arXiv:1009.6121v6 [math.NT] 9 Nov 2010

ON THE SYMMETRY OF PRIMES
GI10VANNI COPPOLA

Abstract. We prove a kind of “almost all symmetry” result for the primes, i.e. we give non-trivial bounds for the
“symmetry integral”, say Ip (N, h), of the von Mangoldt function A(n) (:= logp for prime-powers . = p”, 0 otherwise).
Here we get Iz (N, h) < ]\ULLS7 with L 1= log N; then, as a Corollary, we bound non-trivially the Selberg integral of the
primes, i.e. the mean-square of Zm<n<x+h A(TL) — h, over x € [N, 2]\7]7 to get the “Prime Number Theorem in short

intervals” of (log-powers!) length h > L11/2+e (e > 0, arbitrarily small). We trust the improvement ¢ < % in the exponent.

1. INTRODUCTION AND STATEMENT OF THE RESULTS.
We give, here, a concrete example of “essentially bounded’ (see [Cl]), i.e. bounded by arbitrarily small
powers, arithmetic function for the problem of “almost all’ (abbreviated a.a. now on) symmetry in short
intervals (see [C1]), namely the von-Mangoldt function
A(n) def {1ogp ifn= 1')’”, p prime and r € N
0 otherwise

We mean, by almost all the short intervals [z — h, x+ h] (or even [x, x+ h], here), all of them, for z € [N, 2N],
except possibly o(N) of them (everywhere in this paper N — o) and “short” since h = h(N) — oo and
h = o(N).

Then, the Selberg integral of the primes, namely

der [N 9
J(N, h) % /" \ 3 Aow——h‘dz
N p<n<z+h

counts the deviations of the number of primes in a.a. short intervals [z, + h|, giving the well-known Prime
Number Theorem in a.a.s.i. (short intervals)

(PNT a.a.s.3.) w(x+ h) —7w(r) ~ Vz € [N,2N] but o(N)

log x
where 7(z) := |[{p < z : p prime}| is the number of primes up to z, since

J(N,h) = o(Nh?) <= PNT aas.i. [z,z+h]
while the symmetry integral of the primes, say (as usual, ¢ # 0 = sgn(t) := [t|/t, sgn(0) := 0)

/;N} Z A(n)sgn(n — x)

In—z|<h

2
‘ dx,

checks the a.a. symmetry of primes in short intervals [x — h, 2 + h], around the center-point x.
Actually, for arithmetic functions f : N — C, we define [C1] the discrete variant, z ~ N is N < 2 < 2N,

I;(N,h) def Z } ZI f(n)sgn(n — x)

z~N  |n—z|<h

2

)

where the dash means: the terms n = x + h are taken with weight %; for essentially bounded f, this discrete
mean-square is close to the continuous one, see [C1]. For example, f = A gives, writing hereafter L :=log N,

2N 2 2N , 2
/N ‘ Z A(n)sgn(n—:t)‘ dr < /N ‘| Z A(n)sgn(n — [,’E])‘ dx + NL?,

In—a|<h n—[a]|<h
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from the trivial A(n) < log N; then, since the integral on the right is the sum over N < x < 2N, we have
to count the terms for z = N and z = 2N as < | Zl\n72N|§h A(n)sgn(n — 2N)|? < h2L?, in order to get

/ ‘ Z A(n)sgn(n — x)‘ da:<<Z’ Z A(n)sgn(n —x) +NL2—|—h2L2<<IA(Nh) (N +h?)L?
In—z|<h z~N  |n—z|<h

where the remainders are < NhL?, negligible (see Theorem, following), from the hypothesis of short intervals
h — oo and h = o(N), when N — co. In the same way,

In(N,h) < / ’ Z A(n)sgn(n — x) dw+(N+h2)L2,

In—z|<h

remainders still negligible, for the same reasons. So, we’ll work with I, see Theorem proof beginning.

We give our main result.
THEOREM. Fiz ¢ > 0, small. Let N,h € N, with h < N?*/3L and h — 0o when N — oo. Then

/ ‘ S Aw sgnn—;v)‘ dz < NhL® + N°R3.

In—z|<h

Also, in the same hypotheses, assuming h < \/N/NE,

2N 5
/ ’ Y An)sgu(n - x)‘ dx < NhLP.

N n—zl<h

The new form of the Riemann-von Mangoldt formula, [CLap, Th.m], in [Lang, Th.m 4] then proves the
COROLLARY. Fiz ¢ > 0, small. Let N,H € N, with H = H(N) > L'V/?*¢ and N — oco. Then PNT for
a.a. short intervals of length H, i.e.

J(N,H) = o(NH?).
We trust the possibility to get J(INV, H) lower bounds from I (N, H) lower bounds, [C], in a future paper.

We’ll prove the Theorem in §3 and the Corollary in §4. First, some elementary Lemmas.

2. LEMMAS.

Here * is the Dirichlet product, 1 Mébius function, 1(n) = 1 in his inversion formula f = g*x1 < g = f x p.
For a generic f: N — C, with g := f x p of finite support, say supp (g), the Ramanujan coefficients

e m
R()) Y —g(m) Ve N
m=0(mod £)

are well-defined. If supp (g) C [1,Q], [|9]lco := MaXsesupp (9) |9(¢)| and 1p is D characteristic function,

9(fq) €q L
(0) lg] < [|glloc = Re(g*1) =7 Z L gllooRe(L1,q) * 1) < [|glloc Re(d) < gllgl\oo-

Here d = d(n) = (1 % 1)(n) is the divisor function, supported in [1,3N], say, so uniformly V@) < 3N

1 1 L
Re(lpg*1) = gz << R(d) = Ri(1x1) =5 > — < 7.

q
q<Q q<Er



Define the Fourier coefficients FhjE as follows in §3, in the Theorem proof. Until next section, f : N — R.

" SO =S RORG Y Fi() L) X conzman

2<0,t<Q i<% £ r<% Q<x<2N
ell4-5l-%
for Q@ < Nj; here, as usual, ||a|| := min, .7 |0 —n| is the distance to the integers. Here and in the sequel,

3" denotes restriction to reduced residue classes: (j,£) = 1 = (r,t), whence j /¢ and 7/t are Farey fractions.

Here we want to bound this Z(fl) (A) applying a well-spaced argument, resembling the one used to prove
the Large Sieve inequality. This is possible, since the Farey fractions appearing here are both in |0, 1/2[ (say,
both positive). We wish to treat also the following term in the same way.

Defining in fact

E(f2)(A) ::ZZRg(f)Rt(f) Z* Z* Ff(%) Ff(%) Z cos 2mox,

2<0,t<Q i<t r<i Q<z<2N

this can be expressed in terms of § again, changing sign to r and using the fact: Fhi is odd, see below (§3),

= =SS RUPRAS) Z Z Fi(> (t) 3" cos2méx;

2<0,t<Q % —l<r<o Q<x<2N

here we have the problem of two different Farey fractions in two different intervals, now, and this prevents
us from applying the same well-spaced argument possible for the previous term; but this trouble can be
avoided, expressing this double sum over Farey fractions in distinct intervals through double sums over
distinct fractions in the same interval. In fact, here in 25‘2) (A), one is positive and the other is negative,

H \/\
rﬂ|~? (S

> 1
> A

whence, looking at all the cases for the signs of % and % (first, exchange them), we may write

25P(A) = - S S RHR(H DY Fi(> (t) Y cos2mix + 2540 (4),

2<4,t<Q m<f Irl<t Q<z<2N

obtaining: E(fl)(A) - Z(fQ) (A) = 134 (A), with Farey fractions F = Fo C [0,1] of denominators in ]2, Q]

and ,
AHYSSRHRG S Y F,f(%) FH(Z) > cos2mo.

2<£,t<Q icF zeF Q<z<2N
-4
In all, we can bound the difference Egcl)(A) - E&?) (A) through X;(A) bound, following.

We can state and show our

LEMMA A. Let A,N,h,Q € N, with Q <2N and A — 00, h — oo, h = o(N), when N — oco. Assume
g:N—= R is supported in [1,Q]. Then

2 2

g(4d) 1 (¢d)
Sge1(A) < AL > =7 | +ALh > 7 =
2<e<2h |4<Q 2h<lLQ  |d<

=l

and, even better, as a consequence of Montgomery & Vaughan generalization of Hilbert’s inequality,

2
S (A) <A > Zggd +Ah > %Z@

2<0<2h |g< @ 2h<l<Q T |a<Q



Remark. Of course, in case Q) < 2h we have the second sum over ¢ empty, i.e. not counted.

PROOF. The first’s [C0O] elementary Lemma (only Cauchy inequality), see [CS,Lemma 2]. Corollary 2 [M] is:

(O‘m O‘n)

sint —
_ >A>0= Un
am —an| > A > Z Umtin sin m(oum — o)

m#n

1 2
SZ;'“’” , Vt € R Vu,, € C,

which follows [MV] Hilbert’s inequality: gives the second, once applied to A := 1/A well-spaced Farey
fractions v, := %, o, := 7, numbering them with 1 < m,n < Q?, Uy, = Rg(f)Fhi(%); in fact, from

1 [sint(am —ay) ]t_4ﬂN+ﬂ/2

2 - 2 m n = —
Z cos 2mdz Z cos 27 (« )T 5

sin (o, — «
Q<z<2N Q<z<2N (tm n)

t=2wQ+mr/2

and, see (2), Theorem proof in §3, using F,f is odd,
1 | oaf(P\[_ 2 (i . h
£—2 Z Fh Z SEZF}I Z < min 1,z s
i<é

li1<%
recalling the above definition of Ramanujan coefficients Ry(f) = Re(g * 1), with Re(f) = Re(g * 1),

()« 5 329 (120

2<<Q |a< &

) ()| 1 .
Sl = Y |3 ML s

m 2<ULQ |a< li1< %

We need, now, an upper bound for the symmetry integral of the divisor function d(n); actually, we have

it from the asymptotic results of [CS] (see Theorem 1 and Corollary 1 there), but in the hypothesis h < @;
here, we can confine to bounds, but in a longer range for h and we’ll accomplish this in a faster way (no
asymptotic estimates are required !). However, the tiny details of calculation come from [CS], like the idea
to apply the Large Sieve inequality (here, use Lemma A).

We give and prove the following (see [C2] bounds)
LEMMA B. Let N,he N with h — oo and h < N2/3L, when N — co. Then

2N 9
14(Nh), /N ‘ 3" d(n)sgn(n - z)|” < NhL.

In—z|<h

PROOF. Since I4(N,h) differs from the integral for two kind of terms, see the above, we estimate them, i.e.:
that for z = 2N giving the negligible < N°h? < NhL?, due to d(n) <. n®/? (see [D]), while we keep
that for n = 2 and n = z £ h, see above & remark in §3 on the x,(z) “edges”, giving d(z) & d(x £h):

dn)=2 > 1+1n(/n) = [S7(@)] < | xal@)| +d@) +dx+h)+ > <g+1>,
din,d< /7 < VT VER<d<VaTh

see [CS] for details, with Si(z) = S (x,h) := ET”-ﬂSh sgn(n — z)d(n) the symmetry sum of d(n), so

2

L(Nh) < Y | D xa(@)| + Y d@)?+ Y dz+h)?*+ > <g + 1) ’

z~N |d</z x~N z~N z~N | \/z—h<d<\/z+h
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where, by Cauchy inequality, this last remainder contributes to I;(N,h) as, see esp. [CS],

h h2 h s
<<§;v(ﬁ+1) > <d +1)<N+N<<NhL

Vr—h<d<+s/z+h

using our hypotheses on h; the other remainder terms can be estimated using the elementary

IOEED 3D 3D LD DD MDD P B 35 i) D= TErd D3P

n<x n<z dy|n dz|n d<zxm;<%& masz/d d<z mi<zx mo<z d<z
(mq,mg)=1

for [t] the integer part of ¢, V¢t € R, trivially from the trivial

< 1+/ —<<1Og:1:
d<z

> d( + ) d@)?+ ) dz+h)?’< > dn)® < NL* < NhL?,

x~N z~N z~N n<3N

:.t =
4,

to get

since h — 0o. Then we are left with (here ¢ —ﬁFhi(j/q), see §3, compare [CS] coefficients ¢, 4)

2

ST Xl <<Z > Xql) +Z > x| <

a~N <z N {q<VN N |VN<g<va
2 2

<<Z Z Z % Z*cfdsin2wdxj —I—Z Z Z % Z*cfdsinmrdxj

a~N12<d<VN \ k< E Jj<d oeN2<d<ve \ N cp< L2 j<d

=3 + X,
say, applying for both of them ngd*|cjfd|2 <Do<j<d |cjjfd|2 < min(1, h/d), compare (2) in §3,
2

S S D SN 1D SIS b S T R UNA

z~N [2<d<+/N k< YN j<d

Lemma A, second, or [CS,Lemma 1]; whilst, esp., Lemma A first bound or [C0O,Lemmal,[CS,Lemma 3|
2

3y = Z Z Z % Z*cjjfd sin 2ij < NhL2,

zvN 12<d<\/z YN <L Jj<d

because w.r.t. X1 we lose one L (see the Lemma A 1st-2nd bounds difference), but now (see [D])

> %<<1

N R
N <k<G

(recall z < N) gains L2, with respect to [T]

N
IN
f
> =

(@31



Thus
I4(N,h) < 21+ Xo+ NhL® < NRL®. O

We explicitly remark that elementary methods can’t go beyond the remainder O(h?/N) : this fixes the range
of uniformity for the symmetry integral bound of the divisor function, see the above.

Finally, we obtain here that the terms with Farey fractions Z, & such that ||j/¢+ r/t| < 1/A < 1/6N
can’t have ¢,t > 2, so they give empty sums (choosing denominators > 2, now on, comes from Fhi(l/2) =0).

We state and prove the following
LeMMA C. Let A,N € N with A> 6N. Let j/l,r/t €]0,1/2] be Farey fractions and £,t < Q < 3N. Then

1
e

0t >2 = HlJrz

e

PROOF. Assuming o := H% + %H < 1/A we'll get the absurd % = 3 =¥ (in Farey fractions = ¢,t = 2). So,
1

1
< =
- A

ng orwehaveogl—%—g

first case gives in particular 0 < j < % < % < % <l, 0<r< < % < % < 1, i.e., absurd at once.

Hence
1

t
A
1 1o\ 1 15 1. 1 v
<(=-1 S I <-_Jd o<z
0—(2 £>+<2 t>—A:>O—2 (sa's s o

t
)
that, see the above for 1 — j/¢ — r/t, give, this time from A > 6N,

1(eYy 1(t) 1 i1
< —< = — < = < — =0 = — = - = —,
0_£{2}+t{2}_A S {02 =0={1/2} = 2A2A = F=5="7.0

3. PROOF OF THE THEOREM.
PROOF. Write f = g* 1, i.e. open f(n) = Zq‘ng(q) cgn,n<z+h=qg<xz+h,

LI =30 S s @)

z~N g<lx+h

2

)

with the “character-like” (compare [CS], esp.) xq4(z), defined below Vg € N (vanishes whenever ¢ > x + h):

o f ' ’ 1 1
Xq(x) d:j_ Z sgn(n—;v)z— Z sgn (m_§> E{_17_§707§71}7

|n—z|<h m7h< <z+h,
n=0(mod q) q Sms q

we remark that, actually, x4(z) = F3 < qlz £ h, the “edges” of x4(); also, cases xq(x) #0 are “rare”.
Here we have, first, to prepare the symmetry sums to further calculations.
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In fact, the symmetry sum of our f is, in the hypothesis x > N + 2h,

St )Y S s -2y =— Y g@x@ - Y @@ - Y 9@y

In—z|<h q<N+h N+h<q<z—h r—h<q<z+h

fromxg2N<2N+hwegetN+h<q<x—h:>1<%<””+h<2:>xq( xz) = 0, since Am €]1,2];
andr—h<g<z+h=m=1,ie. —mehgqgwrhg(q)xq(x):S’i(x h). For general g : N = C, f = gx*1

(1) SF(x,h) = SE@,h)— > gla)xg(x) = [SF_ (@, )| = IS5 ;. h) = | > glg)xq(x)| Vo > N+2h.
g<N+h g<N+h

Now on we’ll work in order to express the sum over ¢ in terms of Farey fractions, i.e. reduced fractions j/¢
(meaning the g.c.d. (j,¢) is 1). For the sake of clarity, we assume that g and its support don’t depend on z.
From the orthogonality of additive characters:

o)== X s =g 3 (=2 X sin T e (wi),

[s|<h j(mod s<h
s+a=0(mod q) i a) -

where the symmetric dashed sum means: s = +h terms have weight % and the last sum halves only s = h;

SRR DEE

]<Q/2 s<h

since j = 0 gives 0, also, j = ¢/2 gives sin % =sinms =0, Vs € N. We define, say, the Fourier coefficients

i\ de 27T]S
(L)Y 3 s

s<h

in the finite Fourier expansion (we need it for j < ¢/2 for the following reason on the non-negativity of F, ,j[)

Z Fi( ) . 27T(Ej
J<q/2 1

where we see immediately that the Fourier coefficients are positive (better, non-negative):

1. 2mys 2rjs 1 2mwjh j ih
E sin 15 _ E sin 15 _ 3 sin UFLL cot LEl sin? i,
s<h q s<h q q q q

from the geometric sum of e(as), Yo & Z, taking o := j/q. Hence, Fi" is odd and non-negative in ]0,1/2]

' j ih
Ff<l> zélcotﬂsin21 >0 Vi< k!
q q q 2
but, also, ||a|| = min({a},1 — {a}) gives

FE() = T ot ¥ X om -2 5 smsetis) + 00

i<h s<alln/dll 4 |s|<allh/dll

and we need, say, Parseval identity for these coefficients:

22} Z sgn(s eqjs)‘ = Z sgn(sy) Z sgn(ss)— Zeq $1— 82)) 1 Z 1,

Isajsl<dl £ Isal<a]| g ls2l<a]| g I=a 0<lsl<al| |
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whence
1 i 2 h
2) =3 B <1> < min (1, —) Vg > 2
¢ = q q
=2

In order to apply a kind of Large Sieve inequality (see Lemma A) we need to express xq(x) in terms of Farey
fractions (i.e., we need a kind of Ramanujan expansion for it), so we collect in terms of g.c.d. (j,q)

S DA v ()

dlg j<q/2 dlg  j'<q/2d
d<q (j,q)=d d<a (j',q/d)=1

and setting ¢ := q/d we get

Xql ZZFi(> ”Tfjvqu

Llq
£>1 <3

but, actually, since F,f(%) = 0, we can discard the only denominator giving 1/2 in Farey fractions, i.e.

{=2: .
Xa( Z Z Fi( ) i —2”;‘7 Vg € N.
Llq

£>2 72

Coming back to (1), for generic f : N — C, with (choose g := f * u here) f = g * 1, the bound is

R AR D SN I DD DI Z*Fi(@sm@]ﬁhﬂf—mz@,

N+2h<x<2N 2<{<N+h d< Nth N+h <Z

m

where || f|loo := max,<3n |f(n)]; from Ramanujan coefficients definition, adapted here to @ = N + h, i.e.

Z g(td)
o e’
we get
2

B LW =L < Y| 5 r) XEE () T w0 - gl

z~N |2<<N+h i<t

We may say these symmetry integrals have this Fourier-Ramanujan expansion, for any f:N — C, g := fx*pu.
Now the idea is very simple, once opened the square and taken sum over z inside: distinguish between
terms on the diagonal and “near the diagonal” (in a suitable sense) on one side, giving a kind of majorant
principle, opposed to all the others, far from the diagonal, for which we apply a kind of well-spaced argument.
Of course, this can be done for general f. Here, we confine to the case g = A, f = A1 = log, with the
abbreviation @ =Y + h:

2

In(N,h) < Z Z/ sgn(n —z)logn| + Z Z (Z )% *F,f(%) sin 27?‘7 + R3L2;

z~N [|n—z|<h z~N |2<0<Q d<Q Jgé

use logn = logz+ O(h/z) in the first term, while A(n) < L above and for the N < z < @ terms (“tails”),
2

nvn< S Y (Z ) Z*F,?(%)sin@ +h3L2+h§.

Q<xr<2N |2<<Q d<Q jSé



Last term’s negligible; we omit also O(h®L?), in final bound. Open the square, take the z—sum inside:

-ER (R SIS N T E(E) DR X e

2<4,t<Q < <9 j<i r<i Q<z<2N
- SR (S (S A B () HOT
2<4,t<Q d<Q qS% r % x
Ee

; 1 1
where in case 7 # I we set Z =3 Z cos2mwéx — 3 Z cos 2oz, abbreviating (compare the
_ @ Q<x<2N Q<x<2N
above) 6 := |4 — Z||, o :=||4+%||, (here 6 €]0,1/2[, o €]0,1/2] from ¢,¢ > 2) and we define the diagonal

.\ 2 )
+ def A(td)\2 1 g .o 27T
Dlog(N h,) Z ( T) €—2 Z Fh z Z Sin T Z 0.
2<4<Q dg% <& Q<z<2N

However, we may say that the diagonal amounts to 6 = 0. Now,
+ +(J -
IA(N, ) = DE(N. ) + 303 Rlog) Relog) 37 3B <€) 503 =

2<L,t<Q i<t r<t x

5>0

_DliOgNh ZZRglogRt log) Z Z Fi<) (t) Z cos 2méa+

2<E t<@Q i<t L < i Q<x<2N
0<6§1/A
S -y TS Reonriton) 35 (7) FE(S) X costaom
2<0,t<Q i<% £ <t i Q<x<2N
5>0 a>1/A

from §2 definitions, since A > 6N in Lemma C implies no sum over ¢ < %. From % #3 = [125/0] #0

' :t
* (] +(T = i
S5 ntenlon S Y (7)R(5) B e =siiaio| ¥ 53R
2<£,t<Q i<k r<h Q<z<2N =@ sy
§>0,0>1/A

using the trivial R,(log) < L?/¢, see (0), and the elementary in Lemma A proof (compare [D,Chap.25] too)

1

Z cos2moxr K ———m— KL —,
|sinwa| " lof

Q<z<2N
where from the trivial bound F(j/¢) < h we get
* F) £) 14 1
> FU/0” hz( Z + 0> —) < h2£(L+ > —) < (h2L.
= 1125/4 J t—2j n
j<t/2 j<t/4 L/4<j<t/2 n<e/2

This gives the negligible

2<£<Q

4 *F ]/é _ 276
N Z T ) =)



Hence, in case A < N, using §2 initial remarks, i.e. Eg}) - Egcz) < |Zy|, with Lemma A, (0) & (2)

In(N, h) = D, (N, h) + QZZRg log)Ri(log) Y S Fi<) £(3) X cos2moz+ 0 (NALY).
Q

2<L,t<Q i<t r<it <zx<2N

Recall the inner sum over x in the diagonal Dig is positive, like the sum ) cos2mdx for 0 < 6 < 1/A which
is positive, assuming A > 8N (better, it’s > N whenever A > 9N); we may apply a majorant principle,
here, with R;(log) < LR¢(d) from (0), in order to get the following:

In(N,h) < L2 | DE(N,h) + ZZRg oSy Fi(%)Fi() 3" cos2mde | + NhL®.

2<€ <@ J<[ r<i Q<x<2N
0<<5<1/A

The expression in parentheses is, making the same considerations as above with f(n) = d(n) instead of
f(n) = logn, applying again Lemma A, same hypotheses on A, simply I4(N,h) + O (NhL3), because

Ii_1(N,h) = I4(N,h), applying (3) to g =1, f = g*1 =1x1 = d; then, from Lemma B, with hypotheses
that set the range of h—upper bound, after inserting omitted terms, from I;_1 (N, h) and d(n) < N¢/%, too:

IN(N,h) < L*(I4(N,h) + NRL® + N/2p®) + NhL® + h3L? < NhL® + N°h®. o
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4. PROOF OF THE COROLLARY.
In order to prove the Corollary, we first give a consequence of the Theorem of [CLap], i.e., see the Proposition,

following, giving an explicit formula for 1 (z) = > n<z A(n) in which the error-term has a very good behavior,
both in the discrete and the continuous mean-square over [N, 2N].

We need, for this reason, to apply and adapt the Theorem of [CLap] to the present situation.
First of all, see that instead of the weight Gy, see [CLap|, we may use the following modified version,

~ 1 T *  sinu
Tt) = ———"—9—
Gr ()= o /_ o) [ L

since (recall |z —t[ < H = o(x), here) the formula |log Z| = 2=t L O((x — t)2/x%) gives errors

x

2
~ —1
Gy (2. T,) = Gy (2. )| <y T (|€C‘T_|>

which contribute, in the final symmetry integrals, as

HST?L?

H6T2
N,H)’ <y W”f”go = ’IAGy(N’Iﬂ _IAay(N’H)’ T

IfGY(NvH) _Ifay(

(We used the trivial bound A(n) < L : Brun-Tichmarsh inequality’s poor for H smaller than N powers.)

Recall we abbreviate, as soon before (3) above, || f|lcc = max,<sn |f(n)].

The weight (N?y doesn’t influence the symmetry integral, i.e. with the above definitions, we have the following
LEMMA D. Let A,B,C >0. Assume L < H < NY2 s N — oo. ThenVf:N — C

I;(N,h) < NhNALPlog® L, Vh € [LF, H] = Iz (N H) <y NHNAL® log® L+ NL?| f||%.

PROOF. First of all, since (N?y <y 1, compare [CLap], let’s use the symmetry of n in éy with respect to x:

Z/ F)Gy (@, Tyn)sgn(n — ) = > (f(x +m) = fl@—=m))Gy (@, T,z +m) + Oy (| )

|n—z|<H m<H

and apply partial summation [T] :

S F)Gy (@, Ton)sgn(n — @) = Gy (v, Tya + H) S f(n)sgn(n — ) + Oy (]|

In—z|<H In—z|<H

H , d ~ Hig -
_/1 Z f(n)sgn(n—I)EGy(x,T,:v—i—t)dt—i—Oy <|f|oo/1 'EGy(x,T,:E—i—t)’dt).

Hence, abbreviating (see above) the “symmetry sum” S}'F (x,[t]) = E/|n—m\g[t] f(n)sgn(n — x),

I

s, (NVH) <y Ip(N, H) + NL?|| {5+

H H
d ~ d ~
+/1 /1 ;VS;[(:E, [t1])S5 (x, [tQ])d_thY(x’T“T+t1)d_t2GY($aT7$+t2)dt1dt2,

due to éy(I, T,m) <y 1 and opening of the square, after

d ~ 1 1 ’ tr 1
—Gy(,T,T,JJ-i-t):——Ti/ ¢y (1) sin —dr <y — Vt > 1,
dt tfz¢Y(7')d7' 7 r t

2



then

H 2
Ifgy(N,H) <y If(N,H)+NL2|f|§O+</1 % I,»(N,[t])dt) :

applying the Cauchy inequality and, splitting the integral at L°, we get

H 2
Ifgy(N,H) <y I;(N,H)+ NL?| f||% + (/L % I4(N, [t])dt) :

where we used the trivial 1;(N,[t]) < Nt?|f||%; applying our hypothesis finally gives

L, (N, H) <y NL?||f|% + NHN*L”log® L. O

We need a suitable corollary to the Theorem of [CLap] since that Corollary [CLap] is given for T limited
to some N —powers; we want it for T' as general as possible, like (see [CLap] for ¢y, Gy and wy) in the
following

=

1
PROPOSITION. Fiz Y € N. Let 16 < N < <2N,4 <T < N/4,1 < M < min(T7F, (NI5)1/Y (T2)1/Y),
Then

o) =x— Y wy ('%') I—:—i—Ey(x,T, H),

[vI<T

where we assume % < h < % and set H := [MHh], for the “symmetry sum”

def Z/ A(n)Gy (z,T,n)sgn(n — ),

In—z|<H

Sia, (x, H)
with, in the hypothesis H = o(N), both
2 + 2 2 L 2

ST By (@ T, H) <y Y |S%6, (o, H)|" + NL+ Nn? ( &

MY
r~N r~N

and

2N 2
L

E T, H)*d § S+ )|+ NL+ N2 [ — ) .
/N | Y(Iv ; )| T Ly N<z<2N’ AGy ('I’ )’ + + MY

PROOF. The same procedure from Theorem [CLap] to Corollary [CLap] gives a slight change, due to T range,

Ya)=z— Y wy ('lTl) %J + %S,{GY (z, H) + O (A([z] — H) + A([z]) + A([z] + H) + 1) +
lv|<T

+0y (NL/TMY),

one L more because log N/T > 1, now (hence, a different M); the remainder O(NL) in the mean-squares
is due to the terms: .
¢'(0)

¢(0)

passing from [CLap] formula to the present, with those (see that H € N, here) A(x — H), A(z), A(z+ H),
see R; [CLap], from Chebyshev inequality for ¢ with 2 € N and H = o(N), all giving to mean-squares:

[Yo(2) —P(2)] < Alz), —

<1,

< Y Na-H)+ Y AN@+ Y AN@+H)+N<L Y An)+N<NL O
N<z<2N N<z<2N N<z<2N n<3N
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We are ready to prove our Corollary. Hereafter € > 0 is a fixed, arbitrarily small absolute constant.
PROOF. Take L'/2+ < H < N'/27¢. We want to estimate the j—sum in Th.4 [Lang], so the mean-square

2N
I(N,T]) 1:/ |EY(‘T7Tj7[MHj])|2 diL',
N

in it, don’t confuse with symmetry integral; Ey (z,T;,[M H,]) is in the Proposition,% < H; < %,Say.
We may apply in Th.4 [Lang] our formula, instead of [KP] one: in place of w there, we’ll use wy here.
(Estimates over the zeros are unaffected by these weights, both w and wy, since we use w, wy <y 1.)
Here Kaczorowski & Perelli formula corresponds to Y =1 in the Proposition; while Y = [2/e] gives
Oy (NL/T;MY) negligible: choose M := L/2 it’s Oy(H-/LB) B >1/2, good. Remains Oy (NL) in

H2 H2 2N
> T (V. 1) Z / |By (2, Tj, [MH,])[dz <y Z IAGY(N [MH;))+NL)+M?H*L?
j<J T d g<1 j<J J
[cit.] 7 < H; < 705 but M2H?L? = o(NH?) and ki := L% = H?Y,_ H;?Oy(NL) = o(NH?).
We are left with the estimate of:

<Ly H2Z —Iaay (N, [M Hj)),

i<J J

may say, bounded as (see H; definition in [Th.m 4, Lang])
1
<y H? Z —( N,[MH;]) + H}L**3/N) <y H*) ?NMHJ-L5 +o(NH?),

3<J H; J<J

as a consequence of our Theorem, after changing Gy into éy and Lemma D, with A=0=C, B =5.

This term gives, into (x), <y NH2L>/2 > <L H;l <y NHLW/?+3e/4 = o(NH?), again, k; = L/

We are done, since ky := L% in other terms, after (%), gives to Th.m 4 [Lang] a contribute to J(N, H):
< NH*(1/ky + (L/Hk1)* +1/kg) = o(NH?). O
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