang] a contribute to J(N,H):

≪ NH2(1/k1 + (L/Hk1)
2 + 1/k2) = o(NH2).
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