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Momentum conservation in dissipationless reduced-fluid dynamics
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The momentum conservation law for general dissipationless reduced-fluid (e.g., gyrofluid) models
is derived by Noether method from a variational principle. The reduced-fluid momentum density and
the reduced-fluid canonical momentum-stress tensor both exhibit polarization and magnetization
effects as well as an internal torque associated with dynamical reduction. As an application, we
derive an explicit gyrofluid toroidal angular-momentum conservation law for axisymmetric toroidal
magnetized plasmas.

Nonlinear reduced-fluid models play an important role
in our understanding of the complex dynamical behav-
ior of strongly magnetized plasmas. These nonlinear
reduced-fluid models, in which fast time scales (such as
the compressional Alfvén time scale) have been asymp-
totically removed, include the reduced magnetohydrody-
namic equations [1–3], the nonlinear gyrofluid equations
[4, 5], and several truncated reduced-fluid models (such
as the Hasegawa-Mima equation [6, 7] and the Hasegawa-
Wakatani equations [8]). Because the space-time-scale
orderings for these reduced-fluid models are compatible
with the nonlinear gyrokinetic space-time-scale orderings
[5], they provide a very useful complementary set of equa-
tions that yield simpler interpretations of low-frequency
turbulent plasma dynamics in realistic geometries.
The self-regulation of anomalous transport processes

by plasma flows in turbulent axisymmetric magnetized
plasmas has been intensively investigated in the past
decade. Because a strong coupling has been observed [9]
between toroidal-momentum transport and energy trans-
port in such plasmas, it is natural to investigate the
link between these two global conservation laws through
an application of the Noether method on a suitable La-
grangian density [10]. The purpose of the present Letter
is to focus its attention on a momentum conservation
law derived from a general reduced-fluid model [11] and
then explicitly investigate the reduced toroidal angular-
momentum transport in axisymmetric magnetic geome-
try derived from it.
The general variational formulation of nonlinear dissi-

pationless reduced-fluid models is expressed in terms of
a Lagrangian density L(ψα) as a function of the multi-
component field

ψα ≡ (Φ,A,E,B;n,u, p‖, p⊥). (1)

Here, the electromagnetic fields (E,B) are defined in
terms of the electromagnetic potentials (Φ,A) as

E ≡ −∇Φ − c−1∂A/∂t and B ≡ ∇×A (2)

and the reduced-fluid moments (n,u, p‖, p⊥) are used for
each plasma-particle species (with mass m and charge
q). We note that the Lagrangian formalism does not ac-
commodate higher-order fluid moments (e.g., heat fluxes)

and, therefore, the issue of fluid closure is completely
ignored [12]. These higher-order moments, as well as
dissipative effects, can be added after the dissipation-
less reduced-fluid equations are derived by variational
method [13] (although a variational procedure [14, 15]
can be used to include heat fluxes in the pressure evolu-
tion equations).
We begin with the general reduced Lagrangian density

L(ψα) ≡ LM(E,B) + LΨ(Φ,A;n,u)

+ LF(n,u, p‖, p⊥;E,B), (3)

where the electromagnetic Lagrangian density is LM ≡
(|E|2 − |B|2)/8π, the gauge-dependent interaction La-
grangian density (summed over particle species) is LΨ ≡
−
∑

q n (Φ−A ·u/c), and the reduced-fluid Lagrangian
density LF depends on (E,B) only through the process
of dynamical reduction [16].
The reduced plasma-electrodynamic equations associ-

ated with the reduced Lagrangian density (3) are divided
into either constraint equations or dynamical equations.
The electromagnetic constraint equations are

∇ ·B = 0 = ∇×E + c−1∂B/∂t, (4)

which are satisfied by the representation (2). The
reduced-fluid constraint equations, on the other hand,
are the continuity equation

∂n

∂t
= − ∇ ·

(
n u
)
, (5)

and the Chew-Goldberger-Low (CGL) pressure equations
[17, 18]

∂p‖
∂t

= − ∇ ·

(
p‖ u

)
− 2 p‖ b̂0b̂0 : ∇u, (6)

∂p⊥
∂t

= − ∇ ·

(
p⊥ u

)
− p⊥

(
I− b̂0b̂0

)
: ∇u, (7)

associated with the CGL pressure tensor

P ≡ p‖ b̂0 b̂0 + p⊥ (I− b̂0 b̂0), (8)

where B0 ≡ B0 b̂0 denotes the quasi-static background
magnetic field. The reduced-fluid velocity u appearing

http://arxiv.org/abs/1009.3218v1


2

in Eqs. (5)-(7) will be determined from the variational
principle

∫
δL d4x = 0. (9)

The reduced Maxwell equations and the reduced-fluid
momentum equation are the dynamical equations derived
from the reduced variational principle (9). First, the re-
duced Maxwell equations

∇ ·D = 4π ̺, (10)

∇×H −
1

c

∂D

∂t
=

4π

c
J, (11)

are expressed in terms of the reduced charge density
̺ ≡ − ∂LΨ/∂Φ =

∑
qn and the reduced current den-

sity J ≡ c ∂LΨ/∂A =
∑

qnu, while the reduced elec-
tromagnetic fields D ≡ 4π ∂L/∂E = E + 4πP and
H ≡ − 4π ∂L/∂B = B − 4πM are expressed in terms
of the reduced polarization and magnetization

(P, M) ≡

(
∂LF

∂E
,
∂LF

∂B

)
. (12)

Equations (10)-(11) can also be expressed as

∇ ·E = 4π
(
̺ − ∇ ·P

)
, (13)

∇×B−
1

c

∂E

∂t
=

4π

c

(
J+

∂P

∂t
+ c ∇×M

)
, (14)

where ̺pol ≡ −∇ ·P denotes the polarization density,
Jpol ≡ ∂P/∂t denotes the polarization current, and
Jmag ≡ c∇×M denotes the magnetization current.
Next, the reduced-fluid momentum equation is

n
dp

dt
= qn

(
E +

u

c
×B

)
+ n (∇K − ∇u ·p)

−
(
p⊥ ∇γ⊥ +

p‖

2
∇γ‖ + ∇ ·P∗

)
, (15)

where d/dt ≡ ∂/∂t+ u ·∇, the reduced-fluid kinetic en-
ergy K and the reduced-fluid kinetic momentum p are

(
K
p

)
≡

(
∂LF/∂n

n−1 ∂LF/∂u

)
, (16)

and the symmetric reduced pressure tensor

P∗ ≡ p‖ γ‖ b̂0b̂0 + p⊥ γ⊥ (I− b̂0b̂0) (17)

is defined in terms of the coefficients γ‖ ≡ − 2 ∂LF/∂p‖
and γ⊥ ≡ − ∂LF/∂p⊥. We note that this pressure ten-
sor generalizes the CGL pressure tensor (8) and includes
standard finite-Larmor-radius (FLR) corrections through
γ⊥ 6= 1 [13].
The reduced equations (4)-(7), (10)-(11), and (15) sat-

isfy the reduced momentum conservation law [11]

∂Π

∂t
+ ∇ ·T = ∇′L, (18)

where the reduced momentum density is

Π ≡
∑

n p +
D×B

4π c
, (19)

the reduced canonical momentum-stress tensor is

T ≡
∑

P∗ +

(
LF −

∑
ηa

∂LF

∂ηa

)
I

+

[
1

8π

(
|E|2 + |B|2

)
− B ·M

]
I

−
1

4π

(
E E + B B

)

+
[∑

n u p −
(
P E − B M

)]
, (20)

and ∇′L denotes the spatial gradient of the reduced La-
grangian density L ≡ L − LΨ with the dynamical fields
(1) held constant. We note that, while the first three
terms in the canonical momentum-stress tensor (20) are
symmetric while the remaining terms (on the last line)
are not. The antisymmetric part (TA)ij ≡

1
2
(Tij−Tji) ≡

1
2
εijk τ

k of the canonical momentum-stress tensor (20)
can be expressed in terms of the reduced internal torque

density

τ ≡
∑

nu×p +
(
E×P + B×M

)
, (21)

which exhibits classical zitterbewegung effects [19] associ-
ated with the decoupling of the reduced-fluid momentum
p 6= mu and the reduced-fluid velocity u and the reduced
polarization and magnetization effects. Here, the inter-

nal degrees of freedom of a gyrofluid particle are associ-
ated with the fast gyromotion that has been eliminated
by dynamical reduction.
The symmetry of the momentum-stress tensor is phys-

ically connected to the conservation of angular momen-
tum [10, 20], i.e., conservation of the total angular mo-
mentum (including internal angular momentum) explic-
itly requires a symmetric momentum-stress tensor. Since
the left side of Eq. (18) is invariant under the transfor-
mation [21] Π′ ≡ Π + ∇ ·S and T′ ≡ T − ∂S/∂t, the
second-rank antisymmetric tensor S ≡ 1

2
εijk σ

k can be

chosen so that T′ ≡ TS ≡ 1
2
(Tij + Tji) is symmetric, i.e.,

the antisymmetric part TA ≡ ∂S/∂t yields the reduced
internal angular momentum equation

∂σ

∂t
≡ τ , (22)

where σ denotes the internal (spin) angular momentum
density, and the reduced momentum conservation law
(18) becomes

∂

∂t

(
Π −

1

2
∇×σ

)
+ ∇ ·TS = ∇′ L, (23)

where we used the identity ∇ · S ≡ − 1
2
∇×σ.
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By applying the Noether Theorem in axisymmetric
tokamak geometry, where

B0 ≡ ∇ϕ×∇ψ + B0ϕ(ψ)∇ϕ (24)

and the background scalar fields are independent of the
toroidal angle ϕ (i.e., ∂′L/∂ϕ ≡ 0), we obtain the reduced
toroidal angular-momentum transport equation [11]

∂

∂t

(
Πϕ − σz

)
+ ∇ ·

(
T ·

∂x

∂ϕ

)
= 0. (25)

Here, the toroidal momentum density is

Πϕ = Π ·
∂x

∂ϕ
≡ ẑ ·x×Π (26)

=
∑

n pϕ +
(1 + b‖)D

ψ

4π c
+

D×B⊥

4π c
·
∂x

∂ϕ
,

where the perturbed magnetic field is B−B0 ≡ b‖ B0 +
B⊥ and we used the identity B0 × ∂x/∂ϕ ≡ ∇ψ.
A more useful expression for Eq. (25), however, is ob-

tained in terms of the magnetic-flux average 〈· · · 〉 ≡
V−1

∮
J (· · · ) dθ dϕ as

∂〈Πϕ〉

∂t
+

1

V

∂

∂ψ

(
V
〈
Tψϕ

〉)
= 〈τz〉, (27)

where J ≡ (∇ψ×∇θ ·∇ϕ)−1 = (B0 ·∇θ)
−1 is the Ja-

cobian for the magnetic coordinates (ψ, θ, ϕ) and V ≡∮
J dθ dϕ. In Eq. (27), 〈τz〉 denotes the reduced in-

ternal torque density and the surface-averaged toroidal
angular-momentum flux is

Tψϕ ≡ ∇ψ ·T ·
∂x

∂ϕ
(28)

=
∑

nuψ pϕ −
1

4π
(Dψ Eϕ +Bψ⊥Hϕ),

where Bψ⊥ ≡ B⊥ ·∇ψ denotes the ψ-component of the
perpendicular component of the perturbed magnetic field
(since B0 ·∇ψ ≡ 0).
We now investigate the surface-averaged toroidal

angular-momentum conservation law (27) by considering
the gyrofluid Lagrangian density [15, 22]

L =
1

8π

(
|E⊥|

2 − |B|2
)

+
∑[

1

2
mn u2‖ −

(
nKρ + P

) ]

+
∑

qn
[ u

c
·

(
A0 +A‖ρ b̂0

)
− Φρ

]
, (29)

where u‖ ≡ u · b̂0 denotes the gyrofluid velocity along the
unperturbed (background) magnetic-field lines and the
pressure tensor (17) is P∗ ≡ P (i.e., γ‖ = 1 = γ⊥) with

P ≡ 1
2
Tr(P) = p⊥ + p‖/2. In Eq. (29), the zero-Larmor-

radius limit of the gyrocenter dynamical reduction [5]
introduces the nonlinear FLR-corrected potentials




Φρ

A‖ρ


 ≡




Φ − ρ⊥ ·E⊥

A‖ − b̂0 ·ρ⊥ ×B⊥


 , (30)

which generate the nonlinear FLR-corrected electromag-
netic fields

(
Eρ
B⊥ρ

)
≡

(
−∇Φρ − c−1b̂0 ∂A‖ρ/∂t

∇× (A‖ρ b̂0)

)
, (31)

and the low-frequency ponderomotive potential

Kρ ≡
1

2
mΩ2

0 |ρ⊥|
2 ≡

m

2
|U⊥|

2, (32)

which generates the generalized ponderomotive force
density ∇ ·Pρ ≡ ∇ ·P + n∇Kρ. These nonlinear FLR-
corrected fields are expressed in terms of the gyrofluid
displacement [22]

ρ⊥ =
c

B0Ω0

(
E⊥ +

u‖

c
b̂0 ×B⊥

)
≡

b̂0

Ω0

×U⊥.

(33)
The partial derivatives (16) of the gyrofluid Lagrangian
density (29) yield the gyrofluid kinetic energy K =
m u2‖/2 +Kρ, and the gyrofluid momentum

p = m

(
u‖ + U⊥ ·

B⊥

B0

)
b̂0 ≡ mu∗‖ b̂0, (34)

where u∗‖ defines the gyrofluid velocity along the per-

turbed magnetic-field lines. Lastly, the partial deriva-
tives (12) yield the gyrofluid polarization and magneti-
zation

P ≡
∑

qn ρ⊥ =
∑

mn
cb̂0
B0

×U⊥, (35)

M ≡
∑

qn ρ⊥ ×

u‖

c
b̂0 =

∑
mn

u‖

B0

U⊥, (36)

which appear in the Maxwell equations (10)-(11). Note
that the reduced internal torque (21) for this gyrofluid
model is expressed as

τ =
∑ mnc

B0

(u‖ − u∗‖)
(
E⊥ +

u‖

c
b̂0 ×B⊥

)

+
∑

mnu∗‖

(
u⊥ − U⊥

)
× b̂0, (37)

where E⊥×P+B⊥ ×M ≡ 0.
The gyrofluid momentum equation (15) derived from

the gyrofluid Lagrangian density (29) is expressed as

mn b̂0
du‖
dt

= qn
(
Eρ +

u

c
×B∗

ρ

)
− ∇ ·Pρ, (38)

where B∗
ρ ≡ B0 + u‖ (B0/Ω0) ∇× b̂0 + B⊥ρ. Equation

(38) contains both the gyrofluid parallel-force equation

mn
du‖

dt
= b

∗
ρ ·

(
qn Eρ − ∇ ·Pρ

)
, (39)

where b∗ρ ≡ B∗
ρ/B0, and the gyrofluid velocity

u = u‖ b
∗
ρ +

(
qn E⊥ρ − ∇ ·Pρ

)
×

b̂0

mnΩ0

, (40)
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which includes the E × B velocity and the diamagnetic
velocity and their nonlinear FLR corrections.
Next, we consider the gyrofluid version of the surface-

averaged toroidal angular-momentum conservation law
(27), where the gyrofluid momentum (34) is substituted
in Eqs. (19)-(20), with P∗ = P and ηa ∂LF/∂η

a ≡
LF in Eq. (20). The gyrofluid version of the surface-
averaged equation (27) is expressed in terms of the gy-
rofluid toroidal angular-momentum density (26), with
pϕ = mu∗‖ b0ϕ and

Dψ ≡

(
1 + 4π

∑ mnc2

B2
0

)
Eψ

+

(
4π
∑ mnu‖c

B2
0

)
B⊥ · (∇ψ× b̂0), (41)

while the expression for Eq. (28) is

Tψϕ =
∑

n

(
uψ pϕ − q ρψ⊥Eϕ + mu‖

Bψ⊥
B0

U⊥ϕ

)

−
1

4π

(
Eψ Eϕ + Bψ⊥Bϕ

)
, (42)

where we have separated the reduced polarization Pψ =∑
qn ρψ⊥ and magnetization Mϕ =

∑
mnu‖U⊥ϕ/B0

from the Maxwell stress tensor.
As an application of the gyrofluid model (29), we con-

sider its electrostatic version (E = −∇Φ, u∗‖ = u‖,

and B = B0) and use the quasi-neutrality condition

̺ ≡ ∇ ·P [valid for 4π (
∑

mnc2/B2
0) ≫ 1]. The surface-

averaged gyrofluid toroidal angular-momentum equation
(27) therefore becomes

∂

∂t

(〈
Πϕ‖

〉
+

1

c
〈Pψ〉 − 〈σz〉

)

= −
1

V

∂

∂ψ

[
V

(〈
Γψ
ϕ‖

〉
+

〈
Pψ

∂Φ

∂ϕ

〉)]
, (43)

where Πϕ‖ ≡ (
∑

mnu‖) b0ϕ, Γ
ψ

ϕ‖ ≡ (
∑

mnu‖u
ψ) b0ϕ,

and Pψ ≡ (
∑

mnc2/B2
0)E

ψ. This equation was re-
cently obtained [23] (without the internal angular mo-
mentum σz) by direct evaluation of the time evolution
of the surface-averaged gyrocenter moment 〈Πcan

ϕ 〉 ≡
〈Πϕ‖〉 − (ψ/c) 〈̺〉 of the toroidal canonical momentum
mv‖ b0ϕ − q ψ/c, where the surface-averaged gyrofluid

charge density 〈̺〉 = V−1 ∂(V 〈Pψ〉)/∂ψ is expressed
in terms of the surface-averaged polarization component
〈Pψ〉.

In this Letter, we have derived an exact toroidal
angular-momentum conservation law (25) that clearly
exhibits the role played by the reduced internal torque
τz ≡ ∂σz/∂t in possibly driving spontaneous toroidal ro-
tation in axisymmetric tokamak plasmas.
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