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Abstract— This paper presents an efficient method for recon-
structing a band-limited signal in the discrete domain from its
crossings with a sine wave. The method makes it possible tosign
A/D converters that only deliver the crossing timings, whit are
then used to interpolate the input signal at arbitrary instants.
Potentially, it may allow for reductions in power consumption and
complexity, as well as for an increase in the achievable sartipg
bandwidth. The reconstruction in the discrete domain is basd
on a recently-proposed modification of the Lagrange interptator,
which is readily implementable with linear complexity and
efficiently, given that it re-uses known schemes for variald
fractional-delay (VFD) filters. As a spin-off, the method alows
one to perform spectral analysis from sine wave crossings i
the complexity of the FFT. Finally, the results in the paper ae
validated in a numerical example.

I. INTRODUCTION

The analog-to-discrete (A/D) conversion is the first ste

for the discrete-time processing of continuous signalds T

sample amplitudes are turned into zero crossings, which can
then be accurately detected with low-power consumption and
high speed, [7], [8].

The main obstacle for this alternative procedure is how the
signal should be reconstructed or processed in the discrete
domain, since Hadamard’s factorization theorem does not
directly lead to efficient implementations, due to its slow
convergence rate. Here, the usual approach in the litera-
ture consists in approximating the signal in a finite intérva
using a trigonometric polynomial, [6], [9], [10]. But then
the interpolation error decreases only @6l/N), while the
complexity per interpolated value ©(N), where N is the
number of crossings inside the interval. So, in this approac
it is necessary to employ a larg€ to ensure an acceptable
accuracy, with the associated high complexity.

The purpose of this paper is to present a method for
vercoming this obstacle, that makes it possible to recocist

conversion is fundamentally based on the Sampling Theoretnl}lnt,e bandlimited signal from its sine wave crossings effityen

which states that a band-limited signal can be recovered fro

its regularly-spaced samples taken at least at twice theiisiq

rate. However, some authors early noticed that this retyové

is also possible from the signal’s zeros, or from its cragsin

with another signal like a sine wave, [1]-[4]. This is due to «
the fact that a band-limited signal is an entire function of

exponential type, for which there is a factorization in terofi
its roots akin to that of conventional polynomials, (Hadad'sa

factorization theorem [5, chapter 2]). A consequence dof thi
is that it would be possible, in principle, to design A/D

converters in which the sample quantization is substitiited
a zero crossing detector and an accurate timing, [6]. This n

The method is based on viewing the reconstruction as a
problem of interpolation from nonuniform samples, to which
pe efficient technique in [11] is applied. Relative to thatet

of the art, it has several advantages:

The complexity is reduced significantly. If in the approach
in [6], [9], [10], a complexity O(N) (per interpolated
value) gives an interpolation errdd(1/N), with the
proposed method a complexit)(N) gives an error
O(e~m(1=BT)N) ‘whereB is the signal’s two-sided band-
width andT is the average crossing separation. In practice
this means that “any” accuracy can be achieved with a
e smallN.

The method is based on the evaluation of a fixed smooth

procedure would eliminate the need to quantize any signale
sample, so decreasing the complexity and power consumption
of A/D converters, and potentially increasing the achiévab

function and on the Lagrange interpolator. Besides, it
can be evaluated with co€i(V) per interpolated value,

sampling bandwidth. Besides, it would mainly re-use emgsti
technologies, given that zero crossing detection is intplic

many existing systems. This last point can be readily seene

in the current trend in A/D converter design, in which th
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and can be implemented by re-using efficient designs for

variable fractional-delay (VFD) filters, [11, Sec. IV].

As a spin-off, the method permits one to perform spec-

e tral analysis from sine wave crossings with complexity
O(Nlog N), while the usual method has complexity
O(N?), [6, Sec. IV].

The paper has been organized as follows. The next section
reviews the state of the art and presents the problem formu-
lation. In it, it is shown that the reconstruction from sine
wave crossings can be turned into an interpolation problem
from nonuniform samples. Then, this last problem is adéess
in Sec.[Ill, where the solution adopted is that in the recent
reference [11], which is based on the Lagrange interpolator
Afterward, Sec[ IV contains the main development in the
paper, which is a simple formula for reconstructing the algn
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from its sine wave crossings with high accuracy. Then, Séc.This simple procedure actually solved the problem of loati
addresses the problem of analyzing the spectrum from sihe roots, because the subtraction of this sine wave “moves”
wave crossings in the light of the formula in Séc] IV. lall roots to the real axis, due to a theorem of Duffin and
turns out that this formula makes it possible to reduce tt8chaeffer, [13]. Specifically(t) — A sin(7Bt) can only have
complexity from the usuaD(N?) order to ordelO(N log N).  zeros on the real axis, and each of them can be viewed as a
Finally, Sec[Vl validates the results in the paper throughzero of A sin(7 Bt), which has been shifted by at mdst(2B).

numerical example. So, in notation, all zeros of(t) — Asin(wBt) have the form
n/B + ¢é,, wheren is an integer andd,,| < 1/(2B), and two
Il. STATE OF THE ART AND PROBLEM FORMULATION consecutive zeros may overlap only at instant® +1/(2B).

The usual representation for a real finite-energy sigfigl Using this description, the factorization in EQ] (2) fqt) —
with spectrum insidé—B/2, B/2] is given by the Sampling Asin(wBt) is
Theorem, which states that) can be perfectly reconstructed

from its samples(n/B) using the series s(t) — Asin(wBt) = K'(to 1) 10—0[ (1_ tt )(1_ ti)’ @)
) - -k k
s(n/B+u) = Z s((n — p)/B)sinc(p + Bu), (1) =

where K’ is a real constant and

p=—00

where n is an integer andu is any time shift following
—-1/(2B) < u < 1/(2B). This series is the basis of most

processing algorithms for continuous signals in the discre-om Eq. [@), the basic design for the desired A/D converter
domain. Several authors [1], [2], [4] soon noticed th&t) \as clear. First an oscillator would be used to generate the
can alternatively beIV|ew¢d asp@lynqmlal of infinite degree wave A sin(rt/B), which would then be subtracted frosft).

which can be described in terms of its roots. The reason WJZ\Yterward, the zero crossings would be detected using a gate

is that a band-limited signal can be regarded as an analyii¢q the converter output would be the sequence of shifts
function over the whole complex plane, if titevariable is Eq. (B).

allowed to take complex values. Besides, this kind of florcti  Aq tg the second problem, the usual solution to date
is bounded Orjrg"t‘la real axis (req and its maximum growth oqnqjsts in approximating the signal using a trigonometric
rate is that ok along the imaginary axis. It can be showr, g\ nomial, [6]. In short, if the finite sequence of roots

tn =n/B+ dy. (%)

that this kind of signal admits the representation to bnst tniri1 is known, thens(t) — Asin(rBt) is
nyn R R 1] — ’
P interpolated using a trigonometric polynomial of ord&f
s(t) = Kt H(l —t/7), (2)  which is zero att,4m, 0 < m < M. However, this solution
p=1 is not satisfactory since its accuracy is poor even for aelarg

wherea is the integer order of the root at the origin> 0, K number of roots. This complexity issue is the main obstacle
is a real constant, and thg are complex roots which appearfor achieving an efficient implementation.
in complex conjugate pairs;, # 0, and may not be distinct, ~An efficient solution for this second problem is derived
[12, Theorem VI]. In Eq.[(R), the roots are taken so that theiii the next two sections, which is based on recent results
module increases with, i.e, |7,| < |7,41], since the infinite on the interpolation of band-limited signals from nonunifo
product only converges conditionally. samples. The key point is to realize that approximatifig
Eq. (2) is the explicit root factorization of(t) as infinite- from the rootst, ., of s(t) — Asin(xBt) is the same as
degree polynomial, and from it it is obvious that the rogfs approximatings(¢) from its value at these instants, since
determine the signal except for the scale fadkr The root S(tpsm) = Asin(rBt,ym). S0, this is actually a problem
density in any circlelt| < 7 follows the same rule as theof interpolation from nonuniform samples. An efficient and
sample density in[{1), i.e, the circle| < = contains either accurate method for solving this kind of problem has been
27B samples in[{l) o27 B roots in [2) asymptotically. recently presented in [11], and this method is shortly oetli
The factorization in Eq.[{2) led to consider the possiblg the next section. Then, the A/D converter from sine wave
implementation of A/D converters based on the detection gfossings is described in SEc]IV.
the signal's zeros. However, it was soon realized that such
implementation faced two main problems, [4], [6]. The first
was how the roots should be located efficiently, since they  !ll. EFFICIENT SIGNAL INTERPOLATION FROM
may have a non-null imaginary part. And the second was how NONUNIFORM SAMPLES
the infinite product in[{R) should be approximated, since in

practice only a finite sequence of roetsis known, and[(p) samples is usually performed from a uniform sampling grid.

converges slowly. vet it | : . P
) ' : et it is well known in Sampling Theory that this kind of

A solution for the first problem was readily found [4, Sec o . :
V], and consisted in subtracting a sinusoidikin(rBt) to feconstruction is also possible from nonuniform sampli4]. [

X . . From a theoretical point of view, the uniform and nonuni-
s(t), with amplitudeA not smaller than that of(¢), i.e, A > P o . .
A where form cases can be handled jointly using an extension of the
S

Lagrange interpolation procedure. In rough terms, if a band
limited signals(t) is known at instants,, ¢o, ..., then it can

The reconstruction of a band-limited signal from discrete

As = sup [s(t)]. ®3)

t real



be reconstructed using the series andt, with pT + §,, and re-order the summation. The result
is
Z s(t /(t ? ?— ty)’ © -
= (ty s(nT+u) = > s((n+p)T +6ntp)
where¢(t) has a zero at each) and is given by e o(nT + u) ©)
¢'((n +p)T + On+p)(u — pT — Onyyp)

Finally, truncate this sum at P to obtain the formula of the

form in Eq. [8)

Here, the prime (') means that the factor should be replaced

with t if £, = 0, and A is any constantA # 0. A particular

case of EZ.[(B) is the uniform sampling caselih (1) for which s(nT' + u) Z (n+P)T + Onsyp) 10

(b(l'?h: Sin(WIBIit). [ lati d b dil ] ¢nT +u) +
e usual Lagrange interpolation procedure can be readily v .

identified in [®). In this formula, the kernel(t) has a zero P+ )T + Onp) (1 = T = Onp)

att = t, which is removed by the denominator-¢,. Then However, this approach would not be viable becag$e

the division by¢’(¢,) normalizes the function value to one atlepends on the infinite set of shifts, and on the index

t = t,. So, the summand(t)/(¢’(¢,)(t —t,)) is equal to one n, and also because the accuracy would be poor. This latter

att =t, and equal to zero at= t,, g # p. Finally, the sum inconvenient is already well known for the sinc series in Eq.

for all p gives the infinite Lagrange formula faft). @, [16].

For Eq. [6) to hold,s(t) must have finite energy, there The problem of making the approach in EQ.](10) viable
must be a minimum separation among the sampling poinghd efficient has been recently solved in [11] satisfagtoril
inf, 4 [t, — t4| > 0, and the average density of the instafjts Fundamentally, the solution in this reference consistegur
must be larger than or equal to twice the Nyquist frequengyrizing the series in({6), so that the truncation at indi¢e?
of s(t), [15, Lecture 22]. introduces a negligible error. The key lies in realizingt tiere

The series in[{6) is a fundamental tool for characterizing always some sampling inefficiency (slight over-sampling
band-limited signals, but is far from giving efficient inpe- and in exploiting this fact so as to improve the performance
lators, implementable in practice. The problem is that onlyf Eq. {10). In short, the solution given in this reference is
a finite sequence of samples is known in most cases atitk following. If the average separation of the samplingh{mi
obviously, the interpolation will only be accurate in a finitis 7' and there is non-null over-samplingI’ < 1, then the
interval. series in Eq.[{(6) can be applied to the products@h with

In a more realistic situation, it would be necessary to inteanother signatv(¢) of bandwidth1/T — B. The result reads
polates(t) in a sequence of instants as the nonuniform samples -

become available and, besides, this interpolation shoeld t% T+ _ + )T +6 T+6
performed from the last, sag,P + 1 samples. Also, though (n ww(u) Z S((n+p) i)W (P )

)= H (1 —t/t,)et/t. (7)

P

the samples are taken at irregular instants, they should aav e d(nT +u)
maximum separation from a grid with given spacifigjittered ' &' (0 + )T + 0nap)(tt — pT — 0psp)
sampling). Finally, only interpolators that are linear imet (P

signal samples should be considered, so as to facilitate #ewever,w(u) can be selected so that it is close to one for
implementation. In notation, these conditions can be esgg@ || < 7/2 and close to zero fofu| > (P + 1)T — §. This
through the following conventions, allows one to truncaté (11) at indicesP, and then solve for
« The signal is to be interpolated at instarif + v with v s(n1 + u), so as to obtain the interpolator
following —7/2 < u < T/2 and integem. P
« For this interpolation, only the nonuniform samples at, s(nT +u) ~ b Z S((n 4 )T + Sngp)W(PT + i)

instants(n + p)T + 8,4, With |p| < P are available, wlu) =,
whereld,i,| < T/2. | ST +u)

. ;22 interpolator must be linear in the nonuniform sam- & (1 + )T + Oy p)(u — pT — 5%{ .
The combination of these conditions leads us to consid¥pw, sincew(u) ~ 0 for |u| > (P+1)T—4 andw(u) ~ 1 for
interpolators of the form |u| < T/2, the neglected summands in passing frgn (11) to

i (I2) have small amplitudeSo, Eq. [[IR) must be an accurate
) N _ interpolator. Actually, as shown in [17], the error of E4.(12)
s(nT’ +u) = Zps((n +P)T +0nip)gp(win), (8)  gecreases exponentially with ase~"1=5T)P for a proper
p—

choice ofw(u). In practice this means that any accuracy can
whereg, (u;n) is a known set of functions. be achieved in[{12) using a smdH.

The Lagrange series in Ed.] (6) can be manipulated so as té\s a simple example, assume tHT = 0.7 and|s(t)| < 1.
produce an interpolator like€](8). For this, replacgith nT+v  Then, following the analysis in [11, Sec. lll], the interptbn



error of [12) for the functionw(t) specified in Ap[l is well = 15
fitted by

<1

¢ (dB) ~ 4.12106 + 66.6044 5 — 9.35838 6°

(13)
— 8.30873P + 3.13419 6P — 0.125803 6> P,

whered is a bound on the deviations 1, 6 < T'/2. So, ifé =
T/4 the valueP = 10 gives an interpolation error below=
—55 dB, andP = 16 gives an error below = —100 dB. Any
practical accuracy can be obtained by slightly increagirfor
fixed 0. (For a detailed analysis, see the previous reference

As to the dependence of(t) on the unknown shifts,,, it 0 20 20 60 80 100

was also shown in [11], tha, ., for |p| > P can be regarded t/T

as zero with negligible performance loss. This way, the é&ern

¢(t) does not depend anymore on the unknown shifts,, _ _ _

lp| > P. After S ome alggbraic manipulations @(12.)’ it We.lg:gbli:tlﬁde qu?t?g ?yn?tfoSIsKuss(Ie%nf(\)l gv:rtlgrgtaent?\\li\gdstign; W%Zérﬁj:aln\(jalziil,(
demonstrated in the previous reference that there existe@ fiang the modulating pulse was a raised cosine with roll-aftia0.2. The
smooth functiony(¢) (independent of all thé,,) such that Eq. signal's peak amplitude was scaled to one.

(12) yields the same result as the following procedure,

1) Computey(pT + dpp), [p| < P.

2) Multiply the sample values by the values compute\H
in step 1), i.e, compute the producign + pT + th =nT + 0. a7)
5n+P)’7(pT + Ontp)s lp| < P.

3) Compute the value of the Lagrange interpolator at inst
u for abscissagl'+ 0,4, |p| < P, and values computed
in step 2).

4) Computey(u) and divide the output of step 3) by this
value. This is the desired approximationsimT + w). |6,] < & with § = (T/7) arcsin(A, /A), (18)

For the specific functiony(¢) in this paper, see Al I. The ands < T/2.

previous steps are Simmanzed by the formula With these conditions ofi’ and A, the theorem of Duffin
1 and Schaeffer in SeElll implies that there is exactly oné roo

s(nT +u) ~ (@) > sl +D)T +0nip)1 (0T + 0ny) in each of the interval§nT — §,nT + ¢], for any integer

p=—F L (u) n. To verify this condition in a specific example, consider
'L’( T3 ;‘( T =5, the BPSK signal in Fig[J1. This signal was generated by
n\P ntp){ =P "*{4 modulating a raised cosine pulse of roll-off 0.2 and bandvid

where L, (u) is the conventional Lagrange Kernel for the? = 0-7/7 with a sequence of random amplitudes. Then
abscissagT + 6,1, |p| < P, the signal's peak amplitude was scaled to 1. Fig. 2 shows
v - the zone marked with a rectangle in Hig. 1, together with the

Normalized amplitude (|s(t)

heret,, must be re-defined as

aﬁ?sides, it is convenient to select an amplitutieA > A,
given that this way consecutive crossings cannot overlap.
Indeed, it can be easily checked thatAf > A, the shifts

o, follow

P . ., .
_ sine waveA sin(wt/T'). The condition in[(IB) means that the
Ln(u) = I[Pu — T = Onsp. (15) crossings with the sine wave can only take place inside the
= shaded rectangles, and there is exactly one in each of them,
IV. EFFICIENT A/D CONVERSION FROM SINE WAVE as can be seen in this example.
CROSSINGS At this point, the derivation of an efficient interpolator

As commented at the end of Sec] Il, the problem @fomes down to applying the interpolator in the previous sec-
interpolating a signad(t) from its sine wave crossings can bdion to the instant§n +p)7" + 6.+, with their corresponding
cast as that of interpolatingt) from the nonuniform samples sample values
S(tntm) = Asin(nBtn+m). Then, an efficient interpolation .
method from nonuniform samples was presented in the pre- 5(( +D)T + Gnp) = Asin(m(n +p + 8n4p/T)) (19)
vious section. Yet this method is still not applicable to the = A(=1)""Psin(76p4p/T).
initial problem in Sec[l, since it requires some samplin _ ) . .
inefficiency, i.e, the average sampling period must be so gbstituting this expression into Eq. {14), the result is th

T > 0 with BT < 1. This condition can be easily fulfilled desired interpolation formula

simply by increasing the frequency of the sinusoidall {a@". (—1)"A P
If this is done, the factorization equivalent {d (4) is s(nT 4 u) ~ ) Z Sin(m6p4p/T)y(PT + Ontp)
[e'e] p=—P
s(t) — Asin(nt/T) = K’(1 - i) I1 (1 - L) (1 - i), . Ly (u)
to k=1 Ek b Ly (0T + Ontp)(u — pT = dngp)

(16) (20)
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Normalized amplitude (|s(¢)| < 1)

Fig. 2. Short piece of the BPSK signal in FId. 1, overlappethwiie sine

For the example in Fid.]2, Fi§. 3{a) shows the signal and
its interpolated version foil? = 2. The discontinuities in
the interpolated signal take place iat= nT + T'/2, integer
n, because the set of crossings used is different for each
Notice however that just five crossing® & 2) give a good
accuracy. Fig. 3(b) shows the same comparison buPfer 3,
(seven crossings). The difference between both signalsctim
smaller than in Fig[_3(&). FoP > 3 the error becomes too
small to be represented this way. For an error analysis see Se
Vil

The formula in Eq. [[20) yields discrete-time processing
methods for delivering samples oft) with any spacing,
simply by assigning proper values toandu. The simplest
case is for spacind@’, simply by settingu = 0. For a generic
grid of instantsn,T; with 77 > 0 and integerny, the grid
samples(n;T}) is obtained from[(20), simply by setting
andu equal to the modul@ decomposition of2; 7} in (20),

wave Asin(wt/T), with A = 1.1. The stems indicate the positions of thel.€,

crossings with the sine wave. These can only take placeeirtbi rectangles,

and there is exactly one in each of them.

Normalized amplitude (|s(¢)] < 1)

54 56 58 60 62 64
t/T

(@ P=2

)

<1

Normalized amplitude (|s(¢)

54 56 58 60 62 64
t/T
() P =3

Fig. 3. Sample BPSK signal inl 2 and interpolated signal u{g@ for
P=23.

n=|nmTy/T+1/2] andu=nTy —nT. (21)

As to the efficient implementation of Ed._(20), it was shown
in [11, Secs. 1V] that this formula can be evaluated with cost
justO(N). See also the numerical examples in these reference,
(Sec. V).

V. SPECTRAL ESTIMATION FROM SINE WAVE CROSSINGS

The formula in [[2D) makes it possible to interpolate the
input signal at any instant from its crossings with the sine
wave, and the cost of this operation is just— loge), where
€ is a bound on the interpolation error. This is because the
error of [20) decreases exponentially with trend!—B7)F,

So, if € is set below the working numerical error, E{.](20)
allows one to obtain one sample sft) with a small and
constant computational cost. Therefore, the cost of coimgut

N samples in a regular grid with arbitrary spacifig is
O(N). Once these samples are available, the situation is
the usual one in which the signal’s spectrum is estimated
from regularly spaced samples, and any of the well-known
techniques in spectral analysis becomes applicable, §i8¢e
these techniques are based on the FFT whose complexity
is O(NlogN), it is clear that the total complexity is also
O(Nlog N). A numerical example is presented in the next
section.

V1. NUMERICAL EXAMPLE

To validate the results in a specific example, a BPSK signal
z(t) was generated with the following parameters,

« Modulating pulse: raised cosine with roll-d¥f2.

« Random amplitudes equal tb1.

« Total two-sided bandwidtiB = 0.7/T.

« Time intervall = [0, (N — 1)T] with N = 1024.
Then several numerical experiments were conducted.

The first experiment consisted in interpolatir{g) in I from
its sine wave crossings. The result is shown in Elg. 44o0&
1.1 and A = 16, where the error norm is the maximum over
I, that is, if z(¢) is the interpolated signal, then the ordinate
in this figure is

sup [z(t) — 2()]- (22)
tel
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Fig. 4. Error in the interpolation af(t) from its sine wave crossings versus Fig. 6. Maximum difference between the samplésT) +w(nT’) and their
index P. The error norm is the supremusmp, ¢y [#(¢) — 2(t)| wherez(t)  jnterpolated values from sine wave crossings versus the. SK&error norm
is the interpolated signal. if that defined in[(Z}4).

crossings. The threshold can be fixed to an SNR as large as
desired, simply by slightly increasing, due to the exponential

?_ng dependence of the interpolation error n
—~ As to the spectral analysis, it is worth comparing the
S conventional procedure from uniform samples, with the one
i’ proposed in this paper from sine wave crossings. In the
= conventional procedure, the sampldsT) + w(n1') would
2 be delivered by an A/D converter, and then any of the existing
=120 ++;_ spectral analysis methods would be applied to these data,
~140 , , , , , [18]. And in the proposed procedure, the A/D converter would
20 40 60 80 100 120  deliver the sine wave crossing timings, then the uniform
Signal-to-noise ratio (dB) samples (nT") would be computed using E@.{20), and finally

the spectral analysis would be the same as in the convehtiona
Fig. 5. RMS error versus the SNR in the interpolation of th@glasz(nT’) Procedure’ i.e, it would be perform?d on the sampigsT’)
from the sine wave crossings of the noisy realizatigt) + w(t). instead ofz(nT') + w(nT'). The fact is that the result of both
procedures would béhe sameup to the numerical accuracy
in use. This can be readily seen in Hig. 6, in which the error
Notice that this error decreases exponentially withBesides, measure is the maximum difference betweenT’) + w(nT')
the values off for A = 1.1 and A = 16 are0.367 and0.027", andz;(nT),
respectively, but the error is roughly the same in both cases _
So, the fact that the sampling instants may differ from thid gr 5}1& [#(nT) + w(nT) = 21 (nT)]. (24)

nT' (integern) has a m|_n|mal effect on thg performance. This coincidence is due to the fact that the interpolat@rQns?
In the second experiment, a white noise proces) of 154 reconstructing the noise realizatiot), since it is also a
bandwidth was added ta(t). Then,z(t)+w(t) was sampled  gjoa| with bandwidthB. Fig.[ shows the amplitude spectrum
_at instantsnT’ (mtegern_) in 7, and thes_e samples were alsQha sequence(nT)+w(nT), where the maximum has been
interpolated from the sine wave crossingsz0f) + w(t) for  nqmajized ton dB. If this spectrum were computed from the

A =3andP = 4 and9. Fig.[3 shows the resulting root-meangjne wave crossings, the it would differ from that if Fig. 7 by
square (RMS) error. The crosses)(indicate the deviation of o amplitude given in Fig8.

samplesz(nT) + w(nT'). The other two curves are the RMS

errors forP = 4 and P = 9, given by VII. CONCLUSIONS

1 . 2\ 1/2 A method has been presented that makes it possible to
(N Z [2(nT) = 2(nT)| ) ’ (23) recover a band-limited signal from its crossings with a sine
wave. It allows one to design A/D converters which only
where z;(t) is the value interpolated from the sine wavaleliver the timing of the sine wave crossings, so allowing fo
crossings of the noisy signalt) + w(t). The curve for either a smaller complexity and power consumption in the converter
value of P overlaps the sample deviation up to an SNRnd potentially increasing the achievable sampling badthwi
threshold which is fixed by the specific value Bf So, below The method is based on viewing the problem as one of
this threshold, the performance is the same if either theasig interpolation from nonuniform samples, to which a recent
is directly sampled, or if it is interpolated from its sinewga efficient technique is applied. This technique is based en th

nTel



0 - - - - The weight functiony(¢) in Sec[Ill is given by
2 ~10| I T TR, () = (—=1)F w(t)Lo(t) (28)
S | | | (P2 sin(nt/T)’
o =20t . | . . . . . ]
= : : ‘ : whereL,(t) is the Lagrange kernel for the instant¥, |p| <
Z -30} 1 P,
) P
o 40 ] Lot)= [ t-»T.
LT-< p=—
A 50}
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sine(By\/t? — T2)
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w(t) sinc(jByTw)

(25)

where

B,=1/T - B andT, = PT. (26)
Note that in [2b) the argument of the sinc functions may be
pure imaginary. In this case, the sinc function can be etatla
from the hyperbolic sine since, for rea) it is

Ta Ta
— e

sin(jma) e~ sinh(ma)

(25)(jma)
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jma ma
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