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Abstract

We prove an optimal Ω(n) lower bound on the randomized communication complexity
of the much-studied GAP-HAMMING-DISTANCE problem. As a consequence, we obtain es-
sentially optimal multi-pass space lower bounds in the data stream model for a number of
fundamental problems, including the estimation of frequency moments.

The GAP-HAMMING-DISTANCE problem is a communication problem, wherein Alice and
Bob receive n-bit strings x and y, respectively. They are promised that the Hamming distance
between x and y is either at least n/2 +

√
n or at most n/2 −√

n, and their goal is to decide
which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff
(FOCS, 2003), it had been conjectured that the naı̈ve protocol, which uses n bits of communi-
cation, is asymptotically optimal. The conjecture was shown to be true in several special cases,
e.g., when the communication is deterministic, or when the number of rounds of communica-
tion is limited.

The proof of our aforementioned result, which settles this conjecture fully, is based on a new
geometric statement regarding correlations in Gaussian space, related to a result of C. Borell
(1985). To prove this geometric statement, we show that random projections of not-too-small
sets in Gaussian space are close to a mixture of translated normal variables.
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1 Introduction

Communication complexity is a much-studied topic in computational complexity, deriving its
importance both from the basic nature of the questions it asks and the wide range of applications
of its results, covering, for instance, lower bounds on circuit depth (see, e.g., [KW90]) and on query
times for static data structures (see, e.g., [MNSW98, Pǎt08]). In the basic setup, which is all that
concerns us here, each of two players, Alice and Bob, receives a binary string as input. Their goal
is to compute some function of the two strings, using a protocol that involves exchanging a small
number of bits. Since communication complexity is often applied as a lower bound technique,
much of the work in the area attempts to rule out the existence of a nontrivial protocol. For many
functions, this amounts to proving an Ω(n) lower bound on the number of bits any successful
protocol must exchange, n being the common length of Alice’s and Bob’s input strings. Proofs tend
to be considerably more challenging, and more broadly applicable, when the protocol is allowed
to be randomized and err with some small constant probability (such as 1/3) on each input.

For a detailed coverage of the basics of the field, as well as a number of applications, we refer
the reader to the textbook of Kushilevitz and Nisan [KN97]. Here, we only recap the most basic
notions, in Section 2.

In this paper, we focus specifically on the Gap-Hamming-Distance problem (henceforth abbre-
viated as GHD), which was first formally studied by Indyk and Woodruff [IW03] in the context of
proving space lower bounds for the Distinct Elements problem in the data stream model. We also
consider some closely related variants of GHD.

The Problem and the Main Result. In the Gap-Hamming-Distance problem GHDn,t,g, Alice and
Bob receive binary strings x ∈ {0, 1}n and y ∈ {0, 1}n , respectively. They wish to decide whether
x and y are “close” or “far” in the Hamming sense, with a certain gap separating the definitions of
“close” and “far.” Specifically, the players must output 0 if ∆(x, y) ≤ t − g and 1 if ∆(x, y) > t + g,
where ∆ denotes Hamming distance; if neither of these holds, they may output either 0 or 1.
Clearly, this problem becomes easier as the gap g increases. Of special interest is the case when
t = n/2 and g = Θ(

√
n); these parameters are natural, and as we shall show later using elemen-

tary reductions, understanding the complexity of the problem with these parameters leads to a
complete understanding of the problem for essentially all other gap sizes and threshold locations.
Furthermore, applications of GHD, such as the ones considered by Indyk and Woodruff [IW03],
need precisely this natural setting of parameters. Henceforth, we shall simply write “GHD” to
denote GHDn,n/2,

√
n.

Our main result states, simply, that this problem does not have a nontrivial protocol. Here is a
somewhat informal statement; a fully formal version appears as Theorem 2.6.

Theorem 1.1 (Main Theorem, Informal). If a randomized protocol solves GHD, then it must communi-
cate a total of Ω(n) bits.

Relation to Prior Work. Theorem 1.1 is the logical conclusion of a moderately long line of re-
search. This was begun in the aforementioned work of Indyk and Woodruff [IW03], who showed
a linear lower bound on the communication complexity of a somewhat artificial variant of GHD in
the one-way model, i.e., in the model where the communication is required to consist of just one
message from Alice to Bob. Woodruff [Woo04] soon followed up with an Ω(n) bound for GHD

itself, still in the one-way model; the proof used rather intricate combinatorial constructions and
computations. Jayram et al. [JKS07] later provided a rather different and much simpler proof, by a
reduction from the INDEX problem. Their reduction was geometric, in the sense that they exploited
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a natural correspondence between Hamming space and Euclidean space; this correspondence has
proved fruitful in further work on the problem, including this work. Recently, Woodruff [Woo09]
and Brody and Chakrabarti [BC09] gave direct combinatorial proofs of the Ω(n) one-way bound.

All of this work left open an important question: what can be said about the complexity of GHD

when two-way communication is allowed? It has been conjectured, at least since the formalization of
the problem in 2003, that Ω(n) is still the right answer, i.e., that GHD has no nontrivial protocol,
irrespective of the communication pattern.

Until 2009, our understanding of this matter was limited to two “folklore” results. Firstly, the
deterministic communication complexity of GHDn,n/2,g can be shown to be Ω(n), even allowing
two-way communication and a gap as large as g = cn, for a small enough constant c. This follows
by directly demonstrating that its communication matrix contains no large monochromatic rect-
angles (see, e.g., [Woo07]). Secondly, a simple reduction from DISJOINTNESS to GHDn,n/2,g shows
that its randomized (two-way) communication complexity is Ω(n/g); notice that the correspond-
ing bound for GHD (where g =

√
n) is Ω(

√
n). Meanwhile, we have an upper bound of O(n2/g2),

via the simple (and one-way) protocol that samples sufficiently many coordinates of x and y to
give the right answer with high probability. It remained a significant challenge to improve upon
either tradeoff, even for just two rounds of communication.

Recently, Brody and Chakrabarti [BC09] made progress on the conjecture, proving it for ran-
domized protocols with two-way communication, but only a constant number of rounds of com-
munication. In fact, they showed that in a k-round protocol, at least one message must have length

n/2O(k2). They achieved this via a round elimination argument. At a high level, they showed that
if the first message in a GHD protocol is too short, the work done by the rest of the messages
can be used to solve a “smaller” instance of GHD, by exploiting some combinatorial properties of
Hamming space. More recently, Brody et al. [BCR+10] improved the bound to Ω(n/(k2 log k)),
still using a round elimination argument, but exploiting geometric properties of Hamming and
Euclidean space instead. We refer the reader to the discussion in [BCR+10] for details, including a
comparison of the two arguments.

Our main theorem completes this picture, confirming the main outstanding conjecture about
GHD. Moreover, a straightforward reduction (Lemma 4.4) yields the more general result that the
randomized complexity of GHDn,n/2,g is Θ(min{n, n2/g2}). Our lower bound proof is significantly
different in approach from all of the aforementioned ones. We now give a high-level overview.

The Technique. Part of the difficulty in establishing our result is that many of the known tech-
niques for proving communication complexity lower bounds seem unable to prove bounds better
than Ω̃(

√
n). These include the classic rectangle-based methods of discrepancy and corruption,1

for reasons described below. They also include certain linear algebraic approaches, such as the
factorization norms method of Linial and Shraibman [LS07] and the pattern matrix method of
Sherstov [She08], because these methods lower bound quantum communication complexity. The
trouble is that GHD does have a constant-error O(

√
n log n) quantum communication protocol, as

can be seen by combining a query complexity upper bound due to Nayak and Wu [NW99] with a
communication-to-query reduction, as in Buhrman et al. [BCW98] or Razborov [Raz02].

Instead, what does work is a suitable generalization of the corruption method. Recall that
the standard corruption method proceeds as follows. First, one observes that every protocol

1We assume that the reader has some familiarity with these basic techniques in communication complexity, which
are discussed in detail in the textbook of Kushilevitz and Nisan [KN97]. Some authors use terms like “one-sided
discrepancy” and “rectangle bound” when describing the technique that we (following Beame et al. [BPSW06]) have
termed “corruption.”
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that communicates c bits induces a partition of the communication matrix into 2c disjoint near-
monochromatic rectangles. In order to show a lower bound of c, one then needs to prove that any
rectangle containing at least a 2−c fraction of the 1-inputs must also contain (or be “corrupted”
by) a not-much-smaller fraction of the 0-inputs (or vice versa). In other words, one shows that
large near-monochromatic rectangles do not exist, from which the desired lower bound follows. It
should be noted that proving such a property could be a challenging task. Indeed, this is the main
technical contribution of Razborov’s celebrated proof of the Ω(n) lower bound on the randomized
communication complexity of the disjointness problem [Raz92].

This idea appears not to give a lower bound better than Ω(
√

n) on the randomized communi-
cation complexity of GHD because its communication matrix does contain “annoying” rectangles
that are both large and near-monochromatic. This can be seen, e.g., by considering all inputs (x, y)

with xi = 0, yi = 1 for i ∈ {1, 2, . . . , 100
√

n}: the resulting rectangle contains a 2−Θ(
√

n) fraction of
all 1-inputs (it is large), but a much smaller fraction of 0-inputs (it is nearly monochromatic).

Our generalization considers not just 0-inputs and 1-inputs, but also a carefully selected set
of “joker” inputs, whose corresponding outputs are immaterial. Loosely speaking, we show that
if a large rectangle contains many more 1-inputs than 0-inputs, then the fraction of joker inputs
it contains must be even larger than the fraction of 1-inputs it contains (by some constant factor,
say 3/2). This property — call it the “joker property” — implies that even though annoying
rectangles exist, their union cannot contain more than a constant fraction of the 1-inputs (say, 2/3).
In particular, there is no way to partition the 1-inputs into 2c near-monochromatic rectangles, and
a lower bound of c follows.

This simple-sounding idea seems to have considerable power. Indeed, the method we have
presented above can be seen as a special case of the ideas behind the “smooth rectangle bound”
recently introduced by Klauck [Kla10] and systematized by Jain and Klauck [JK10]. Formally,
when we prove a communication lower bound using corruption-with-jokers as above, we are
essentially lower bounding the smooth rectangle bound of the underlying function. For a careful
understanding of this matter, based on linear programming duality, we refer the reader to Jain
and Klauck [JK10].

Of course, there remains the task of proving the joker property referred to above. It turns out
that the statement we need boils down to roughly the following: for arbitrary sets A, B ⊆ {0, 1}n

that are not too small (say, of size at least 20.99n), if x ∈R A and y ∈R B, then ∆(x, y) is not too
concentrated around n/2; a precise statement appears as Corollary 3.8. The proof uses a Gaussian
noise correlation inequality (Theorem 3.5, proved using analytic methods); this inequality and its
proof are the main technical contributions of the paper and should be of independent interest. We
note that Vidick [Vid10] recently communicated to us an alternative proof of the joker property.

Data Stream and Other Consequences. The original motivation for studying GHD was a spe-
cific application to the Distinct Elements problem on data streams. Specifically, given a stream
(sequence) of m elements, each from [n] := {1, 2, . . . , n}, we wish to estimate, to within a 1 ± ε

approximation, the number of distinct elements in it, while using space sublinear in m and n. A
long line of research has culminated in a randomized algorithm [BJK+04] that computes such an
estimate (failing with probability at most 1

3 , say) in one pass over the stream, using Õ(ε−2) bits of

space, where the Õ-notation suppresses factors logarithmic in m and n. An easy reduction (implicit
in Indyk and Woodruff [IW03]) shows that a lower bound of Ω(φ(n, k)) on the maximum message
length of a (2k − 1)-round protocol for GHD would imply a Ω(φ(ε−2, k)) space lower bound on k-
pass algorithms for the Distinct Elements problem. Thus, the one-way Ω(n) lower bound for GHD

implied a tight Ω(ε−2) lower bound for one-pass streaming algorithms. The results of Brody and

3



Chakrabarti [BC09] and Brody et al. [BCR+10] extended this to p-pass algorithms, giving lower

bounds of Ω(ε−2/2O(p2)) and Ω(ε−2/(p2 log p)), respectively.
Our main result improves this pass/space tradeoff, giving a space lower bound of Ω(ε−2/p).

As is easy to see, this is tight up to factors logarithmic in m and n.
Suitable reductions from GHD imply similar space lower bounds for several other data stream

problems, such as estimating frequency moments [Woo04] and empirical entropy [CCM07]. One
can also derive appropriate lower bounds for a certain class of distributed computing problems
known as functional monitoring [ABC09].

2 Corruption, a Generalization, and the Main Theorem

2.1 Preliminaries

Consider a communication problem given by a (possibly partial) function f : X × Y → {0, 1, ⋆};
we let f take the value “⋆” at inputs for which we do not care about the output given. For a
communication protocol, P, involving two players, Alice and Bob, we write P(x, y) to denote the
output of P when Alice receives x ∈ X and Bob receives y ∈ Y. If P is randomized, this is a
random variable. We say that P computes f with error at most ε if

∀ (x, y) ∈ X × Y : f (x, y) 6= ⋆ ⇒ Pr[P(x, y) 6= f (x, y)] ≤ ε .

When the function f is understood from the context, we use err(P) to denote inf{ε : P computes
f with error at most ε}. For a deterministic protocol P and a distribution µ on X ×Y, we define

errµ(P) := Pr
(x,y)∼µ

[ f (x, y) 6= ⋆ ∧ P(x, y) 6= f (x, y)] .

For a protocol P, let cost(P) denote the worst-case number of bits communicated by P. We
let Rε( f ) and Dµ,ε( f ) denote the ε-error randomized and ε-error µ-distributional communication
complexities of f , respectively; i.e.,

Rε( f ) = min{cost(P) : P is a randomized protocol for f with err(P) ≤ ε} ;

Dµ,ε( f ) = min{cost(P) : P is a deterministic protocol for f with errµ(P) ≤ ε} .

We also put R( f ) = R1/3( f ) and Dµ( f ) = Dµ,1/3( f ).

2.2 Rectangles and Corruption

Consider a two-player communication problem given by a function f : X × Y → Z. A set R ⊆
X ×Y is said to be a rectangle if R = X ×Y for some X ⊆ X and Y ⊆ Y. A fundamental property
of communication protocols is the following.

Fact 2.1 (Rectangle property; see, e.g., [KN97]). Let P be a deterministic communication protocol that
takes inputs in X × Y, produces an output in Z, and communicates c bits. Then, for all z ∈ Z, there exist
2c pairwise disjoint rectangles R1,z, . . . , R2c,z such that

∀ (x, y) ∈ X × Y : P(x, y) = z ⇐⇒ (x, y) ∈ ⋃2c

i=1 Ri,z .

The rectangles R1,z, . . . , R2c,z are called the z-rectangles of P.
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Let us focus on problems with Boolean output, i.e., Z = {0, 1}. The discrepancy method for
proving lower bounds on R( f ) consists of choosing a suitable distribution µ on X×Y and showing
that for every rectangle R, the quantity |µ(R ∩ f−1(0))− µ(R ∩ f−1(1))| is “exponentially” small.
For several functions, this method is unable to prove a strong enough lower bound; the canonical
example is DISJ. A generalization that handles DISJ, and several other functions, is the corruption
method [Raz92, Kla03, BPSW06] which consists of showing, instead, that for every “large” rectangle
R, we have αµ1(R) ≤ µ0(R), for a constant α > 0, where µi is a probability distribution on R ∩
f−1(i), for i ∈ {0, 1}. Intuitively, we are arguing that any large rectangle that contains many 1s
must be corrupted by the presence of many 0s. The largeness of R is often enforced indirectly by
writing the inequality in the following manner, where m typically grows with |X| and |Y|:

∃ α0, α1 > 0 ∀ R rectangular : α1µ1(R) ≤ α0µ0(R) + 2−m . (1)

An inequality of this form allows us to conclude an Ω(m) lower bound on Dν,ε( f ) for a suitable
distribution ν and sufficiently small error ε > 0. (Rather than present a full proof, we note that
this follows as a special case of Theorem 2.2, below.) By the easy direction of Yao’s lemma, this
implies Rε( f ) = Ω(m).

2.3 Corruption With Jokers, and the Smooth Rectangle Bound

We now introduce a suitable generalization of the corruption method, which, as we shall soon see,
implies that Dµ,ε(GHD) = Ω(n), for suitable µ and ε. The corresponding technical challenge is met
using a new Gaussian noise correlation inequality that we prove in Section 3. Our generalization
can be captured within the very recent smooth rectangle bound framework [Kla10, JK10]. However,
we believe that there is merit in singling out the method we use, because it appears wieldier than
the smooth rectangle bound, which is more technically involved.

The key idea is that, in addition to the distributions µ0 and µ1 on the 0-inputs and 1-inputs to
f , we consider an auxiliary distribution µ+ on “joker” inputs. Strictly speaking, we just have a
“joker distribution” µ+,2 and it does not matter how µ+ relates to µ0 and µ1, but it is crucial that
the inequality below gives a negative weight to µ+, and is therefore a weakening of (1).

α1µ1(R)− α+µ+(R) ≤ α0µ0(R) + 2−m . (2)

We shall in fact allow a little flexibility in our choice of µ0 and µ1 by requiring only that these
be supported “mostly” on 0-inputs and 1-inputs. Also, we shall extend our theory to partial
functions, since GHD is one. The next theorem captures our lower bound technique.

Theorem 2.2. For all α0, α1, α+, ε > 0 such that ε < (α1 − α+)/(α0 + α1), there exist β ∈ R and ε′ > 0
such that the following holds. Let f : X × Y → {0, 1, ⋆} be a partial function. Let A0 = f−1(0) and
A1 = f−1(1). Suppose that there exist distributions µ0, µ1, µ+ on X × Y, and a real number m > 0 such
that

(1) for i ∈ {0, 1}, µi is mostly supported on Ai, i.e., µi(Ai) ≥ 1 − ε, and

(2) inequality (2) holds for all rectangles R ⊆ X ×Y.

Then, for the distribution ν := (α0µ0 + α1µ1)/(α0 + α1), we have Dν,ε′( f ) ≥ m + β. In particular, we
have Rε′( f ) ≥ m + β.

2In the sequel, when we apply the technique to GHD, µ0, µ1 and µ+ will be sharply concentrated on pairwise
disjoint sets of inputs, which we can think of as the interesting 0-inputs, the interesting 1-inputs, and the joker inputs,
respectively.
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Proof. Consider a deterministic protocol P that computes f with some error ε′ (to be fixed later)
under ν, and uses c bits of communication. Let R1, . . . , R2c ⊆ X × Y be the disjoint 1-rectangles of
P, as given by Fact 2.1. Let S1 =

⋃2c

i=1 Ri and S0 = X × Y \ S1. Notice that Si is exactly the set of
inputs on which P outputs i. Thus, for i ∈ {0, 1}, we have

errµi
(P) = µi(Si ∩ A1−i) + µi(S1−i ∩ Ai)

≥ µi(S1−i ∩ Ai)

≥ µi(S1−i)− ε , (3)

where the last step uses Condition (1).
Instantiating inequality (2) with each Ri and summing the resulting inequalities, we get

α1µ1(S1)− α+µ+(S1) ≤ α0µ0(S1) + 2c · 2−m . (4)

Noting that µ1(S1) = 1 − µ1(S0) and applying (3) to the µ0 and µ1 terms in (4), we obtain

α1(1 − errµ1
(P)− ε)− α+µ+(S1) ≤ α0(errµ0(P) + ε) + 2c−m .

Further, noting that µ+(S1) ≤ 1, and rearranging terms, we obtain

α1 − α+ ≤ (α0 + α1)ε + (α0 · errµ0(P) + α1 · errµ1
(P)) + 2c−m

= (α0 + α1)ε + (α0 + α1) errν(P) + 2c−m .

Using errν(P) ≤ ε′ and rearranging further, we get

2c−m ≥ α1 − α+ − (α0 + α1)(ε + ε′) .

By virtue of the upper bound on ε, we may choose ε′ small enough to make the right-hand side of
the above inequality positive, and equal to 2β, say. Doing so gives us c ≥ m + β, as desired.

Notice that the “hard distribution” ν is explicitly specified, once the distributions involved in
Condition (2) are made explicit.

We could, alternately, have proved Theorem 2.2 by demonstrating that the given conditions
imply that the smooth rectangle bound of f is Ω(m). We have chosen to give the above proof
instead, because it is more elementary, avoiding the technical details of the latter bound, and
because it was discovered independently by the first named author.

2.4 Application to GHD: the Main Theorem

The Gap-Hamming-Distance problem is formalized as the computation of the partial function
GHDn,t,g : {0, 1}n × {0, 1}n → {0, 1, ⋆} defined as follows.

GHDn,t,g(x, y) =





0 , if ∆(x, y) ≤ t − g ,

1 , if ∆(x, y) > t + g ,

⋆ , otherwise.

It will be useful to have some flexibility in the choice of the location of the threshold, t, and the
size of the gap, g. It is not hard to see that all settings with t ∈ Ω(n) ∩ (n − Ω(n)) and g = Θ(

√
n)

lead to “equally hard” problems, asymptotically; we prove this formally in Lemma 4.2.
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Rather than working with GHDn,n/2,
√

n directly, it proves convenient to consider the partial
function fb = GHDn,n/2−b

√
n,
√

n, for some large enough constant b to be determined later. We
shall now come up with distributions and constants that satisfy the conditions of Theorem 2.2:
Condition (1) turns out to be easy to verify, and verifying Condition (2), as mentioned above, is a
significant technical challenge that we deal with in Section 3.

Definition 2.3. For p ∈ [−1, 1], let ξp denote the distribution of (x, y) ∈ {0, 1}n × {0, 1}n defined
by the following randomized procedure: pick x ∈R {0, 1}n uniformly at random, and then pick y
by independently flipping each bit of x with probability (1 − p)/2. Notice that ξ0 is the uniform
distribution on {0, 1}n × {0, 1}n .

We shall need the following two lemmas. The first of these follows easily from standard tail
estimates for the binomial distribution; we omit its proof. The second is formally proved at the
end of Section 3.

Lemma 2.4. For all ε > 0 there exists b > 0 such that, for large enough n, we have

ξ2b/
√

n(A0) = Pr
(x,y)∼ξ2b/

√
n

[
∆(x, y) ≤ n

2
− (b + 1)

√
n
]

≥ 1 − ε , and

ξ0(A1) = Pr
(x,y)∼ξ0

[
∆(x, y) ≥ n

2
− (b − 1)

√
n
]

≥ 1 − ε ,

where A0 = f−1
b (0) and A1 = f−1

b (1).

Lemma 2.5. For all b > 0 there exists δ > 0 such that, for large enough n, we have

∀ R ⊆ {0, 1}n × {0, 1}n rectangular : 1
2

(
ξ−2b/

√
n(R) + ξ2b/

√
n(R)

)
≥ 2

3 ξ0(R)− 2−δn .

To derive the lower bound on R(GHD), we put m = δn, µ0 = ξ2b/
√

n, µ1 = ξ0, µ+ = ξ−2b/
√

n,

ε = 1
8 , α1 = 2

3 , and α0 = α+ = 1
2 . Note that this choice of constants satisfies ε < (α1 − α+)/(α0 +

α1). By Lemmas 2.4 and 2.5, we see that Conditions (1) and (2), respectively, of Theorem 2.2 are
met; the inequality in Lemma 2.5 is easily seen to be the corresponding instantiation of (2).

Thus, applying Theorem 2.2, we conclude that there exist absolute constants ε′, δ, b > 0 and
β ∈ R such that, for large enough n, we have Rε′( fb) ≥ δn + β. Combining this with Lemma 4.2
to adjust for the slightly off-center threshold and the size of the gap, and applying standard error
reduction techniques, we obtain the following asymptotically optimal lower bound for GHD.

Theorem 2.6 (Main Theorem). R(GHDn,n/2,
√

n) = Ω(n).

3 An Inequality on Correlation under Gaussian Noise

We now turn to the proof of Lemma 2.5, for which we need some technical machinery that we
now develop. We begin with some preliminaries.

Some Probability Distributions. Let µ denote the uniform (Haar) distribution on Sn−1, the
unit sphere in Rn. Let γ denote the standard Gaussian distribution on R, with density function

(2π)−1/2e−x2/2, and let γn denote the n-dimensional standard Gaussian distribution with density

(2π)−n/2e−‖x‖2/2. For a set A ⊆ Rn, when we write, e.g., γn(A), we tacitly assume that A is mea-
surable. For a set A ⊆ Rn we denote by γn|A the distribution γn conditioned on being in A. We
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say that a pair (x, y) is an η-correlated Gaussian pair if its distribution is that obtained by choosing
x from γn and then setting y = ηx +

√
1 − η2z where z is an independent sample from γn. It

is easy to verify that if (x, y) is an η-correlated Gaussian pair, then so is (y, x); in particular, y is
distributed as γn.

Relative Entropy. We recall some basic information theory for continuous probability distribu-
tions. For clarity, we eschew a fully rigorous treatment — which would introduce a considerable
amount of extra complexity through its formalism — and instead refer the interested reader to the
textbook of Gray [Gra90]. Given two probability distributions P and Q on a space Ω, we define
the relative entropy of P with respect to Q as

D(P ‖ Q) =
∫

P(x) ln(P(x)/Q(x))dx .

It is well known (and not difficult to show) that the relative entropy is always nonnegative and is
zero iff the two distributions are essentially equal. We will also need Pinsker’s inequality, which
says that the statistical distance between two distributions P and Q is at most

√
D(P ‖ Q)/2 (see,

e.g., [Gra90, Lemma 5.2.8]). Since we will only consider the relative entropy with respect to the
Gaussian distribution, we introduce the notation

Dγ(X) := D(P ‖γ)

where X is a real-valued random variable with distribution P. We define Dγn similarly. These
quantities can be thought of as measuring the “distance from Gaussianity.” They can be seen,
in some precise sense, as additive inverses of entropy, and as such satisfy many of the familiar
properties of entropy. For two random variables X and Y, we use the notation Dγ(X|Y) to denote
the expectation over Y of the distance from Gaussianity of X|Y.

3.1 Projections of Sets in Gaussian Space

Our main technical result is a statement about the projections of sets in Gaussian space. More
precisely, let A ⊆ Rn be any set of not too small measure, say, γn(A) ≥ exp(−δn) for some
constant δ > 0. What can we say about the projections (or one-dimensional marginals) of γn|A,
i.e., the set of distributions of 〈γn|A, y〉 as the (fixed) vector y ranges over the unit sphere Sn−1?

Related questions have appeared in the literature. The first is in work by Sudakov [Sud78]
and Diaconis and Freedman [DF84] (see also [Bob03] for a more recent exposition) who showed
that for any random variable in Rn with zero mean and identity covariance matrix whose norm is
concentrated around

√
n, almost all its projections are close to the standard normal distribution.

A second related result is by Klartag [Kla07] who, building on the previous result but with con-
siderable additional work, showed that almost all projections of the uniform distribution over a
(properly normalized) convex body are close to the standard normal distribution. (For the special
case of the cube [−1, 1]n, this essentially follows from the central limit theorem.)

Our setting is different as we do not put any restrictions on the set A (such as convexity) apart
from its measure not being too small (and clearly without any requirement on the measure one
cannot say anything about its projections). Another important difference is that in our setting the
projections are not necessarily normal. To see why, take A = {x : |x1| > t} for t ≈

√
δn, a set with

Gaussian measure roughly exp(−δn), half of which is on vectors with x1 ≈ t and the other half on
vectors with x1 ≈ −t. It follows that the projection of γn|A on a unit vector y is distributed more
or less like the mixture of two normal variables, one centered around ty1 and the other centered
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around −ty1, both with variance 1. For unit vectors y with |y1| ≥ 1/
√

δn (a set of measure about
exp(−1/δ)), this distribution is very far from any normal distribution.

Our main theorem below shows that the general situation is similar: for any set A of not too
small measure, almost all projections of γn|A are close to being mixtures of translated normal
variables of variance 1. One implication of this (which is essentially all we will use later) is that
for any A ⊆ Rn of not too small measure, and B ⊆ Sn−1 whose measure is also not too small, the
inner product 〈x, y〉 for x chosen from γn|A and y chosen uniformly from B is not too concentrated
around 0; in fact, it must be at least as “spread out” as γ (and possibly much more).

Theorem 3.1. For all ε, δ > 0 and large enough n, the following holds. Let A ⊆ Rn be such that

γn(A) ≥ e−ε2n. Then, for all but an e−δn/36 measure of unit vectors y ∈ Sn−1, the distribution of 〈x, y〉
where x ∼ γn|A is equal to the distribution of αX + Y for some 1 − δ ≤ α ≤ 1 and random variables X
and Y satisfying

Dγ(X|Y) ≤ ε .

The proof is based on the following two lemmas. The first one below shows that for any set
A whose measure is not too small, and any orthonormal basis, most of the projections of γn|A on
the basis vectors are close to normal. In fact, the statement is somewhat stronger, as it allows us to
condition on previous projections (and this will be crucially used).

Lemma 3.2. For all ε > 0 and large enough n the following holds. For all sets A ⊆ Rn with γn(A) ≥
e−ε2n and all orthonormal bases y1, . . . , yn, at least a 1 − ε fraction of the indices k ∈ [n] satisfy

Dγ(Pk|P1, . . . , Pk−1) ≤ ε ,

where Pi = 〈u, yi〉, with u ∼ γn|A.

Proof. By definition, Dγn(γn|A) = − ln γn(A) ≤ ε2n. Thus, since (P1, . . . , Pn) is the vector u written
in the orthonormal basis y1, . . . , yn, using the chain rule for relative entropy, we have

ε2n ≥ Dγn(γn|A) = Dγn(P1, . . . , Pn) =
n

∑
k=1

Dγ(Pk|P1, . . . , Pk−1) .

Hence, for at least a 1 − ε fraction of indices k, we have Dγ(Pk|P1, . . . , Pk−1) ≤ ε.

The second lemma is due to Raz [Raz99] and shows that any not-too-small subset of the sphere
contains n/2 “nearly orthogonal” vectors. The idea of Raz’s proof is the following. First, a simple
averaging argument shows that there is a not-too-small measure of vectors y′ ∈ Sn−1 satisfying the
property that the measure of B inside the unit sphere formed by the intersection of Sn−1 and the
subspace orthogonal to y′ is not much smaller than µ(B). Second, by the isoperimetric inequality,
almost all vectors in Sn−1 are within distance δ of B. Together, we obtain a vector y′ as above that
is within distance δ of B. We take yn/2 to be the closest vector in B to y′ and repeat the argument
recursively with the intersection of B and the subspace orthogonal to y′.

Definition 3.3. A sequence of unit vectors y1, . . . , yk ∈ Sn−1 is called δ-orthogonal if for all i ∈ [k],
the squared norm of the projection of yi on span(y1, . . . , yi−1) is at most δ.

Lemma 3.4 ([Raz99, Lemma 4.4]). For all δ > 0 and large enough n, the following holds. Every B ⊆ Sn−1

of Haar measure µ(B) ≥ e−δn/36 contains a δ-orthogonal sequence y1, . . . , yn/2 ∈ B.

9



Proof of Theorem 3.1. Let B ⊆ Sn−1 be an arbitrary set of unit vectors of measure at least e−δn/36.
We will prove the theorem by showing that at least one vector y ∈ B satisfies the condition stated
in the theorem.

By Lemma 3.4, there is a sequence of n/2 vectors y1, . . . , yn/2 ∈ B that is δ-orthogonal. Let
y∗1 , . . . , y∗n/2 be their Gram-Schmidt orthogonalization, i.e., each y∗k is defined to be the projection
of yk on the space orthogonal to span(y1, . . . , yk−1). Notice that, by definition, we can write each
yk as

yk = y∗k +
k−1

∑
i=1

αk,iy
∗
i

for some real coefficients αk,i. Moreover, by assumption, ‖y∗k‖2 ≥ 1 − δ.
Let P1, . . . , Pn/2 be the random variables representing 〈x, y∗1/‖y∗1‖〉, . . . ,

〈
x, y∗n/2/‖y∗n/2‖

〉
when

x is chosen from γn|A. By applying Lemma 3.2 to any completion of y∗1/‖y∗1‖, . . . , y∗n/2/‖y∗n/2‖ to
an orthonormal basis, we see that there exists an index k ∈ [n/2] for which

Dγ(Pk|P1, . . . , Pk−1) ≤ ε .

(In fact, at least 1 − 2ε of the indices k satisfy this.) It remains to notice that we can write 〈x, yk〉 as

‖y∗k‖Pk +
k−1

∑
i=1

αk,i‖y∗i ‖Pi ,

which satisfies the condition in the theorem, with X taken to be Pk and Y taken to be the above
sum. Here we are using the fact that Y is a function of P1, . . . , Pk−1, which implies that Dγ(X|Y) ≤
Dγ(Pk|P1, . . . , Pk−1) since conditioning cannot decrease relative entropy.

3.2 The Correlation Inequality

We now turn to our main technical result, which is given by the following theorem.

Theorem 3.5. For all c, ε > 0 there exists a δ > 0 such that for all large enough n and 0 ≤ η ≤ c/
√

n the
following holds. For all sets A, B ⊆ Rn with γn(A), γn(B) ≥ e−δn we have that

1

2

(
Pr

(x,y) is η-correlated
[x ∈ A ∧ y ∈ B] + Pr

(x,y) is −η-correlated
[x ∈ A ∧ y ∈ B]

)
≥ (1 − ε)γn(A)γn(B).

As will become evident in the proof, pairs (x, y) ∈ A × B for which |〈x, y〉| is small con-
tribute much less to the left hand side than to the right hand side. Hence the theorem essentially
amounts to showing that 〈x, y〉 is not too concentrated around zero, and precisely such an anti-
concentration statement is given by Theorem 3.1.

We point out the following easy corollary (which is in fact equivalent to Theorem 3.5).

Corollary 3.6. For all c, ε > 0 there exists a δ > 0 such that for all large enough n and 0 ≤ η ≤ c/
√

n the
following holds. For any sets A, B ⊆ Rn with γn(A), γn(B) ≥ e−δn where A (or B) is centrally symmetric
(i.e., A = −A) we have that

Pr
(x,y) is η-correlated

[x ∈ A ∧ y ∈ B] ≥ (1 − ε)γn(A)γn(B) .
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Remark. Without the symmetry assumption, this probability can be considerably smaller. For
instance, take A and B to be two opposing half-spaces, i.e., A = {x : x1 < −t} and B = {x : x1 >

t} for t ≈
√

δn. Then for η = c/
√

n, the probability above can be seen to be e−Θ(
√

n)γn(A)γn(B).
In fact, C. Borell [Bor85] showed that for any given γn(A), γn(B) and any 0 ≤ η ≤ 1, two opposing
half-spaces A, B of the corresponding measures exactly achieve the minimum of the probability
above. It would be interesting to obtain a strengthening of Corollary 3.6 of a similar tight nature.
See [Bar01] for a short related discussion.

Recall that cosh(x) := 1
2(e

x + e−x). The following technical claim shows that if the distribution
of x is close to the normal distribution (in relative entropy) then the expectation of cosh(αx + z) is

at least eα2/2 − ε. Notice that if x is normal, this expectation is

Ex∼γ[ cosh(αx + z) ] = cosh(z)Ex∼γ[ cosh(αx) ] = cosh(z) eα2/2 ≥ eα2/2,

where in the first equality we used the symmetry of γ.

Claim 3.7. For all ε, α0 > 0 there exists a δ > 0 such that for any probability distribution P on the reals
satisfying D(P ‖γ) < δ, any z ∈ R, and any 0 < α ≤ α0, we have

Ex∼P[ cosh(αx + z) ] ≥ eα2/2 − ε.

Proof. Let M = M(ε, α0) be big enough so that for all z and all α ≤ α0,

Ex∼γ[min(cosh(αx + z), M) ] = Ex∼γ[min(cosh(z) cosh(αx), M) ]

≥ Ex∼γ[min(cosh(αx), M) ]

≥ eα2/2 − ε/2 .

Such an M exists because

Ex∼γ[ cosh(αx)2 ] = Ex∼γ

[ 1

2
(1 + cosh(2αx))

]
≤ Ex∼γ

[ 1

2
(1 + cosh(2α0x))

]

and the latter expectation is finite. Next, since the statistical distance between P and γ is at most√
2D(P ‖γ) <

√
2δ, we have that

Ex∼P[ cosh(αx + z) ] ≥ Ex∼P[min(cosh(αx + z), M) ] ≥ eα2/2 − ε/2 − M
√

2δ ≥ eα2/2 − ε

for small enough δ > 0.

Proof of Theorem 3.5. Let β1, β2, β3, β4 > 0 be small enough constants (depending only on c and ε)
to be determined later. By choosing a small enough δ, we can guarantee that A′, defined as

A′ = {x ∈ A : (1 − β1)n ≤ ‖x‖2 ≤ (1 + β1)n} ,

satisfies γn(A′) ≥ γn(A)− β2e−δn ≥ (1 − β2)γn(A) and similarly for B′. We can write

Pr
(x,y) is η-correlated

[x ∈ A ∧ y ∈ B]

≥ Pr
(x,y) is η-correlated

[x ∈ A′ ∧ y ∈ B′]

= (2π)−n/2(2π(1 − η2))−n/2
∫

1A′(x)1B′(y)e−‖x‖2/2e−‖y−ηx‖2/2(1−η2)dxdy

= (1 − η2)−n/2
Ex,y∼γn

[
1A′(x)1B′(y)e−η2‖x‖2/2(1−η2)e−η2‖y‖2/2(1−η2)eη〈x,y〉/(1−η2)

]

= (1 − η2)−n/2
Ex∼γn|A′ ,y∼γn|B′

[
e−η2‖x‖2/2(1−η2)e−η2‖y‖2/2(1−η2)eη〈x,y〉/(1−η2)

]
γn(A′)γn(B′)

≥ (1 − η2)−n/2 e−η2(1+β1)n/(1−η2)
Ex∼γn|A′ ,y∼γn|B′

[
eη〈x,y〉/(1−η2)

]
γn(A′)γn(B′) .
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By averaging this inequality with the analogous one for −η and recalling the definition of cosh,
we obtain that the expression we wish to bound is at least

(1 − η2)−n/2 e−η2(1+β1)n/(1−η2)
Ex∼γn|A′ ,y∼γn|B′ [ cosh(η〈x, y〉/(1 − η2)) ]γn(A′)γn(B′) . (5)

Let B′′ ⊆ B′ be the set of all y ∈ B′ for which

Ex∼γn|A′ [ cosh(η〈x, y〉/(1 − η2)) ] ≤ (1 − β3)e
(η/(1−η2))2(1−β1)n/2 .

We can now complete the proof by showing that γn(B′′) ≤ β4γn(B′), since this would imply that
(5) is at least

(1 − η2)−n/2 e−η2(1+β1)n/(1−η2)(1 − β4)(1 − β3) e(η/(1−η2))2(1−β1)n/2 γn(A′)γn(B′)

≥ (1 − ε)γn(A)γn(B) ,

assuming β1, β2, β3 and β4 are chosen to be sufficiently small and n is large enough.
In order to complete the proof, assume by contradiction that γn(B′′) > β4γn(B′) ≥ β4(1 −

β2)e−δn. Let β5, β6, β7 > 0 be small enough constants to be determined later. Let
√
(1 − β1)n ≤

r ≤
√
(1 + β1)n be such that the Haar measure µ((r Sn−1 ∩ B′′)/r) of points in B′′ of norm r is

at least γn(B′′). (The existence of such an r follows from the spherical symmetry of the Gaussian
distribution.) We now apply Theorem 3.1 with ε taken to be β5, δ taken to be β6, and A taken to
be A′. By taking (our) δ to be small enough, we obtain a vector y ∈ B′′ for which the distribution
of 〈x, y〉 where x ∼ γn|A′ is given by the distribution of αrX + rY for some 1 − β6 ≤ α ≤ 1 and
random variables X and Y satisfying

Dγ(X|Y) ≤ β5 .

In particular, we have
Pr
Y
[ D(X|Y ‖γ) ≤

√
β5 ] ≥ 1 −

√
β5 .

Claim 3.7 now implies that

Ex∼γn|A′ [ cosh(η〈x, y〉/(1 − η2)) ] = E[ cosh(η/(1 − η2)(αrX + rY)) ]

≥ (1 −
√

β5)(e
(η/(1−η2)αr)2/2 − β7)

≥ (1 −
√

β5)(e
(η/(1−η2))2(1−β6)

2(1−β1)n/2 − β7)

> (1 − β3) e(η/(1−η2))2(1−β1)n/2 ,

assuming β5, β6 and β7 are sufficiently small, in contradiction to the assumption that y ∈ B′′.

3.3 Corollary for the Boolean cube

The Gaussian noise correlation inequality we have just proved implies a similar statement for the
Boolean cube, from which Lemma 2.5 follows easily. The statement involves the distribution ξp

from Definition 2.3.

Corollary 3.8 (Stronger variant of Lemma 2.5). For all c, ε > 0 there exists a δ > 0 such that for all large
enough n and 0 ≤ p ≤ c/

√
n the following holds. For all sets A, B ⊆ {0, 1}n with |A|, |B| ≥ 2(1−δ)n, we

have that
1
2

(
ξ−p(A × B) + ξp(A × B)

)
≥ (1 − ε) ξ0(A × B) .
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To derive Lemma 2.5, take R = A × B, ε = 1
3 , and observe that if min{|A|, |B|} < 2(1−δ)n,

then ξ0(R) < 2−δn and the inequality in that lemma holds trivially, because its right-hand side is
negative.

A short calculation shows that the inequality in Corollary 3.8 is equivalent to

(1 − p2)n/2
Ex∈A,y∈B

[
cosh

(
ln

(1 + p

1 − p

)
· (∆(x, y)− n/2)

) ]
≥ 1 − ε .

Hence the corollary can be interpreted as an anti-concentration statement, saying that for sets A, B
that are not too small, the Hamming distance ∆(x, y) between x ∈R A and y ∈R B cannot be too
concentrated around n/2. The quantification is delicate. Notice that already for sets of size 2n/2

this is no longer the case: take, for instance, the sets A = {0n/2x : x ∈ {0, 1}n/2 and |x| = n/4}
and B = {x0n/2 : x ∈ {0, 1}n/2 and |x| = n/4}.

Proof. Given any A, B ⊆ {0, 1}n , define

A′ = {x ∈ R
n : sign(x) ∈ A}

where sign(x) ∈ {0, 1}n is the vector indicating the sign of each coordinate of x, and define B′ sim-
ilarly. Then it is easy to check that γn(A′) = |A|/2n and γn(B′) = |B|/2n, so that γn(A′)γn(B′) =
ξ0(A × B), and that for all η,

Pr
(x,y) is η-correlated

[x ∈ A′ ∧ y ∈ B′] = ξp(A × B)

for p = 1 − 2
π arccos η (since the probability that sign(x) 6= sign(y) when x, y ∈ R are η-correlated

can be computed to be 1
π arccos η). For small p, we get p ≈ 2

π η, and the corollary follows from
Theorem 3.5.

4 Reductions, Related Results and Generalizations

Recall that our argument in Section 2.4 gave an Ω(n) lower bound on R(GHDn,n/2−b
√

n,
√

n), for
a certain constant b. To obtain an Ω(n) bound for GHD itself (which, we remind the reader, is
shorthand for GHDn,n/2,

√
n), we use a toolkit of simple reductions, given in the next lemma. Fur-

thermore, using the toolkit, we can generalize the GHD bound to cover most parameter settings,
and using similarly simple reductions, we can obtain optimal lower bounds for related problems.

Lemma 4.1. For all integers n, k, ℓ, m and reals t, g, g′ ∈ [0, n], with n, k > 0 and g′ ≥ g, the following
relations hold.

(1) R(GHDn,t,g′) ≤ R(GHDn,t,g).

(2) R(GHDn,t,g) ≤ R(GHDkn,kt,kg).

(3) R(GHDn,t,g) ≤ R(GHDn+ℓ+m,t+ℓ,g).

(4) R(GHDn,t,g) = R(GHDn,n−t,g).

Proof. We give brief sketches of the proofs of these statements.

(1) A correct protocol for GHDn,t,g is also one for GHDn,t,g′ .
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(2) We can solve GHDn,t,g by having Alice and Bob “repeat” their n-bit input strings k times each
— which has the effect of also amplifying the gap by a factor of k — and then simulating a
protocol for GHDkn,kt,kg.

(3) We can solve GHDn,t,g by having Alice pad her input by appending the string 0ℓ+m to it, Bob

pad his by appending 1ℓ0m to it, and then simulating a protocol for GHDn+ℓ+m,t+ℓ,g.

(4) Alice flips each bit of her input and the parties then simulate a protocol for GHDn,n−t,g.

As promised, using parts of the above lemma, we establish the following lemma, which for-
mally completes the proof of the main theorem.

Lemma 4.2. For all integers n > 0 and reals b > 0, with n/2 ≥ b
√

n, we have R(GHDn,n/2−b
√

n,
√

n) ≤
R(GHD4n,2n,

√
4n).

Proof. For simplicity, we assume that b
√

n is an integer. Applying part (3) of Lemma 4.1, with
ℓ = n/2 + b

√
n and m = n/2 − b

√
n, we have R(GHDn,n/2−b

√
n,
√

n) ≤ R(GHD2n,n,
√

n). To complete
the proof, we then apply part (2) of that lemma, with k = 2.

The previous lemma can in fact be generalized, by invoking the remaining parts of Lemma 4.1,
to obtain a lower bound that handles all thresholds t that are not too close to either end of the
interval [0, n]. We omit the details, which are routine, if somewhat tedious.

Proposition 4.3. For all reals a ∈ (0, 1
2 ] and b > 0, and all large enough integers n, the following holds.

Let t, g be reals with t ∈ [an, (1 − a)n] and g ≤ b
√

n. Then R(GHDn,t,g) = Ω(n).

The next result resolves the randomized complexity of GHDn,n/2,g for a general gap size, g.

Proposition 4.4. For integers n and g, with 1 ≤ g ≤ n, we have R(GHDn,n/2,g) = Θ(min{n, n2/g2}).
Proof. For the upper bound, consider the protocol where Alice and Bob, on input (x, y) ∈ {0, 1}n ×
{0, 1}n , use public randomness to select a subset S ⊆ [n] uniformly at random, from amongst all
subsets of a certain size, k, compute d = |{i ∈ S : xi 6= yi}| by brute force (say, with Alice
sending Bob the bits xi for i ∈ S), and output 0 if d ≤ k/2 and 1 if d > k/2. This protocol clearly
communicates k bits, and an easy application of the Chernoff bound shows that this gives a 1

3 -error
protocol if we choose k = O(n2/g2).

For the lower bound, we may assume that g >
√

n, for otherwise the claim is obviously true.
Applying part (2) of Lemma 4.1 with k = g2/n (for simplicity, we ignore divisibility issues), we
obtain R(GHDn2/g2 ,n2/2g2,n/g) ≤ R(GHDn,n/2,g). The result follows by applying Theorem 2.6 to the
left-hand side of this inequality.

We remark that results similar to those for GHD also hold for GAP-INTERSECTION-SIZE, where
Alice and Bob have sets x, y ⊆ [n] as inputs and are required to distinguish between the cases
|x ∩ y| ≤ t − g and |x ∩ y| > t + g, for a threshold parameter t and gap size g. Let this problem be
denoted by GISn,t,g. We then have the following result, by an easy reduction from GHD.

Proposition 4.5. Suppose t ∈ Ω(n) ∩ (n − Ω(n)) and g = Θ(
√

n). Then R(GISn,t,g) = Ω(n).

Finally, we also remark that results similar to those for GHD also hold for the closely re-
lated (in fact, essentially equivalent) problem GAP-INNER-PRODUCT. Here, Alice and Bob have
d-dimensional unit vectors x, y as inputs and are trying to distinguish between the cases 〈x, y〉 ≥ ε

and 〈x, y〉 ≤ −ε. There is a simple O(1/ε2) protocol for this problem: the players use shared
randomness to choose O(1/ε2) random hyperplanes and then compare which side of each hyper-
plane their inputs lie in. Our main theorem implies that this is tight assuming d ≥ 1/ε2, as can be
seen by embedding the hypercube in the set {−1/

√
n, 1/

√
n}n.
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