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Abstract

A new (1+1)-dimensional integrable system, i. e. the super coupled Korteweg-de Vries

(cKdV) system, has been constructed by a super extension of the well-known (1+1)-dimensional

cKdV system. For this new system, a novel symmetry constraint between the potential and

eigenfunction can be obtained by means of the binary nonlinearization of its Lax pairs.

The constraints for even variables are explicit and the constraints for odd variables are

implicit. Under the symmetry constraint, the spacial part and the temporal parts of the

equations associated with the Lax pairs for the super cKdV system can be decomposed into

the super finite-dimensional integrable Hamiltonian systems on the supersymmetry manifold

R4N |2N+2, whose integrals of motion are explicitly given.

Key words: explicit symmetry constraints, implicit symmetry constraints, super Hamilto-

nian system, Liouville integrable.
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1 Introduction

The super-extensions of the classical integrable systems lead to super integrable systems and

they have undergone extensive development in the past years. There are many super integrable

systems in literatures, such as the super AKNS system [1]-[3], the super KdV equation [4]-

[7], the super KP hierarchy [8]-[11], etc. It was known that super systems contained the odd

variables which would provide more prolific fields for mathematical researchers and physical

ones. Darboux transformation [12]-[14], bi-Hamiltonian structure [15]-[17], Painlev́e analysis

[18] and so on, have been widely studied. Very recently, nonlinearization of the super AKNS

system and the super Dirac system have been investigated in Refs. [19]-[21].
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It is well known that mono-nonlinearization technique was firstly proposed by Cao in Ref.

[22], and binary-nonlinearization technique was proposed by Ma in Ref. [23]. Both mono-

nonlinearization and binary-nonlinearization have the following characteristics. Firstly, the ad-

vantage of nonlinearizaton method is to decompose infinite dimensional systems into finite ones.

Secondly, one of the essential steps of nonlinearization method is to calculate the variational

derivative. Lastly, the key of the nonlinearization method is to find symmetry constraints be-

tween the potential and the eigenfunction by means of variational derivative. On the one hand,

nonlinearization of Lax pairs is valid for many classical integrable systems [24]-[27]. On the other

hand, binary nonlinearization has been applied to the super AKNS system and the super Dirac

system in Refs.[19]-[21]. However, is nonlinearization method valid for the other super integrable

systems? For the cKdV system, the answer is affirmative in this paper. The cKdV system firstly

proposed by Hirota and Satsuma in Ref.[28] is very important in the classical integrable systems.

Its mono-nonlinearization and Darboux transformation were studied in Refs.[29, 30].

The paper is organized as follows. In the next section, the cKdV system is to be extended into

the super one, and the super Hamiltonian structure will be obtained for new system by means of

the supertrace identity. In section 3, variational derivative of the spectral parameter with respect

to the potential is calculated by Lemma 2.1 in Ref. [21], and a symmetry constraint between

the potential and the eigenfunction can be found. The symmetry constraint is an interesting

constraint, and it is explicit for even elements, but it is implicit for odd elements. Then in section

4, after introduction of two new odd variables, the novel symmetry constraint is substituted

into the Lax pairs and the adjoint Lax pairs of the super cKdV system while considering the

two new variables. And we find that the constrained Lax pairs and the adjoint Lax pairs of

the super cKdV system are super Hamiltonian systems, and are completely integrable systems

in the Liouville sense. Integrals of motion with odd eigenfunctions are given explicitly. The

conclusions and discussions are given in section 5.

2 The super cKdV soliton hierarchy

Let’s begin with the following spectral problem

φx = U(u, λ)φ, U(u, λ) =









− 1
2λ+ 1

2q −r α

1 1
2λ− 1

2q β

β −α 0









, u =













q

r

α

β













, φ =









φ1

φ2

φ3









, (1)

where u is a potential, and λ is a spectral parameter. Set p(q) = p(r) = p(λ) = 0, and p(α) = p(β) = 1.

Here p(f) means the parity of arbitrary function f . Note that U ∈ B(0, 1), where B(0, 1) is a Lie

superalegra.
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Set

V =









A B ρ

C −A δ

δ −ρ 0









where p(A) = p(B) = p(C) = 0, p(ρ) = p(δ) = 1. Noting that

UV−V U =









−B − rC + αδ + βρ −λB + 2rA+ qB − 2αρ − 1
2λρ− αA− βB + 1

2qρ− rδ

λC + 2A− qC + 2βδ B + rC − αδ − βρ 1
2δ + βA − αC + ρ− 1

2qδ
1
2δ + βA− αC + ρ− 1

2qδ
1
2λρ+ αA+ βB − 1

2qρ+ rδ 0









,

then there goes co-adjoint representation equation

Vx = [U, V ] = UV − V U, (2)

it becomes


































Ax = −B − rC + αδ + βρ,

Bx = −λB + 2rA+ qB − 2αρ,

Cx = λC + 2A− qC + 2βδ,

ρx = − 1
2λρ− αA− βB + 1

2qρ− rδ,

δx = 1
2δ + βA− αC + ρ− 1

2qδ.

(3)

On setting A =
∑

j≥0

Ajλ
−j , B =

∑

j≥0

Bjλ
−j , C =

∑

j≥0

Cjλ
−j , ρ =

∑

j≥0

ρjλ
−j , δ =

∑

j≥0

δjλ
−j , then equation

(3) is equivalent to










































B0 = C0 = ρ0 = δ0 = 0,

Aj,x = −Bj − rCj + βρj + αδj , j ≥ 0,

Bj,x = −Bj+1 + 2rAj + qBj − 2αρj , j ≥ 0,

Cj,x = Cj+1 + 2Aj − qCj + 2βδj , j ≥ 0,

ρj,x = − 1
2ρj+1 − αAj − βBj +

1
2qρj − rδj , j ≥ 0,

δj,x = 1
2δj+1 + βAj − αCj + ρj −

1
2qδj , j ≥ 0.

(4)

It can be written as the following recurrence relation













An+1

−Cn+1

2δn+1

−2ρn+1













= L













An

−Cn

2δn

−2ρn













, (5)

where the recursive operator is given by

L =













−∂ + ∂−1q∂ r + ∂−1r∂ 1
2α+ ∂−1α∂ − 1

2β + ∂−1β∂

2 ∂ + q β 0

−4β −4α 2∂ + q 2

−4β∂ + 4α 4rβ 2r − 2αβ −2∂ + q













,

with ∂ = d/dx and ∂∂−1 = ∂−1∂ = 1.

Owing to B0 = C0 = ρ0 = δ0 = 0, we get that A0,x = 0. So we choose the initial value A0 = − 1
2 . If

we set all constants of integration to be zero, all Aj , Bj, Cj , ρj, δj(j > 0) are uniquely given by (5). For

instance

A1 = 0, B1 = −r, C1 = 1, ρ1 = α, δ1 = β,
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A2 = −r + 2αβ,B2 = rx − qr, C2 = q, ρ2 = −2αx + qα, δ2 = 2βx + qβ.

Then, consider the auxiliary spectral problem associated with the spectral problem (1)

φtn = V (n)φ, (6)

where

V (n) = (λnV )+ +∆n =

n
∑

j=0









Aj Bj ρj

Cj −Aj δj

δj −ρj 0









λn−j +









1
2Cn+1 0 0

0 − 1
2Cn+1 0

0 0 0









,

and (λnV )+ denotes non-negative power of λ in V .

The compatibility conditions of Lax pairs

φx = Uφ, φtn = V (n)φ, (7)

determine a hierarchy of super cKdV system






















qtn = Cn+1,x,

rtn = Bn+1 + rCn+1,

αtn = 1
2αCn+1 −

1
2ρn+1,

βtn = 1
2δn+1 −

1
2βCn+1.

(8)

The first nonlinear cKdV system in the hierarchy (8) reads as






















qt2 = qxx + 2qqx + 2rx − 4αxβ − 4αβx − 4ββxx,

rt2 = −rxx + 2qxr + 2qrx + 4ααx − 4rββx,

αt2 = −2αxx +
3
2qxα+ 2qαx + rxβ + 2rβx − 2αββx,

βt2 = 2βxx +
1
2qxβ + 2qβx + 2αx,

(9)

whose Lax pairs are U and

V (2) =









− 1
2λ

2 + 1
2qx +

1
2q

2 − 2ββx −rλ+ rx − qr αλ− 2αx + qα

λ+ q 1
2λ

2 − 1
2qx −

1
2q

2 + 2ββx βλ+ 2βx + qβ

βλ+ 2βx + qβ −αλ+ 2αx − qα 0









.

In what follows, the super Hamiltonian structures of the super cKdV system (8) can be achieved.

Using the super trace identity [31, 32]

δ

δu

∫

Str(V
∂U

∂λ
)dx = (λ−γ

∂

∂λ
λγ)Str(

∂U

∂u
V ), (10)

where Str means super trace, we have












δ
δq

δ
δr

δ
δα

δ
δβ













∫

−An+1dx = (γ − n)













An

−Cn

2δn

−2ρn













,

where γ is an arbitrary constant. Let n = 1 in above equality, we obtain γ = 0. Therefore, we get the

following identity












An+1

−Cn+1

2δn+1

−2ρn+1













=
δ

δu
Hn, Hn =

∫

1

n+ 1
An+2dx.
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Thus, the super cKdV hierarchy can be written as the following super Hamiltonian form

utn =













q

r

α

β













tn

= Kn = J













An+1

−Cn+1

2δn+1

−2ρn+1













= J
δHn

δu
, (11)

where the super symplectic operator is given by

J =













0 −∂ 0 0

−∂ 0 1
2α − 1

2β

0 − 1
2α 0 1

4

0 1
2β

1
4 0













.

3 A novel symmetry constraint

In this section, a symmetry constraint between the potential and the eigenfunction can be obtained. To

this end, consider the adjoint spectral problem associated with spectral problem (1)

ψx = −(U(u, λ))Stψ =









1
2λ− 1

2q −1 β

r − 1
2λ+ 1

2q −α

−α −β 0









ψ, ψ =









ψ1

ψ2

ψ3









, (12)

where St means super-transposition.

Using Lemma 2.1 in [21], we can easily get the variational derivative of the spectral parameter λ with

respect to the potential u:

δλ

δu
=

1

E













1
2 (ψ1φ1 − ψ2φ2)

−ψ1φ2

ψ1φ3 + ψ3φ2

ψ2φ3 − ψ3φ1













, (13)

where E =
∫

1
2 (ψ1φ1 − ψ2φ2)dx. When zero boundary conditions lim|x|→∞ φ = lim|x|→∞ ψ = 0 are

imposed, it satisfies following equation

L
δλ

δu
= λ

δλ

δu
, (14)

where L is defined as in (5). The above variational derivative will serve as a conserved covariant yielding

a specific symmetry used in symmetry constraints.

For Lax pairs (7), we choose the following symmetry constraint













−r + 2αβ

−q

4βx + 2qβ

4αx − 2qα













=













1
2 (< Ψ1,Φ1 > − < Ψ2,Φ2 >)

− < Ψ1,Φ2 >

< Ψ1,Φ3 > + < Ψ3,Φ2 >

< Ψ2,Φ3 > − < Ψ3,Φ1 >













, (15)

where Φi = (φi1, · · · , φiN )T , Ψi = (ψi1, · · · , ψiN )T (i = 1, 2, 3), and < ., . > denotes the standard inner

product in RN . We find that the odd potentials α and β can not be expressed by eigenfunctions explicitly,

but the even potentials q and r can be expressed by eigenfunctions explicitly. Therefore, the symmetry

constraint (15) is a novel constraint.
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Remark 1 In classical integrable systems, symmetry constraint between potential and eigenfunction is

either explicit or implicit. To this day, we haven’t got an example with its symmetry constraint that could

combine explicit constraint and implicit constraint. Even in super integrable systems, we haven’t got it

too. Therefore, eq.(15) is absolutely a novel symmetry constraint.

Then denote the expression of P (u) under the symmetry constraint (15) by P̃ . From the property

(14) and the recurrence relation (5), we obtain



































Ãn+1 = 1
2 (< Λn−1Ψ1,Φ1 > − < Λn−1Ψ2,Φ2 >), n ≥ 1,

B̃n+1 =< Λn−1Ψ2,Φ1 >, n ≥ 1,

C̃n+1 =< Λn−1Ψ1,Φ2 >, n ≥ 1,

ρ̃n+1 = − 1
2 (< Λn−1Ψ2,Φ3 > − < Λn−1Ψ3,Φ1 >), n ≥ 1,

δ̃n+1 = 1
2 (< Λn−1Ψ1,Φ3 > + < Λn−1Ψ3,Φ2 >), n ≥ 1,

(16)

where Λ = diag(λ1, λ2, · · · , λN ).

4 Binary nonlinearization

In the last section, we have found a novel symmetry constraint (15). Because the odd potentials α and

β can not be explicitly expressed by eigenfunctions, we introduce the following new independent odd

variables

φN+1 = α, ψN+1 = 4β. (17)

Choosing N distinct parameters λ1, · · · , λN , we obtain the following two spatial and temporal systems























































φ1j

φ2j

φ3j









x

= U(u, λj)









φ1j

φ2j

φ3j









, j = 1, 2, · · · , N,









ψ1j

ψ2j

ψ3j









x

= −USt(u, λj)









ψ1j

ψ2j

ψ3j









, j = 1, 2, · · · , N,

(18)























































φ1j

φ2j

φ3j









tn

= V (n)(u, λj)









φ1j

φ2j

φ3j









, j = 1, 2, · · · , N,









ψ1j

ψ2j

ψ3j









tn

= −(V (n))St(u, λj)









ψ1j

ψ2j

ψ3j









, j = 1, 2, · · · , N.

(19)

It is easy to verify that the compatibility condition of (18) and (19) is still the nth super cKdV systems

utn = Kn. When the symmetry constraint (15) and new independent variables (17) are considered,
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systems (18) and (19) become the following finite-dimensional system























































































φ1j,x = 1
2 (−λj+ < Ψ1,Φ2 >)φ1j +

1
2 (< Ψ1,Φ1 > − < Ψ2,Φ2 > −φN+1ψN+1)φ2j

+φN+1φ3j ,

φ2j,x = φ1j +
1
2 (λj− < Ψ1,Φ2 >)φ2j +

1
4ψN+1φ3j ,

φ3j,x = 1
4ψN+1φ1j − φN+1φ2j ,

φN+1,x = 1
4 (< Ψ2,Φ3 > − < Ψ3,Φ1 >) +

1
2 < Ψ1,Φ2 > φN+1,

ψ1j,x = 1
2 (λj− < Ψ1,Φ2 >)ψ1j − ψ2j +

1
4ψN+1ψ3j ,

ψ2j,x = 1
2 (− < Ψ1,Φ1 > + < Ψ2,Ψ2 > +φN+1ψN+1)ψ1j +

1
2 (−λj+ < Ψ1,Φ2 >)ψ2j

−φN+1ψ3j ,

ψ3j,x = −φN+1ψ1j −
1
4ψN+1ψ2j ,

ψN+1,x =< Ψ1,Φ3 > + < Ψ3,Φ2 > − 1
2 < Ψ1,Φ2 > ψN+1,

(20)

where 1 ≤ j ≤ N . Then system (20) can be written as follows























































































Φ1,x = 1
2 (−Λ+ < Ψ1,Φ2 >)Φ1 +

1
2 (< Ψ1,Φ1 > − < Ψ2,Φ2 > −φN+1ψN+1)Φ2

+φN+1Φ3 = ∂H1

∂Ψ1
,

Φ2,x = Φ1 +
1
2 (Λ− < Ψ1,Φ2 >)Φ2 +

1
4ψN+1Φ3 = ∂H1

∂Ψ2
,

Φ3,x = 1
4ψN+1Φ1 − φN+1Φ2 = ∂H1

∂Ψ3
,

φN+1,x = 1
4 (< Ψ2,Φ3 > − < Ψ3,Φ1 >) +

1
2 < Ψ1,Φ2 > φN+1 = ∂H1

∂ψN+1
,

Ψ1,x = 1
2 (Λ− < Ψ1,Φ2 >)Ψ1 −Ψ2 +

1
4ψN+1Ψ3 = −∂H1

∂Φ1
,

Ψ2,x = 1
2 (− < Ψ1,Φ1 > + < Ψ2,Φ2 > +φN+1ψN+1)Ψ1 +

1
2 (−Λ+ < Ψ1,Φ2 >)Ψ2

−φN+1Ψ3 = −∂H1

∂Φ2
,

Ψ3,x = −φN+1Ψ1 −
1
4ψN+1Ψ2 = ∂H1

∂Φ3
,

ψN+1,x =< Ψ1,Φ3 > + < Ψ3,Φ2 > − 1
2 < Ψ1,Φ2 > ψN+1 = ∂H1

∂φN+1
,

(21)

where Hamiltonian function

H1 = −
1

2
< ΛΨ1,Φ1 > +

1

2
< ΛΨ2,Φ2 > +

1

2
< Ψ1,Φ2 > (< Ψ1,Φ1 > − < Ψ2,Φ2 >)

+ < Ψ2,Φ1 > −
1

2
φN+1ψN+1 < Ψ1,Φ2 > +φN+1(< Ψ1,Φ3 > + < Ψ3,Φ2 >)

+
1

4
ψN+1(< Ψ2,Φ3 > − < Ψ3,Φ1 >).

For t2-part, we have the following spectral problem

φt2 = V (2)φ =









− 1
2λ

2 + 1
2qx +

1
2q

2 − 2ββx −rλ+ rx − qr αλ− 2αx + qα

λ+ q 1
2λ

2 − 1
2qx −

1
2q

2 + 2ββx βλ+ 2βx + qβ

βλ+ 2βx + qβ −αλ+ 2αx − qα 0









φ, (22)

and its adjoint spectral problem

ψt2 = −(V (2))Stψ =









1
2λ

2 − 1
2qx −

1
2q

2 + 2ββx −λ− q βλ+ 2βx + qβ

rλ− rx + qr − 1
2λ

2 + 1
2qx +

1
2q

2 − 2ββx −αλ+ 2αx − qα

−αλ+ 2αx − qα −βλ− 2βx − qβ 0









ψ.

(23)
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Considering N copies of (22) and (23) under the symmetry constraint (15), we obtain the following

finite-dimensional system











































φ1j,t2 = (− 1
2λ

2
j +

1
2 q̃x +

1
2 q̃

2 − 2β̃β̃x)φ1j + (−r̃λj + r̃x − q̃r̃)φ2j + (α̃λj − 2α̃x + q̃α̃)φ3j ,

φ2j,t2 = (λj + q̃)φ1j + (12λ
2
j −

1
2 q̃x −

1
2 q̃

2 + 2β̃β̃x)φ2j + (β̃λj + 2β̃x + q̃β̃)φ3j ,

φ3j,t2 = (β̃λj + 2β̃x + q̃β̃)φ1j + (−α̃λj + 2α̃x − q̃α̃)φ2j ,

ψ1j,t2 = (12λ
2
j −

1
2 q̃x −

1
2 q̃

2 + 2β̃β̃x)ψ1j − (λj + q̃)ψ2j + (β̃λj + 2β̃x + q̃β̃)ψ3j ,

ψ2j,t2 = (r̃λj − r̃x + q̃r̃)ψ1j + (− 1
2λ

2
j +

1
2 q̃x +

1
2 q̃

2 − 2β̃β̃x)ψ2j + (−α̃λj + 2α̃x − q̃α̃)ψ3j ,

ψ3j,t2 = (−α̃λj + 2α̃x − q̃α̃)ψ1j − (β̃λj + 2β̃x + q̃β̃)ψ2j ,

(24)

where 1 ≤ j ≤ N , q̃, r̃, α̃, β̃ respectively denote q, r, α, β under the symmetry constraint (15), and q̃x,

r̃x, α̃x, β̃x are given by the following identities























q̃x =< ΛΨ1,Φ2 > − < Ψ1,Φ2 >
2 + < Ψ1,Φ1 > − < Ψ2,Φ2 > + 1

4ψN+1(< Ψ1,Φ3 > + < Ψ3,Φ2 >),

r̃x =< Ψ2,Φ1 > − 1
2 < Ψ1,Φ2 > (< Ψ1,Φ1 > − < Ψ2,Φ2 >) +

1
2 < Ψ1,Φ2 > φN+1ψN+1,

α̃x = 1
4 (< Ψ2,Φ3 > − < Ψ3,Φ1 >) +

1
2 < Ψ1,Φ2 > φN+1,

β̃x = 1
4 (< Ψ1,Φ3 > + < Ψ3,Φ2 >)−

1
8 < Ψ1,Φ2 > ψN+1.

Thus, the constrained system (24) becomes































































































































Φ1,t2 = 1
2 (−Λ2+ < ΛΨ1,Φ2 > + < Ψ1,Φ1 > − < Ψ2,Φ2 >)Φ1 +

1
2 [(< Ψ1,Φ1 > − < Ψ2,Φ2 >)Λ

−φN+1ψN+1Λ + 2 < Ψ2,Φ1 >]Φ2 +
1
2 (2φN+1Λ− < Ψ2,Φ3 > + < Ψ3,Φ1 >)Φ3 = ∂H2

∂Ψ1
,

Φ2,t2 = (Λ+ < Ψ1,Φ2 >)Φ1 +
1
2 (Λ

2− < ΛΨ1,Φ2 > − < Ψ1,Φ1 > + < Ψ2,Φ2 >)Φ2 +
1
4 (ψN+1Λ

+2 < Ψ1,Φ3 > +2 < Ψ3,Φ2 >)Φ3 = ∂H2

∂Ψ2
,

Φ3,t2 = 1
4 (ψN+1Λ + 2 < Ψ1,Φ3 > +2 < Ψ3,Φ2 >)Φ1 −

1
2 (2φN+1Λ− < Ψ2,Φ3 > + < Ψ3,Φ1 >)Φ2

= ∂H2

∂Ψ3
,

φN+1,t2 = 1
2φN+1 < ΛΨ1,Φ2 > + 1

4 (< ΛΨ2,Φ3 > − < ΛΨ3,Φ1 >) =
∂H2

∂ΨN+1
,

Ψ1,t2 = 1
2 (Λ

2− < ΛΨ1,Φ2 > − < Ψ1,Φ1 > + < Ψ2,Φ2 >)Ψ1 − (Λ+ < Ψ1,Φ2 >)Ψ2 +
1
4 (ψN+1Λ

+2 < Ψ1,Φ3 > +2 < Ψ3,Φ2 >)Ψ3 = −∂H2

∂Φ1
,

Ψ2,t2 = − 1
2 [(< Ψ1,Φ1 > − < Ψ2,Φ2 >)Λ− φN+1ψN+1Λ + 2 < Ψ2,Φ1 >]Ψ1 +

1
2 (−Λ2+ < ΛΨ1,Φ2 >

+ < Ψ1,Φ1 > − < Ψ2,Φ2 >)Ψ2 −
1
2 (2φN+1Λ− < Ψ2,Φ3 > + < Ψ3,Φ1 >)Ψ3 = −∂H2

∂Φ2
,

Ψ3,t2 = − 1
2 (2φN+1Λ− < Ψ2,Φ3 > + < Ψ3,Φ1 >)Ψ1 −

1
4 (ψN+1Λ + 2 < Ψ1,Φ3 > +2 < Ψ3,Φ2 >)Ψ2

= ∂H2

∂Φ3
,

ψN+1,t2 =< ΛΨ1,Φ3 > + < ΛΨ3,Φ2 > − 1
2ψN+1 < ΛΨ1,Φ2 >=

∂H2

∂φN+1
,

(25)

where Hamiltonian function is as follows

H2 = −
1

2
(< Λ2Ψ1,Φ1 > − < Λ2Ψ2,Φ2 >) +

1

2
< ΛΨ1,Φ2 > (< Ψ1,Φ1 > − < Ψ2,Φ2 >)

+ < ΛΨ2,Φ1 > −
1

2
φN+1ψN+1 < ΛΨ1,Φ2 > +

1

4
ψN+1(< ΛΨ2,Φ3 > − < ΛΨ3,Φ1 >)

+ < Ψ2,Φ1 >< Ψ1,Φ2 > −
1

2
(< Ψ2,Φ3 > − < Ψ3,Φ1 >)(< Ψ1,Φ3 > + < Ψ3,Φ2 >)

+φN+1(< ΛΨ1,Φ3 > + < ΛΨ3,Φ2 >) +
1

4
(< Ψ1,Φ1 > − < Ψ2,Φ2 >)

2.

Let’s construct integrals of motion for (21). An obvious equality (Ṽ 2)x = [Ũ , Ṽ 2] leads to

Fx = (
1

2
StrṼ 2)x =

d

dx
(Ã2 + B̃C̃ + 2ρ̃δ̃) = 0, (26)
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that is to say, F is a generating function of integrals of motion for the constrained spatial system (21).

Since F =
∑

n≥0

Fnλ
−n, we obtain the following expressions

Fn =

n
∑

i=0

(ÃiÃn−i + B̃iC̃n−i + 2ρ̃iδ̃n−i).

Using (16), we get

F0 =
1

4
, F1 = F2 = 0,

F3 = −
1

2
(< ΛΨ1,Φ1 > − < ΛΨ2,Φ2 >)−

1

4
(< Ψ2,Φ3 > − < Ψ3,Φ1 >)ψN+1

+
1

2
(< Ψ1,Φ1 > − < Ψ2,Φ2 > −φN+1ψN+1) < Ψ1,Φ2 > + < Ψ2,Φ1 >

+φN+1(< Ψ1,Φ3 > + < Ψ3,Φ2 >) = H1,

F4 = −
1

2
(< Λ2Ψ1,Φ1 > − < Λ2Ψ2,Φ2 >) + φN+1(< ΛΨ1,Φ3 > + < ΛΨ3,Φ2 >)

+
1

2
(< Ψ1,Φ1 > − < Ψ2,Φ2 > −φN+1ψN+1) < ΛΨ1,Φ2 > + < ΛΨ2,Φ1 >

−
1

4
(< ΛΨ2,Φ3 > − < ΛΨ3,Φ1 >)ψN+1 +

1

4
(< Ψ1,Φ1 > − < Ψ2,Φ2 >)

2

−
1

2
(< Ψ2,Φ3 > − < Ψ3,Φ1 >)(< Ψ1,Φ3 > + < Ψ3,Φ2 >)+ < Ψ2,Φ1 >< Ψ1,Φ2 >,

Fn = −
1

2
(< Λn−2Ψ1,Φ1 > − < Λn−2Ψ2,Φ2 >) + φN+1(< Λn−3Ψ1,Φ3 > + < Λn−3Ψ3,Φ2 >)

+
1

2
(< Ψ1,Φ1 > − < Ψ2,Φ2 > −φN+1ψN+1) < Λn−3Ψ1,Φ2 > + < Λn−3Ψ2,Φ1 >

−
1

4
(< Λn−3Ψ2,Φ3 > − < Λn−3Ψ3,Φ1 >)ψN+1 +

n−2
∑

i=2

[
1

4
(< Λi−2Ψ1,Φ1 >

− < Λi−2Ψ2,Φ2 >)(< Λn−i−2Ψ1,Φ1 > − < Λn−i−2Ψ2,Φ2 >)+ < Λi−2Ψ2,Φ1 >

< Λn−i−2Ψ1,Φ2 > −
1

2
(< Λi−2Ψ2,Φ3 > − < Λi−2Ψ3,Φ1 >)(< Λn−i−2Ψ1,Φ3 >

+ < Λn−i−2Ψ3,Φ2 >)], n ≥ 5. (27)

Here Fn(n ≥ 0) are all polynomials of 6N+2 dependent variables φij , ψij , φN+1 and ψN+1, with i = 1, 2, 3

and j = 1, · · · , N . Note that for temporal part, Vtn = [V (n), V ] is true. With the similar discussion, we

found that F = 1
2StrṼ

2 is also a generating function of integrals of motion for (19). Moreover, when the

symmetry constraint (15) and new independent variables (17) are considered, system (19) is constrained

as follows






























































































φ1j,tn = (
n
∑

m=0
Ãmλ

n−m
j + 1

2 C̃n+1)φ1j +
n
∑

m=0
B̃mλ

n−m
j φ2j +

n
∑

m=0
ρ̃mλ

n−m
j φ3j , 1 ≤ j ≤ N,

φ2j,tn =
n
∑

m=0
C̃mλ

n−m
j φ1j − (

n
∑

m=0
Ãmλ

n−m
j + 1

2 C̃n+1)φ2j +
n
∑

m=0
δ̃mλ

n−m
j φ3j , 1 ≤ j ≤ N,

φ3j,tn =
n
∑

m=0
δ̃mλ

n−m
j φ1j −

n
∑

m=0
ρ̃mλ

n−m
j φ2j , 1 ≤ j ≤ N,

φN+1,tn = 1
2φN+1 < Λn−1Ψ1,Φ2 > + 1

4 (< Λn−1Ψ2,Φ3 > − < Λn−1Ψ3,Φ2 >),

ψ1j,tn = −(
n
∑

m=0
Ãmλ

n−m
j + 1

2 C̃n+1)ψ1j −
n
∑

m=0
C̃mλ

n−m
j ψ2j +

n
∑

m=0
δ̃mλ

n−m
j ψ3j , 1 ≤ j ≤ N,

ψ2j,tn = −
n
∑

m=0
B̃mλ

n−m
j ψ1j + (

n
∑

m=0
Ãmλ

n−m
j + 1

2 C̃n+1)ψ2j −
n
∑

m=0
ρ̃mλ

n−m
j ψ3j , 1 ≤ j ≤ N,

ψ3j,tn = −
n
∑

m=0
ρ̃mλ

n−m
j ψ1j −

n
∑

m=0
δ̃mλ

n−m
j ψ2j , 1 ≤ j ≤ N,

ψN+1,tn =< Λn−1Ψ1,Φ3 > + < Λn−1Ψ3,Φ2 > − 1
2ψN+1 < Λn−1Ψ1,Φ2 > .

(28)
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After a direct calculation, we have

{

Φ1,tn = ∂Fn+2

∂Ψ1
, Φ2,tn = ∂Fn+2

∂Ψ2
, Φ3,tn = ∂Fn+2

∂Ψ3
, φN+1,tn = ∂Fn+2

∂ΨN+1
,

Ψ1,tn = −∂Fn+2

∂Φ1
, Ψ2,tn = −∂Fn+2

∂Φ2
, Ψ3,tn = ∂Fn+2

∂Φ3
, ψN+1,tn = ∂Fn+2

∂ΦN+1
,

(29)

which shows that constrained system (28) is a super Hamiltonian system.

In what follows, for 6N+2 dimensional super Hamiltonian systems (21) and (29), we find 3N+1

integrals of motion. It is natural to find that

fk = ψ1kφ1k + ψ2kφ2k + ψ3kφ3k, 1 ≤ k ≤ N, (30)

are integrals of motion for constrained systems (21) and (29). Therefore, for constrained systems (21)

and (29), we choose 3N+1 integrals of motion

f1, · · · , fN , F3, F4, · · · , F2N+3. (31)

After a simple calculation, we get

{Fm, Fn+2} =
∂

∂tn
Fm = 0, (32)

where Poisson bracket is defined by

{F,G} =
3

∑

i=1

N
∑

j=1

(
∂F

∂φij

∂G

∂ψij
− (−1)p(φij)p(ψij)

∂F

∂ψij

∂G

∂φij
) +

∂F

∂φN+1

∂G

∂ψN+1
+

∂F

∂ψN+1

∂G

∂φN+1
. (33)

The identity (32) means that {Fm}m≥0 are in involution. The property of involution among {fk}
N
k=1 is

obvious. About the independence of {fk}
N
k=1 and {Fm}2N+3

m=3 , we can refer to the proof of Proposition 1

in [19]. Thus we obtain the following theorem

Theorem 1 The constrained systems (21) and (29) are Liouville integrable super Hamiltonian systems,

whose integrals of motion are given by (31).

5 Conclusions and Discussions

In this paper, the cKdV system is successfully extended to the super one. For new system, its super

Hamiltonian structure is expressed in the form of (11). In our previous papers [19]-[21],the binary

nonlinearization has been applied to the super AKNS system and the super Dirac system. For the

super AKNS system, two kinds of nonlinearization of Lax pairs, including nonlinearization under an

explicit symmetry constraint[19] and nonlinearization under an implicit symmetry constraint[20], have

been considered respectively. And for the super Dirac system, we only consider binary nonlinearization

under an explicit symmetry constraint[21]. From these three kinds of nonlinearization of Lax pairs, the

symmetry constraint is either implicit or explicit. The novelty of the constraint (15) for the super cKdV

system is due to the combination of the explicit constraint for even potentials (q, r) and the implicit

constraint for odd potentials (α, β). Such combination will make the process of binary nonlinearization

complex. It is highly non-trivial to solve (α, β) from implicit constraints (15) because it is related to

a coupled differential equations with variable coefficients. We introduce two new odd variables (17)

following the technique of implicit constraint[33]. Thus, the spatial part and temporal parts of the

super cKdV system are nonlinearized respectively to the constrained spatial system (21) and to the

constrained temporal system (29). Then, we see that systems (21) and (29) are super Hamiltonian

systems. Furthermore, constrained systems (21) and (29) are integrable in the Liouville sense.

However, we are not able to do this for supersymmetric cKdV system. Because spectral matrix of

supersymmetric cKdV system can not be described by a certain Lie super algebra. In a word, how to

10



make nonlinearization of supersymmetric cKdV system is an interesting problem. Furthermore, it is also

an interesting problem to find an explicit solution of the super finite dimensional integrable system. We

shall consider these problems in the future.
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