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Momentum conservation in dissipationless reduced-fluid dynamics
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The momentum conservation law for general dissipationless reduced-fluid (e.g., gyrofluid) models
is derived by Noether method from a variational principle. The reduced-fluid momentum density and
the reduced-fluid canonical momentum-stress tensor both exhibit polarization and magnetization
effects as well as an internal torque associated with dynamical reduction. As an application, we
derive an explicit gyrofluid toroidal angular-momentum conservation law for axisymmetric toroidal

magnetized plasmas.

Nonlinear reduced-fluid models play an important role
in our understanding of the complex dynamical behav-
ior of strongly magnetized plasmas. These nonlinear
reduced-fluid models, in which fast time scales (such as
the compressional Alfvén time scale) have been asymp-
totically removed, include the reduced magnetohydrody-
namic equations @—E], the nonlinear gyrofluid equations
@, ﬁ], and several truncated reduced-fluid models (such
as the Hasegawa-Mima equation ﬂa, B] and the Hasegawa-
Wakatani equations [§]). Because the space-time-scale
orderings for these reduced-fluid models are compatible
with the nonlinear gyrokinetic space-time-scale orderings
ﬂﬂ], they provide a very useful complementary set of equa-
tions that yield simpler interpretations of low-frequency
turbulent plasma dynamics in realistic geometries.

The self-regulation of anomalous transport processes
by plasma flows in turbulent axisymmetric magnetized
plasmas has been intensively investigated in the past
decade. Because a strong coupling has been observed [9]
between toroidal-momentum transport and energy trans-
port in such plasmas, it is natural to investigate the
link between these two global conservation laws through
an application of the Noether method on a suitable La-
grangian density ﬂﬁ] The purpose of the present Letter
is to focus its attention on a momentum conservation
law derived from a general reduced-fluid model ] and
then explicitly investigate the reduced toroidal angular-
momentum transport in axisymmetric magnetic geome-
try derived from it.

The general variational formulation of nonlinear dissi-
pationless reduced-fluid models is expressed in terms of
a Lagrangian density £(1®) as a function of the multi-
component field

Y = (¢, A,E,B;n,u,p|,pL). (1)

Here, the electromagnetic fields (E,B) are defined in
terms of the electromagnetic potentials (®, A) as

E=-V® - ¢c'0A/0t and B = VXA (2

and the reduced-fluid moments (n, u,p”,pJ_) are used for
each plasma-particle species (with mass m and charge
q). We note that the Lagrangian formalism does not ac-
commodate higher-order fluid moments (e.g., heat fluxes)

and, therefore, the issue of fluid closure is completely
ignored ﬂﬁ] These higher-order moments, as well as
dissipative effects, can be added after the dissipation-
less reduced-fluid equations are derived by variational
method [13] (although a variational procedure [14, [15]
can be used to include heat fluxes in the pressure evolu-
tion equations).

We begin with the general reduced Lagrangian density

L(%) = Lu(E,B) + Ly(P,A;n,u)
+£F(nauap||7pl;EaB)7 (3)

where the electromagnetic Lagrangian density is Ly =
(|E|?> — |B|?)/8, the gauge-dependent interaction La-
grangian density (summed over particle species) is Ly =
— > gn (®—A-u/c), and the reduced-fluid Lagrangian
density L depends on (E,B) only through the process
of dynamical reduction tﬁ]

The reduced plasma-electrodynamic equations associ-
ated with the reduced Lagrangian density (@] are divided
into either constraint equations or dynamical equations.
The electromagnetic constraint equations are

V:-B=0=VxE + ¢ '0B/ot, (4)

which are satisfied by the representation (2). The
reduced-fluid constraint equations, on the other hand,
are the continuity equation

%z—v-(nu), (5)

and the Chew-Goldberger-Low (CGL) pressure equations

(17, 18]

] oo

W = —-V-. (pH u) - 2pH bobo . Vu, (6)

opL AW

=== -V (pJ_u> — (I—bobo) . Vu, (7)
associated with the CGL pressure tensor

P = P B()BO + piL (I—Eogo), (8)

where By = By BO denotes the quasi-static background
magnetic field. The reduced-fluid velocity u appearing
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in Egs. (B)-(@) will be determined from the variational
principle

/ L d'z = 0. (9)

The reduced Maxwell equations and the reduced-fluid
momentum equation are the dynamical equations derived
from the reduced variational principle (@)). First, the re-
duced Maxwell equations

V:D = 4r g, (10)

1 0D 47
VxH - -2 =Ty 1
x c Ot c (11)

are expressed in terms of the reduced charge density
0= —0Ly /0P = > qn and the reduced current den-
sity J = c0Ly/OA = > gnu, while the reduced elec-
tromagnetic fields D = 47 90L/0E = E + 47 P and
H=-470L/0B = B — 47 M are expressed in terms
of the reduced polarization and magnetization

_ [(O0Lp OLp

Equations (I0)-(II) can also be expressed as

V-E = 4r (Q—V-P), (13)
10E 4dr oP

B--—— - = —_— M 14
V X - c(J+8t+CVX >,( )
where gpo1 = — V- P denotes the polarization density,
Joot = OP/0Ot denotes the polarization current, and

Jmag = ¢V X M denotes the magnetization current.
Next, the reduced-fluid momentum equation is
dp

u
n—r = an (E+ EXB) + n(VK — Vu-p)

p
- (pL VL + % Vy + V- P*) ; (15)

where d/dt = 0/0t + u -V, the reduced-fluid kinetic en-
ergy K and the reduced-fluid kinetic momentum p are

(5) = (358 ) 0o

and the symmetric reduced pressure tensor

P. = o bobo + pi 1 (I—bobo) (17)

is defined in terms of the coefficients v = —20Lr/0p)
and v, = —90Lp/Idp.. We note that this pressure ten-
sor generalizes the CGL pressure tensor () and includes
standard finite-Larmor-radius (FLR) corrections through
v #1[13].

The reduced equations (@))- (@), (I0)- (), and (I5) sat-

isfy the reduced momentum conservation law |11/

11 —
5 VT = VL (18)

where the reduced momentum density is

DxB
HEZTLP—I— , (19)

4 e

the reduced canonical momentum-stress tensor is

TEZP*—F(ACF—ZWI%—?S)I

+ (E? + B]*) - BoM} I

8T
(EE + BB)

+[> nup - (PE-BM)|, (20

and V'L denotes the spatial gradient of the reduced La-
grangian density £ = £ — Ly with the dynamical fields
(@ held constant. We note that, while the first three
terms in the canonical momentum-stress tensor (20) are
symmetric while the remaining terms (on the last line)
are not. The antisymmetric part (Ta)s; = 5 (T, —Tji) =
%sijk 7% of the canonical momentum-stress tensor (DIII)
can be expressed in terms of the reduced internal torque
density

TEZnuXp+(E><P+BXM), (21)

which exhibits classical zitterbewegung effects [19] associ-
ated with the decoupling of the reduced-fluid momentum
P # mu and the reduced-fluid velocity u and the reduced
polarization and magnetization effects. Here, the inter-
nal degrees of freedom of a gyrofluid particle are associ-
ated with the fast gyromotion that has been eliminated
by dynamical reduction.

The symmetry of the momentum-stress tensor is phys-
ically connected to the conservation of angular momen-
tum [10, 20], i.e., conservation of the total angular mo-
mentum (including internal angular momentum) explic-
itly requires a symmetric momentum-stress tensor. Since
the left side of Eq. (I8) is invariant under the transfor-
mation [21] IT" = II + V-S and T/ = T — 95/0t, the
second-rank antisymmetric tensor S = %aijk oF can be
chosen so that T' = Tg = %(Tij + T};) is symmetric, i.e.,
the antisymmetric part Ta = 9S/0t yields the reduced
internal angular momentum equation

oo
5 = T, (22)

where o denotes the internal (spin) angular momentum
density, and the reduced momentum conservation law

([I8) becomes

B 1 o
E(H—EVXG)—FV-TS—VE, (23)

where we used the identity V-S = — % VXo.



By applying the Noether Theorem in axisymmetric
tokamak geometry, where

By = Vo X VY + Bo,(¢) Ve (24)

and the background scalar fields are independent of the
toroidal angle ¢ (i.e., 'L/0p = 0), we obtain the reduced
toroidal angular-momentum transport equation 11|

Q(Hg, - az) + V. <T %> = 0. (25

ot dy
Here, the toroidal momentum density is
0x .
I, = H-% =z-xx1I (26)
(I+b)D¥ DxB, 0x
=D npe + "9’
47 c dr e Oy

where the perturbed magnetic field is B — Bg = b Bo +
B, and we used the identity By X 0x/0¢p = V.

A more useful expression for Eq. (20]), however, is ob-
tained in terms of the magnetic-flux average (---) =

VL$ T () dody as
o(Il,) 10 v\)
s T yas VTW) =@ e
where J = (Vi) X VO-Vp)~! = (Bg-V0)~! is the Ja-

cobian for the magnetic coordinates (¢,6, ) and V =
§ J dodp. In Eq. 1), (7.) denotes the reduced in-
ternal torque density and the surface-averaged toroidal
angular-momentum flux is

ox

b -
T, = V¢-T- 90 (28)

1
=Y nu¥p, — E(Dw E,+BYH,),

where ij_ = B, - V¢ denotes the i-component of the
perpendicular component of the perturbed magnetic field
(since Bg - V) = 0).

We now investigate the surface-averaged toroidal
angular-momentum conservation law (27) by considering
the gyrofluid Lagrangian density [15, [22]

1
L= (B~ Bf)

+Z{ mn uf — (nle —I—P)}
PS (2 (e h) - ]

where u = u- bo denotes the gyrofluid velocity along the
unperturbed (background) magnetic-field lines and the
pressure tensor (I7) is P. = P (i.e., vy = 1 = 7.) with
P =3 Tr(P)=pL+p)/2. In Eq. @J), the zero-Larmor-
radius limit of the gyrocenter dynamical reduction [5]
introduces the nonlinear FLR~corrected potentials

(I>p @—pJ_'EJ_

;- (30)

Ajp Aj = by po X By

which generate the nonlinear FLR-corrected electromag-
netic fields

(5,)=(

and the low-frequency ponderomotive potential

~V®, — by DA, /0t (31)
V X (A”p bo) ’

1 m
Kp = 5m@lof = TIUP (32
which generates the generalized ponderomotive force
density V-P, = V-P 4+ nVK,. These nonlinear FLR-
corrected fields are expressed in terms of the gyrofluid
displacement [22]

~

(E + A boxBL) = %XUL.

G
The partial derivatives ([IG) of the gyrofluid Lagrangian
density ([29) yield the gyrofluid kinetic energy K =
m uﬁ /2 + K,, and the gyrofluid momentum

pPL = BoQo

B

BO) bo = muﬁ bo, (34)

where UTI defines the gyrofluid velocity along the per-
turbed magnetic-field lines. Lastly, the partial deriva-
tives (I2)) yield the gyrofluid polarization and magneti-
zation

b
P = E gnp, = E mncB—szJ_, (35)
— N il
M = —b = — U, (36
E qnpy X 0 E mnBo 1. (36)

which appear in the Maxwell equations (I0)-(II). Note
that the reduced internal torque (2I)) for this gyrofluid
model is expressed as

_ N~ mne . up
T = Z B—O(u”—u”)(EL + ?b()XBL)

+ Z mnuﬁ (UL — UL) XB(), (37)

where E; X P+B; XM = 0.
The gyrofluid momentum equation (&) derived from
the gyrofluid Lagrangian density (29) is expressed as

mnbo Sl — g (Ep n %xB;) —V-P,, (38)

dt
where B} = By + | (Bo/S0) V % BO + B.,. Equation
([BY) contains both the gyrofluid parallel-force equation

duy _ (.
mn —= = bp-(anp—V-Pp), (39)

where b} = B} /By, and the gyrofluid velocity

b

mn Qo' (40)

u =y b; + (anJ_p — V-Pp) X



which includes the F x B velocity and the diamagnetic
velocity and their nonlinear FLR corrections.

Next, we consider the gyrofluid version of the surface-
averaged toroidal angular-momentum conservation law
@), where the gyrofluid momentum (34) is substituted
in Eqs. ([9-@0), with P, = P and n*0Ly/0n* =
Lr in Eq. @0). The gyrofluid version of the surface-
averaged equation (21) is expressed in terms of the gy-
rofluid toroidal angular-momentum density (26), with
Dy = murl bo, and

2
v = (1+an 3 ") B
0

+ (4w 3 m%?c) B, - (Vi x by), (41)

while the expression for Eq. 28] is

Bﬂl
Tllia — Zn(uwpw _ qprg, + muy B—é‘ULSO)

- i (B*E, + BUB,), (42)
where we have separated the reduced polarization P¥ =
S qnp" and magnetization M, = mnu U,/ Bo
from the Maxwell stress tensor.

As an application of the gyrofluid model [29]), we con-
sider its electrostatic version (E = —V®, UTI = u,

and B = By) and use the quasi-neutrality condition

0=V -P [valid for 47 (3" mnc?/B2) > 1]. The surface-
averaged gyrofluid toroidal angular-momentum equation
@7) therefore becomes

%((Hm + %<P¢’> - <Uz>)
_ % % V<<Fg”> + <P¢ g—i>>}, (43)

where I, = (3 mnuy) boy, F:ﬁl\ = (3 mnuju?) by,
and P¥ = (Y. mnc?/B2)EY. This equation was re-
cently obtained [23] (without the internal angular mo-
mentum o) by direct evaluation of the time evolution
of the surface-averaged gyrocenter moment (Hf;m> =
(ITy) — (¥/c) (@) of the toroidal canonical momentum
muv) bo, — q¥/c, where the surface-averaged gyrofluid
charge density (o) = V=1 9(V(P¥))/0v is expressed
in terms of the surface-averaged polarization component
(P¥).

In this Letter, we have derived an exact toroidal
angular-momentum conservation law (25]) that clearly
exhibits the role played by the reduced internal torque
T, = 0o, /0t in possibly driving spontaneous toroidal ro-
tation in axisymmetric tokamak plasmas.
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