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Efficient Sampling of Band-limited Signals from
Sine Wave Crossings

J. Selva

Abstract— This paper presents an efficient method for recon-
structing a band-limited signal in the discrete domain from its
crossings with a sine wave. The method makes it possible to design
A/D converters that only deliver the crossing timings, which are
then used to interpolate the input signal at arbitrary instants.
Potentially, it may allow for reductions in power consumption and
complexity, as well as for an increase in the achievable sampling
bandwidth. The reconstruction in the discrete domain is based
on a recently-proposed modification of the Lagrange interpolator,
which is readily implementable with linear complexity and
efficiently, given that it re-uses known schemes for variable
fractional-delay (VFD) filters. As a spin-off, the method allows
one to perform spectral analysis from sine wave crossings with
the complexity of the FFT. Finally, the results in the paper are
validated in a numerical example.

I. I NTRODUCTION

The analog-to-discrete (A/D) conversion is the first step
for the discrete-time processing of continuous signals. This
conversion is fundamentally based on the Sampling Theorem,
which states that a band-limited signal can be recovered from
its regularly-spaced samples taken at least at twice the Nyquist
rate. However, some authors early noticed that this recovery
is also possible from the signal’s zeros, or from its crossings
with another signal like a sine wave, [1]–[4]. This is due to
the fact that a band-limited signal is an entire function of
exponential type, for which there is a factorization in terms of
its roots akin to that of conventional polynomials, (Hadamard’s
factorization theorem [5, chapter 2]). A consequence of this
is that it would be possible, in principle, to design A/D
converters in which the sample quantization is substitutedby
a zero crossing detector and an accurate timing, [6]. This new
procedure would eliminate the need to quantize any signal
sample, so decreasing the complexity and power consumption
of A/D converters, and potentially increasing the achievable
sampling bandwidth. Besides, it would mainly re-use existing
technologies, given that zero crossing detection is implicit in
many existing systems. This last point can be readily seen
in the current trend in A/D converter design, in which the
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sample amplitudes are turned into zero crossings, which can
then be accurately detected with low-power consumption and
high speed, [7], [8].

The main obstacle for this alternative procedure is how the
signal should be reconstructed or processed in the discrete
domain, since Hadamard’s factorization theorem does not
directly lead to efficient implementations, due to its slow
convergence rate. Here, the usual approach in the litera-
ture consists in approximating the signal in a finite interval
using a trigonometric polynomial, [6], [9], [10]. But then
the interpolation error decreases only asO(1/N), while the
complexity per interpolated value isO(N), whereN is the
number of crossings inside the interval. So, in this approach
it is necessary to employ a largeN to ensure an acceptable
accuracy, with the associated high complexity.

The purpose of this paper is to present a method for
overcoming this obstacle, that makes it possible to reconstruct
the bandlimited signal from its sine wave crossings efficiently.
The method is based on viewing the reconstruction as a
problem of interpolation from nonuniform samples, to which
the efficient technique in [11] is applied. Relative to the state
of the art, it has several advantages:

• The complexity is reduced significantly. If in the approach
in [6], [9], [10], a complexityO(N) (per interpolated
value) gives an interpolation errorO(1/N), with the
proposed method a complexityO(N) gives an error
O(e−π(1−BT )N), whereB is the signal’s two-sided band-
width andT is the average crossing separation. In practice
this means that “any” accuracy can be achieved with a
smallN .

• The method is based on the evaluation of a fixed smooth
function and on the Lagrange interpolator. Besides, it
can be evaluated with costO(N) per interpolated value,
and can be implemented by re-using efficient designs for
variable fractional-delay (VFD) filters, [11, Sec. IV].

• As a spin-off, the method permits one to perform spec-
tral analysis from sine wave crossings with complexity
O(N logN), while the usual method has complexity
O(N2), [6, Sec. IV].

The paper has been organized as follows. The next section
reviews the state of the art and presents the problem formu-
lation. In it, it is shown that the reconstruction from sine
wave crossings can be turned into an interpolation problem
from nonuniform samples. Then, this last problem is addressed
in Sec. III, where the solution adopted is that in the recent
reference [11], which is based on the Lagrange interpolator.
Afterward, Sec. IV contains the main development in the
paper, which is a simple formula for reconstructing the signal
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from its sine wave crossings with high accuracy. Then, Sec. V
addresses the problem of analyzing the spectrum from sine
wave crossings in the light of the formula in Sec. IV. It
turns out that this formula makes it possible to reduce the
complexity from the usualO(N2) order to orderO(N logN).
Finally, Sec. VI validates the results in the paper through a
numerical example.

II. STATE OF THE ART AND PROBLEM FORMULATION

The usual representation for a real finite-energy signals(t)
with spectrum inside[−B/2, B/2] is given by the Sampling
Theorem, which states thats(t) can be perfectly reconstructed
from its sampless(n/B) using the series

s(n/B + u) =

∞
∑

p=−∞

s((n− p)/B)sinc(p+Bu), (1)

where n is an integer andu is any time shift following
−1/(2B) ≤ u < 1/(2B). This series is the basis of most
processing algorithms for continuous signals in the discrete
domain. Several authors [1], [2], [4] soon noticed thats(t)
can alternatively be viewed as apolynomial of infinite degree,
which can be described in terms of its roots. The reason why
is that a band-limited signal can be regarded as an analytic
function over the whole complex plane, if thet variable is
allowed to take complex values. Besides, this kind of function
is bounded on the real axis (realt), and its maximum growth
rate is that ofeπB|t| along the imaginary axis. It can be shown
that this kind of signal admits the representation

s(t) = Kta
∞
∏

p=1

(1− t/τp), (2)

wherea is the integer order of the root at the origin,a ≥ 0, K
is a real constant, and theτp are complex roots which appear
in complex conjugate pairs,τp 6= 0, and may not be distinct,
[12, Theorem VI]. In Eq. (2), the roots are taken so that their
module increases withp, i.e, |τp| ≤ |τp+1|, since the infinite
product only converges conditionally.

Eq. (2) is the explicit root factorization ofs(t) as infinite-
degree polynomial, and from it it is obvious that the rootsτp
determine the signal except for the scale factorK. The root
density in any circle|t| < τ follows the same rule as the
sample density in (1), i.e, the circle|t| < τ contains either
2τB samples in (1) or2τB roots in (2) asymptotically.

The factorization in Eq. (2) led to consider the possible
implementation of A/D converters based on the detection of
the signal’s zeros. However, it was soon realized that such
implementation faced two main problems, [4], [6]. The first
was how the roots should be located efficiently, since they
may have a non-null imaginary part. And the second was how
the infinite product in (2) should be approximated, since in
practice only a finite sequence of rootsτp is known, and (2)
converges slowly.

A solution for the first problem was readily found [4, Sec
V], and consisted in subtracting a sinusoidalA sin(πBt) to
s(t), with amplitudeA not smaller than that ofs(t), i.e, A ≥
As where

As = sup
t real

|s(t)|. (3)

This simple procedure actually solved the problem of locating
the roots, because the subtraction of this sine wave “moves”
all roots to the real axis, due to a theorem of Duffin and
Schaeffer, [13]. Specifically,s(t)−A sin(πBt) can only have
zeros on the real axis, and each of them can be viewed as a
zero ofA sin(πBt), which has been shifted by at most1/(2B).
So, in notation, all zeros ofs(t)− A sin(πBt) have the form
n/B+ δn, wheren is an integer and|δn| ≤ 1/(2B), and two
consecutive zeros may overlap only at instantsn/B+1/(2B).
Using this description, the factorization in Eq. (2) fors(t) −
A sin(πBt) is

s(t)−A sin(πBt) = K ′(t0− t)
∞
∏

k=1

(

1−
t

t−k

)(

1−
t

tk

)

, (4)

whereK ′ is a real constant and

tn ≡ n/B + δn. (5)

From Eq. (4), the basic design for the desired A/D converter
was clear. First an oscillator would be used to generate the
waveA sin(πt/B), which would then be subtracted froms(t).
Afterward, the zero crossings would be detected using a gate,
and the converter output would be the sequence of shiftsδn
in Eq. (5).

As to the second problem, the usual solution to date
consists in approximating the signal using a trigonometric
polynomial, [6]. In short, if the finite sequence of roots
tn, tn+1, . . . , tn+M−1 is known, thens(t) − A sin(πBt) is
interpolated using a trigonometric polynomial of orderM
which is zero attn+m, 0 ≤ m < M . However, this solution
is not satisfactory since its accuracy is poor even for a large
number of roots. This complexity issue is the main obstacle
for achieving an efficient implementation.

An efficient solution for this second problem is derived
in the next two sections, which is based on recent results
on the interpolation of band-limited signals from nonuniform
samples. The key point is to realize that approximatings(t)
from the rootstn+m of s(t) − A sin(πBt) is the same as
approximatings(t) from its value at these instants, since
s(tn+m) = A sin(πBtn+m). So, this is actually a problem
of interpolation from nonuniform samples. An efficient and
accurate method for solving this kind of problem has been
recently presented in [11], and this method is shortly outlined
in the next section. Then, the A/D converter from sine wave
crossings is described in Sec. IV.

III. E FFICIENT SIGNAL INTERPOLATION FROM

NONUNIFORM SAMPLES

The reconstruction of a band-limited signal from discrete
samples is usually performed from a uniform sampling grid.
Yet it is well known in Sampling Theory that this kind of
reconstruction is also possible from nonuniform samples, [14].
From a theoretical point of view, the uniform and nonuni-
form cases can be handled jointly using an extension of the
Lagrange interpolation procedure. In rough terms, if a band-
limited signals(t) is known at instantst1, t2, . . ., then it can
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be reconstructed using the series

s(t) =

∞
∑

p=1

s(tp)
φ(t)

φ′(tp)(t− tp)
, (6)

whereφ(t) has a zero at eachtp and is given by

φ(t) ≡ A

∞
∏′

p=1

(1− t/tp)e
t/tp . (7)

Here, the prime (’) means that the factor should be replaced
with t if tp = 0, andA is any constant,A 6= 0. A particular
case of Eq. (6) is the uniform sampling case in (1) for which
φ(t) = sin(πBt).

The usual Lagrange interpolation procedure can be readily
identified in (6). In this formula, the kernelφ(t) has a zero
at t = tp which is removed by the denominatort − tp. Then
the division byφ′(tp) normalizes the function value to one at
t = tp. So, the summandφ(t)/(φ′(tp)(t− tp)) is equal to one
at t = tp and equal to zero att = tq, q 6= p. Finally, the sum
for all p gives the infinite Lagrange formula fors(t).

For Eq. (6) to hold,s(t) must have finite energy, there
must be a minimum separation among the sampling points,
infp,q |tp − tq| > 0, and the average density of the instantstp
must be larger than or equal to twice the Nyquist frequency
of s(t), [15, Lecture 22].

The series in (6) is a fundamental tool for characterizing
band-limited signals, but is far from giving efficient interpo-
lators, implementable in practice. The problem is that only
a finite sequence of samples is known in most cases and,
obviously, the interpolation will only be accurate in a finite
interval.

In a more realistic situation, it would be necessary to inter-
polates(t) in a sequence of instants as the nonuniform samples
become available and, besides, this interpolation should be
performed from the last, say,2P + 1 samples. Also, though
the samples are taken at irregular instants, they should have a
maximum separation from a grid with given spacingT (jittered
sampling). Finally, only interpolators that are linear in the
signal samples should be considered, so as to facilitate the
implementation. In notation, these conditions can be expressed
through the following conventions,

• The signal is to be interpolated at instantnT + u with u
following −T/2 ≤ u < T/2 and integern.

• For this interpolation, only the nonuniform samples at
instants(n + p)T + δn+p with |p| ≤ P are available,
where|δn+p| < T/2.

• The interpolator must be linear in the nonuniform sam-
ples.

The combination of these conditions leads us to consider
interpolators of the form

s(nT + u) ≈
P
∑

p=−P

s((n+ p)T + δn+p)gp(u;n), (8)

wheregp(u;n) is a known set of functions.
The Lagrange series in Eq. (6) can be manipulated so as to

produce an interpolator like (8). For this, replacet with nT+u

and tp with pT + δp, and re-order the summation. The result
is

s(nT + u) =

∞
∑

p=−∞

s((n+ p)T + δn+p)

·
φ(nT + u)

φ′((n+ p)T + δn+p)(u − pT − δn+p)
.

(9)

Finally, truncate this sum at±P to obtain the formula of the
form in Eq. (8)

s(nT + u) ≈

P
∑

p=−P

s((n+ p)T + δn+p)

·
φ(nT + u)

φ′((n+ p)T + δn+p)(u− pT − δn+p)
.

(10)

However, this approach would not be viable becauseφ(t)
depends on the infinite set of shiftsδn and on the index
n, and also because the accuracy would be poor. This latter
inconvenient is already well known for the sinc series in Eq.
(1), [16].

The problem of making the approach in Eq. (10) viable
and efficient has been recently solved in [11] satisfactorily.
Fundamentally, the solution in this reference consists in regu-
larizing the series in (6), so that the truncation at indices±P
introduces a negligible error. The key lies in realizing that there
is always some sampling inefficiency (slight over-sampling),
and in exploiting this fact so as to improve the performance
of Eq. (10). In short, the solution given in this reference is
the following. If the average separation of the sampling points
is T and there is non-null over-sampling,BT < 1, then the
series in Eq. (6) can be applied to the product ofs(t) with
another signalw(t) of bandwidth1/T −B. The result reads

s(nT + u)w(u) =
∞
∑

p=−∞

s((n+ p)T + δn+p)w(pT + δn+p)

·
φ(nT + u)

φ′((n+ p)T + δn+p)(u− pT − δn+p)
.

(11)
However,w(u) can be selected so that it is close to one for
|u| ≤ T/2 and close to zero for|u| ≥ (P + 1)T − δ. This
allows one to truncate (11) at indices±P , and then solve for
s(nT + u), so as to obtain the interpolator

s(nT + u) ≈
1

w(u)

P
∑

p=−P

s((n+ p)T + δn+p)w(pT + δn+p)

·
φ(nT + u)

φ′((n+ p)T + δn+p)(u− pT − δn+p)
.

(12)
Now, sincew(u) ≈ 0 for |u| ≥ (P+1)T−δ andw(u) ≈ 1 for
|u| ≤ T/2, the neglected summands in passing from (11) to
(12) have small amplitude.So, Eq. (12) must be an accurate
interpolator.Actually, as shown in [17], the error of Eq. (12)
decreases exponentially withP as e−π(1−BT )P for a proper
choice ofw(u). In practice this means that any accuracy can
be achieved in (12) using a smallP .

As a simple example, assume thatBT = 0.7 and|s(t)| ≤ 1.
Then, following the analysis in [11, Sec. III], the interpolation
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error of (12) for the functionw(t) specified in Ap. I is well
fitted by

ǫ (dB) ≈ 4.12106+ 66.6044 δ− 9.35838 δ2

− 8.30873P + 3.13419 δP − 0.125803 δ2P,
(13)

whereδ is a bound on the deviationsδn+p, δ < T/2. So, ifδ =
T/4 the valueP = 10 gives an interpolation error belowǫ =
−55 dB, andP = 16 gives an error belowǫ = −100 dB. Any
practical accuracy can be obtained by slightly increasingP for
fixed δ. (For a detailed analysis, see the previous reference.)

As to the dependence ofφ(t) on the unknown shiftsδn, it
was also shown in [11], thatδn+p for |p| > P can be regarded
as zero with negligible performance loss. This way, the kernel
φ(t) does not depend anymore on the unknown shiftsδn+p,
|p| > P . After some algebraic manipulations on (12), it was
demonstrated in the previous reference that there exists a fixed
smooth functionγ(t) (independent of all theδn) such that Eq.
(12) yields the same result as the following procedure,

1) Computeγ(pT + δn+p), |p| ≤ P .
2) Multiply the sample values by the values computed

in step 1), i.e, compute the productss(n+ pT +
δn+p)γ(pT + δn+p), |p| ≤ P .

3) Compute the value of the Lagrange interpolator at instant
u for abscissaspT+δn+p, |p| ≤ P , and values computed
in step 2).

4) Computeγ(u) and divide the output of step 3) by this
value. This is the desired approximation tos(nT + u).

For the specific functionγ(t) in this paper, see Ap. I. The
previous steps are summarized by the formula

s(nT + u) ≈
1

γ(u)

P
∑

p=−P

s((n+ p)T + δn+p)γ(pT + δn+p)

·
Ln(u)

L′
n(pT + δn+p)(u − pT − δn+p)

(14)
where Ln(u) is the conventional Lagrange Kernel for the
abscissaspT + δn+p, |p| ≤ P ,

Ln(u) ≡

P
∏

p=−P

u− pT − δn+p. (15)

IV. EFFICIENT A/D CONVERSION FROM SINE WAVE

CROSSINGS

As commented at the end of Sec. II, the problem of
interpolating a signals(t) from its sine wave crossings can be
cast as that of interpolatings(t) from the nonuniform samples
s(tn+m) = A sin(πBtn+m). Then, an efficient interpolation
method from nonuniform samples was presented in the pre-
vious section. Yet this method is still not applicable to the
initial problem in Sec. II, since it requires some sampling
inefficiency, i.e, the average sampling period must be some
T > 0 with BT < 1. This condition can be easily fulfilled
simply by increasing the frequency of the sinusoidal to1/T .
If this is done, the factorization equivalent to (4) is

s(t)−A sin(πt/T ) = K ′
(

1−
t

t0

)

∞
∏

k=1

(

1−
t

t−k

)(

1−
t

tk

)

,

(16)
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Fig. 1. Random BPSK signal with bandwidthB = 0.7/T and peak
amplitude 1. The symbols used to generate this signal were random±1 values,
and the modulating pulse was a raised cosine with roll-off factor 0.2. The
signal’s peak amplitude was scaled to one.

wheretn must be re-defined as

tn ≡ nT + δn. (17)

Besides, it is convenient to select an amplitudeA, A > As,
given that this way consecutive crossings cannot overlap.
Indeed, it can be easily checked that ifA > As the shifts
δn follow

|δn| ≤ δ with δ ≡ (T/π) arcsin(As/A), (18)

andδ < T/2.
With these conditions onT andA, the theorem of Duffin

and Schaeffer in Sec. II implies that there is exactly one root
in each of the intervals[nT − δ, nT + δ], for any integer
n. To verify this condition in a specific example, consider
the BPSK signal in Fig. 1. This signal was generated by
modulating a raised cosine pulse of roll-off 0.2 and bandwidth
B = 0.7/T with a sequence of random amplitudes±1. Then
the signal’s peak amplitude was scaled to 1. Fig. 2 shows
the zone marked with a rectangle in Fig. 1, together with the
sine waveA sin(πt/T ). The condition in (18) means that the
crossings with the sine wave can only take place inside the
shaded rectangles, and there is exactly one in each of them,
as can be seen in this example.

At this point, the derivation of an efficient interpolator
comes down to applying the interpolator in the previous sec-
tion to the instants(n+ p)T + δn+p, with their corresponding
sample values

s((n+ p)T + δn+p)=A sin(π(n+ p+ δn+p/T ))

=A(−1)n+p sin(πδn+p/T ).
(19)

Substituting this expression into Eq. (14), the result is the
desired interpolation formula

s(nT + u) ≈
(−1)nA

γ(u)

P
∑

p=−P

sin(πδn+p/T )γ(pT + δn+p)

·
Ln(u)

L′
n(pT + δn+p)(u − pT − δn+p)

.

(20)
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Fig. 2. Short piece of the BPSK signal in Fig. 1, overlapped with the sine
waveA sin(πt/T ), with A = 1.1. The stems indicate the positions of the
crossings with the sine wave. These can only take place inside the rectangles,
and there is exactly one in each of them.
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(a) P = 2
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(b) P = 3

Fig. 3. Sample BPSK signal in 2 and interpolated signal using(20) for
P = 2, 3.

For the example in Fig. 2, Fig. 3(a) shows the signal and
its interpolated version forP = 2. The discontinuities in
the interpolated signal take place att = nT + T/2, integer
n, because the set of crossings used is different for eachn.
Notice however that just five crossings (P = 2) give a good
accuracy. Fig. 3(b) shows the same comparison but forP = 3,
(seven crossings). The difference between both signals is much
smaller than in Fig. 3(a). ForP > 3 the error becomes too
small to be represented this way. For an error analysis see Sec.
VI.

The formula in Eq. (20) yields discrete-time processing
methods for delivering samples ofs(t) with any spacing,
simply by assigning proper values ton andu. The simplest
case is for spacingT , simply by settingu = 0. For a generic
grid of instantsn1T1 with T1 > 0 and integern1, the grid
samples(n1T1) is obtained from (20), simply by settingn
andu equal to the modulo-T decomposition ofn1T1 in (20),
i.e,

n = ⌊n1T1/T + 1/2⌋ and u = n1T1 − nT. (21)

As to the efficient implementation of Eq. (20), it was shown
in [11, Secs. IV] that this formula can be evaluated with cost
justO(N). See also the numerical examples in these reference,
(Sec. V).

V. SPECTRAL ESTIMATION FROM SINE WAVE CROSSINGS

The formula in (20) makes it possible to interpolate the
input signal at any instant from its crossings with the sine
wave, and the cost of this operation is justO(− log ǫ), where
ǫ is a bound on the interpolation error. This is because the
error of (20) decreases exponentially with trende−π(1−BT )P .
So, if ǫ is set below the working numerical error, Eq. (20)
allows one to obtain one sample ofs(t) with a small and
constant computational cost. Therefore, the cost of computing
N samples in a regular grid with arbitrary spacingT1 is
O(N). Once these samples are available, the situation is
the usual one in which the signal’s spectrum is estimated
from regularly spaced samples, and any of the well-known
techniques in spectral analysis becomes applicable, [18].Since
these techniques are based on the FFT whose complexity
is O(N logN), it is clear that the total complexity is also
O(N logN). A numerical example is presented in the next
section.

VI. N UMERICAL EXAMPLE

To validate the results in a specific example, a BPSK signal
z(t) was generated with the following parameters,

• Modulating pulse: raised cosine with roll-off0.2.
• Random amplitudes equal to±1.
• Total two-sided bandwidthB = 0.7/T .
• Time intervalI = [0, (N − 1)T ] with N = 1024.

Then several numerical experiments were conducted.
The first experiment consisted in interpolatingz(t) in I from

its sine wave crossings. The result is shown in Fig. 4 forA =
1.1 andA = 16, where the error norm is the maximum over
I, that is, if ẑ(t) is the interpolated signal, then the ordinate
in this figure is

sup
t∈I

|z(t)− ẑ(t)|. (22)
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Fig. 5. RMS error versus the SNR in the interpolation of the samplesz(nT )
from the sine wave crossings of the noisy realizationz(t) + w(t).

Notice that this error decreases exponentially withP . Besides,
the values ofδ for A = 1.1 andA = 16 are0.36T and0.02T ,
respectively, but the error is roughly the same in both cases.
So, the fact that the sampling instants may differ from the grid
nT (integern) has a minimal effect on the performance.

In the second experiment, a white noise processw(t) of
bandwidthB was added toz(t). Then,z(t)+w(t) was sampled
at instantsnT (integern) in I, and these samples were also
interpolated from the sine wave crossings ofz(t) + w(t) for
A = 3 andP = 4 and9. Fig. 5 shows the resulting root-mean-
square (RMS) error. The crosses (+) indicate the deviation of
samplesz(nT ) + w(nT ). The other two curves are the RMS
errors forP = 4 andP = 9, given by

( 1

N

∑

nT∈I

|z(nT )− ẑ1(nT )|
2
)1/2

, (23)

where z1(t) is the value interpolated from the sine wave
crossings of the noisy signalz(t)+w(t). The curve for either
value of P overlaps the sample deviation up to an SNR
threshold which is fixed by the specific value ofP . So, below
this threshold, the performance is the same if either the signal
is directly sampled, or if it is interpolated from its sine wave
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Fig. 6. Maximum difference between the samplesz(nT )+w(nT ) and their
interpolated values from sine wave crossings versus the SNR. The error norm
if that defined in (24).

crossings. The threshold can be fixed to an SNR as large as
desired, simply by slightly increasingP , due to the exponential
dependence of the interpolation error onP .

As to the spectral analysis, it is worth comparing the
conventional procedure from uniform samples, with the one
proposed in this paper from sine wave crossings. In the
conventional procedure, the samplesz(nT ) + w(nT ) would
be delivered by an A/D converter, and then any of the existing
spectral analysis methods would be applied to these data,
[18]. And in the proposed procedure, the A/D converter would
deliver the sine wave crossing timingsδn, then the uniform
samplesz1(nT ) would be computed using Eq. (20), and finally
the spectral analysis would be the same as in the conventional
procedure, i.e, it would be performed on the samplesz1(nT )
instead ofz(nT ) + w(nT ). The fact is that the result of both
procedures would bethe sameup to the numerical accuracy
in use. This can be readily seen in Fig. 6, in which the error
measure is the maximum difference betweenz(nT ) + w(nT )
andz1(nT ),

sup
nT∈I

|z(nT ) + w(nT )− z1(nT )|. (24)

This coincidence is due to the fact that the interpolator in 20 is
also reconstructing the noise realizationw(t), since it is also a
signal with bandwidthB. Fig. 7 shows the amplitude spectrum
of the sequencez(nT )+w(nT ), where the maximum has been
normalized to0 dB. If this spectrum were computed from the
sine wave crossings, the it would differ from that if Fig. 7 by
the amplitude given in Fig. 8.

VII. C ONCLUSIONS

A method has been presented that makes it possible to
recover a band-limited signal from its crossings with a sine
wave. It allows one to design A/D converters which only
deliver the timing of the sine wave crossings, so allowing for
a smaller complexity and power consumption in the converter,
and potentially increasing the achievable sampling bandwidth.
The method is based on viewing the problem as one of
interpolation from nonuniform samples, to which a recent
efficient technique is applied. This technique is based on the
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Fig. 7. Amplitude spectrum of sequencez(nT ) +w(nT ) for nT in I. The
spectrum’s maximum value has been normalized to one.
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Fig. 8. Amplitude of the difference between the spectrum ofz(nT )+w(nT )
and that ofz1(nT ).

Lagrange interpolator and allows for efficient implementations
based on current designs of VFD filters. As a spin-off, the
method permits one to perform spectral analysis from the sine
wave crossings with the complexity of the FFT. The method
has been validated in a numerical example.

APPENDIX I
WEIGHT FUNCTION FOR THELAGRANGE INTERPOLATOR

Following [11], the functionw(t) in Sec. III is the inverse
Fourier transform of the Kaiser-Bessel window,

w(t) ≡
sinc(Bw

√

t2 − T 2
w)

sinc(jBwTw)
, (25)

where

Bw ≡ 1/T −B and Tw = PT. (26)

Note that in (25) the argument of the sinc functions may be
pure imaginary. In this case, the sinc function can be evaluated
from the hyperbolic sine since, for reala, it is

sinc(ja) =
sin(jπa)

jπa
=

e−πa − eπa

(2j)(jπa)
=

sinh(πa)

πa
. (27)

The weight functionγ(t) in Sec. III is given by

γ(t) ≡
(−1)P

(P !)2
w(t)Lo(t)

sin(πt/T )
, (28)

whereLo(t) is the Lagrange kernel for the instantspT , |p| ≤
P ,

Lo(t) ≡
P
∏

p=−P

t− pT.
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