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KÄHLER-EINSTEIN METRICS EMERGING FROM FREE

FERMIONS AND STATISTICAL MECHANICS

ROBERT J. BERMAN

Abstract. We propose a statistical mechanical derivation of Kähler-Einstein
metrics, i.e. solutions to Einstein’s vacuum field equations in Euclidean sig-
nature (with a cosmological constant) on a compact Kähler manifold X. The
microscopic theory is given by a canonical free fermion gas on X whose one-
particle states are pluricanonical holomorphic sections on X (coinciding with
higher spin states in the case of a Riemann surface). A heuristic, but hopefully

physically illuminating, argument for the convergence in the thermodynamical
(large N) limit is given, based on a recent mathematically rigorous result about
exponentially small fluctuations of Slater determinants. Relations to effective
bosonization and the Yau-Tian-Donaldson program in Kähler geometry are
pointed out. The precise mathematical details will be investigated elsewhere.

1. Introduction

The basic laws of gravity have an intriguing similarity with the laws of thermo-
dynamics and hydrodynamics - this has been pointed out at several occasions in the
physics literature, in particular in connection to the study of black holes (see for ex-
ample [7, 35, 54]). As a consequence one is lead to ask whether gravity can be seen
as an emergent effect of an underlying microscopic theory in a thermodynamical
limit [35]? The aim of this note is to propose a situation where this question can be
answered in the affirmatively. We will consider Einstein’s vacuum field equations in
Euclidean signature on a compact manifold X , whose solutions are usually called
Einstein metrics in the mathematics literature [4]. More precisely, these equations
will be considered in the presence of a fixed background integrable complex struc-
ture J on X. It turns out that the underlying microscopic theory may then be
realized as a certain free fermion gas on X and it will be shown how to recover an
Einstein metric (with a non-zero cosmological constant) in the thermodynamical
limit. The metric is singled out by the fact that it is Hermitian and Kähler with
respect to J . In other words these are the Kähler-Einstein metrics which have
been extensively studied during the last decade in the mathematics literature (for
a recent survey see [44]).

Physically, metrics as above appear, for example, as gravitational instantons
in Hawking’s functional integral approach to quantum gravity [32, 51]. Although
we will not restrict X to be a real four-manifold - the physically most relevant
case - it is worth pointing out that in this latter case “most” Einstein metrics are
Kähler-Einstein metrics. In particular, for a negative cosmological constant Λ it
may actually be that all Einstein metrics are Kähler with respect to some complex
structure J, up to diffeomorphism - as long as X admits some complex structure
(the question was raised in [41]). This is for example the case for compact quotients
of the unit ball, as shown in [40] using Seiberg-Witten gauge theory.
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The main ingredients in the investigation of the thermodynamical limit below
is the asymptotics of exponentially small fluctuations of Slater determinants for
N−particle correlations of fermions on complex manifolds in [10] (building on [13,
14, 15]). On one hand, from a purely mathematical point of view these large
N asymptotics concern large deviations for certain critical determinantal random
point processes, which generalize Random Matrix ensembles previously extensively
studied. On the other hand, from a physical point of view the result can be seen as
an effective bosonization of a free fermion gas (see section 2.1.2), which in the case
of a Riemann surface alternatively can be deduced from the exact bosonization
results in [53, 18]. The large deviation result for the Slater determinant is then
combined with a basic large deviation result for a non-interacting classical gas
going back to Boltzmann’s fundamental work on entropy (called Sanov’s theorem
in the mathematics literature).

It should however be pointed out that the argument in the present note which
combines the two mathematically rigorous results refered to above is not completely
rigorous. Basically, it involves an interchange of two limits which needs to be
mathematically justified. The mathematical details, as well as various extensions,
will be investigated elsewhere, but hopefully the heuristic derivation given here is
illuminating from a physical point of view as it involves manipulations that are
standard in the functional integral approach to quantum field theory.

Incidentally, in the case of a Riemann surface (i.e. the case when the real di-
mension D of X is two) the situation studied in the present note is closely related
to the previous mathematical study of various 2D ensembles (point vortex systems,
plasmas, self-gravitating systems, ...) from the point of view of mean field theory;
see [17, 37] and references therein. In particular, the corresponding thermodynam-
ical limit was studied in [17, 37] as a model of 2D turbulence. However, the higher
dimensional situation studied in the present work is analytically considerably more
complicated as the resulting limiting mean field equations are fully non-linear (see
section 2.2). The reason is that the role of the Laplace operator on a Riemann
surface is played by the non-linear Monge-Ampère operator for higher dimensional
complex manifolds. A different “linear” higher-dimensional generalization of point
vortex systems has previously been consider by Kiessling [38], where the role of the
Laplace operator is played by the linear Paneitz operator. It involves conformal
geometry of spheres rather than the complex (holomorphic) geometry considered
here and the thermodynamical limit is a mean field limit of an explicit gas with
logarithmic pair interactions.

It would be interesting to understand the relation between the present note and
the ADS/CFT correspondence [1], which relates gravity in the bulk of a manifold
to a conformal field theory on its boundary. This is a realization of t’Hooft’s
holographic principle. Such a principle has recently been put forward by Verlinde
in [54] as the basis of an entropic explanation of gravity. As explained in the
concluding section 2.4 the emergence of the Kähler-Einstein metric from the present
microscopic model can be interpreted as coming from a fermionic maximum entropy
principle.

From the mathematical point of view an important motivation for the present
work comes from the Yau-Tian-Donaldson program which relates the analytic prob-
lem of existence of extremal metrics in a given Kähler class (i.e. Kähler-Einstein
metrics in the case of the canonical class) to algebro-geometric stability conditions
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(notably K−stability; see [25, 26, 50, 44] and references therein). For example,
the free energy functional derived below turns out to coincide, in the canonical
case, with Mabuchi’s K−energy, which is usually used to define various notions
of K−stability. Moreover, the thermodynamical convergence towards a Kähler-
Einstein volume form in section 2 is somewhat “dual” to the convergence of canon-
ically balanced metrics conjectured by Donaldson in [27] and proved in [15] (see
section 2.3).

As a conclusion one of the mathematical aims of the present paper is to introduce
a “thermodynamical formalism” for Kähler-Einstein metrics and more generally
for Monge-Ampère equations of mean field type that will be further investigated
elsewhere.

Acknowledgment. Thanks to Kurt Johansson for stimulating my interest in gen-
eral β−ensembles and to Bengt Nilsson for comments on a draft of the present
paper.

1.1. Geometric setup. Let X be a compact Kähler manifold with dimC X = n.
In other words, we are given a real manifold (X, J) of dimension D = 2n equipped
with an integrable complex structure J and admitting an Hermitian metric

ω =
i

2
hijdz

i ∧ dz̄j

on the complex tangent bundle TX, which is closed: dω = 0. Identifying ω with
a Riemannian metric g compatible with J, i.e. gij = Re hij the vacuum Einstein
equations, in Euclidean signature, with a cosmological constant read:

(1.1) Ric ω = Λω

when n > 1 and for general n this is the equation for a Kähler-Einstein metric.
After a scaling, we may assume that the cosmological constant Λ is 0, 1 or −1.
In the following we will be mainly concerned with the latter case, i.e. when the
solution ω is a Kähler metric with constant negative Ricci curvature. As shown
in the seminal works of Aubin [5] and Yau [56] such a metric ω exists precisely
when the first Chern class c1(KX) of the canonical line bundle KX := Λn(T ∗X) is
positive, which will henceforth be assumed. The Kähler-Einstein metric ω is then
uniquely determined by the complex structure J and we will denote it by ωKE.
When n = 1, i.e. X is a Riemann surface, this amounts to the classical fact that
X admits a metric of constant negative curvature precisely when X has genus at
least two. This hyperbolic metric is unique in its conformal class (determined by
the complex structure J)

The starting point of the existence proof of Aubin and Yau is the basic complex
geometric fact that the metric ωKE is uniquely determined by its volume form
ωn
KE/n!, that we will normalize to become a probability measure:

µKE :=
ωn
KE/n!

V n!

In other words the tensor equation 1.1 reduces to a scalar equation (for the density
of µKE) and the Kähler-Einstein metric ωKE may then be recovered by

ωKE =
i

2π
∂∂̄ logµKE
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i.e. as i
2π times the curvature two form of the metric on the canonical line bundle

KX defined by µKE .
The question raised in the introduction may now be reformulated as “Can the

probability measure µKE be realized as the (macroscopic) expected distribution of
particles in a thermodynamical limit of a (microscopic) statistical mechanical sys-
tem canonically associated to X? Moreover, the point is to be able to define the
microscopic system without specifying any background metric structure so that the
Einstein metric and hence (Euclidean) gravity would emerge macroscopically. It
turns out that such a statistical mechanical system can indeed be realized by a
certain free fermion gas on X, as explained below.

1.2. General statistical mechanics formalism. We start by recalling some ba-
sic statistical mechanical formalism. Mathematically, a (classical) gas of N identical
particles (i.e. a random point process with N particles) is described by a symmetric
probability measure µ(N) on the N−fold product XN (the N−particle configuration
space). In local holomorphic coordinates Z = (z1, ...., zn) on the complex manifold
X this means that

µ(N) = ρ(N)(Z1, ..., ZN )dV (Z1) ∧ · · · ∧ dV (ZN )

where dV (Z1) := ( i
2 )

ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n and where the local N−point

correlation function ρ(N) is invariant under permutations of the Zi :s. Pushing for-
ward µ(N) to Xj one then obtains the corresponding j−point correlation measures

µ
(N)
j on Xj and their local densities ρ

(N)
j . We will be mainly concerned with the

one-point correlation measure µ
(N)
1 on X, i.e.

µ
(N)
1 :=

ˆ

XN−1

µ(N)

In other words, its local density ρ
(N)
1 (Z) represents the probability of finding a par-

ticle in the infinitesimal box dV (Z1). Yet another (trivially) equivalent formulation

representation of µ
(N)
1 can be given:

µ
(N)
1 =

〈

1

N

∑

i

δxi

〉

,

where the brackets denote the ensemble mean (expectation) of the random variable

(1.2) (x1, ..., xN ) 7→
1

N

∑

i

δxi

with values in the space M1(X) of probability measures on X. In other words, if φ
denotes a fixed smooth function then

ˆ

X

φµ
(N)
1 =

1

N

∑

i

〈φ(xi)〉 = 〈φ(x1)〉

We will next explain how to define µ(N) so that the one-point correlation measurs
convergen to the normalized volume form of the Kähler-Einstein metric:

µ
(N)
1 → µKE
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in the large N−limit. More precisely, the convergence will hold in the weak topology
on M1(X), i.e.

ˆ

X

φµ
(N)
1 →

ˆ

φµKE

for any fixed smooth function φ on X. This convergence can be interpreted as an
answer to the question raised above. In fact, the argument will give a much stronger
“exponential” convergence which in particular implies the asymptotic factorization
of all j−point correlation functions (i.e. propagation of chaos holds).

1.3. Line bundles and Slater determinants. To define µ(N) first recall that we
have assumed that the canonical line bundle KX → X is positive (i.e. ample in the
sense of algebraic geometry). We next recall some basic facts about line bundles
(see for example [18, 23] for introductions aimed at physicists). To any holomorphic
line bundle L → X there is a naturally associated N−dimensional complex vector
space H0(X,L) consisting of global holomorphic section of L → X and the limit
we will be interested is when L is replaced by a large tensor power L⊗k. Since L is
assumed ample it follows that the dimension N = Nk (which will be the number of
particles of our gas) grows with k in the following way:

Nk := dimC H0(X,L⊗k) = V kn + o(kn)

where the volume V > 0. In particular,

N(= Nk) → ∞ ⇔ k → ∞

We will often omit the subscript k in Nk.
In physics, H0(X,L) usually arises as the quantum ground state space of a single

chiral fermion on X coupled to L [53, 18]. The corresponding N−particle space
of fermions is then, according to Pauli’s exclusion principle, represented by the
top exterior power ΛNH0(X,L). In other words this is the maximally filled many
particle fermion state. As a consequence it is one-dimensional and may, up to
scaling, be represented by the N−body state

Ψ(x1, ...xN ) := Ψ1(x1) ∧ · · · ∧ΨN (xN )

expressed in terms of a given base (ΨI) in H0(X,L), where I = 1, ..., N. Locally
this means that Ψ may be written as a Slater determinant:

(1.3) Ψ(Z1, ..., ZN) = det(ΨI(ZJ ))

which hence transforms as a holomorphic section of the line bundle L⊠N over XN .

1.3.1. Introducing metrics. Usually, one equips L with an Hermitian metric h0.
Taking the point-wise norm ‖Ψ(Z)‖ with respect to h0 of a section Ψ of L hence
gives a scalar function on X. Let us briefly recall the notion of curvature in this
context. The (Chern) curvature form Θ of h0 is the globally well-defined two-form
on X locally defined as follows: if s is a local trivializing holomorphic section of L,
then

(1.4) Θ := −∂∂̄ log(‖s‖
2
)

Physically, the curvature form Θ represents a background magnetic two-form of
bidegree (1, 1) to which the fermions are minimally coupled. More precisely, the
holomorphic structure on L together with the Hermitian metric h0 determines a
unique unitary connection A on L, i.e. a U(1)−gauge potential such that its field
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strength FA = Θ is of type (1, 1) [18, 23]. The metric h0 is positively curved
precisely when the real two-form

(1.5) ω :=
i

2π
Θ

is positive definite, i.e. when it defines a Kähler metric on X. The line bundle L is
ample precisely when it admits some positively curved metric. The normalization
above ensures that the cohomology class [ω], which represents the normalized first
Chern class c1(L) is an integer class, i.e. it lies in the integer lattice H2(X,Z) of
H2(X,R).

The Hermitian metic h0 natually induces metrics on all tensor powers of L etc.
Coming back to the Slater determinant above, the point-wise squared norm with
respect to the metric h0

‖Ψ(Z1, ..., ZN )‖2

is, from a physical point of view, proportional to the probability of finding (or
creating) particles at the point Z1, ...ZN on X in the presense of the corresponding
background magnetic field. To normalize it we also need to pick an integration
measure µ0 on X so that

‖Ψ(Z1, ..., ZN )‖2 /ZN , ZN :=

ˆ

XN

‖Ψ‖2 µ⊗N
0

is a probability density on XN . Since, ΛNH0(X,L) is one-dimensional the probabil-
ity density above is in fact independent of the choice of base (ΨI) in H0(X,L), but,
of course, it does depend on the metric h0 on L (i.e. on the background magnetic
field) and also on the integration measure µ0 on X.

1.4. The canonical background free ensemble . The main point of the present
note is the simple observation that in the particular case when L is the canonical
line bundle KX there is no need to specify any metric on KX if one defines a
probability measure on XN by

µ(N) = (Ψ1 ∧ Ψ̄1 ∧ · · · ∧ΨN ∧ Ψ̄N)1/k/ZN .

Indeed, it follows from the very definition of KX that (Ψ1∧ Ψ̄1∧· · ·∧ΨN ∧ Ψ̄N )1/k

transforms as a (degenerate) volume form on XN and hence after dividing by

ZN =

ˆ

XN

(Ψ1∧Ψ̄1∧· · ·∧ΨN∧Ψ̄N )1/k =

ˆ

XN

| det(ΨI(ZJ))|
2/kdV (Z1)∧· · ·∧dV (ZN )

one obtains a probability measure µ(N) on XNk which is canonically associated to
(X,K⊗k

X ), i.e. independent of the base (ΨI) in H0(X,K⊗k
X ). Note that when n = 1,

i.e. X is a Riemann surface of genus at least two the space H0(X,K⊗k
X ) arises as

the space of spin 2k particles [53, 18] .

1.5. General β−ensembles. Before turning to the investigation of the thermo-
dynamical convergence towards the Kähler-Einstein volume form µKE it should be
pointed out that integer powers of Slater determinants have been used before to
model the fractional Quantum Hall effect [39]. More generally we note that the pre-
vious construction may be generalized by introducing general k−dependent powers
βk in the Slater determinant. To see this we come back to the general setting of an
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ample line bundle L → X and now fix a background metric h0 on L and a volume
form µ0 on X. To this geometric data we associate the probability measure

µ(Nk) = ‖Ψ‖
βk µ⊗N

0 /ZN .

on XN for a fixed choice of parameters βk. The case of L = KX considered above
is obtained by setting βk = 2/k, fixing any metric h0 on KX and then letting
µ0 = 1/h0, which defines a volume form on X. Then it is easy to see that all factors
of h0 cancel out leading to the previous canonical construction above. Finally, note
that if one defines the Hamiltonian

H(N) := − log ‖Ψ‖

then µ(Nk) may be represented as a Boltzmann-Gibbs ensemble

(1.6) µ(Nk) = e−βkH
(N)

µ⊗N
0 /ZN ,

of a classical system in thermal equilibrium with an external heat bath of tem-
perature Tk = 1/βk. From this point of view ZN is the partition function of the
system. It depends of the choice of bases (ΨI) in H0(X,L⊗k) (but µ(Nk) does not,
as explained above). For example, the case when βk = 1, 2 or 4 appears in the
study of the Random Matrix ensembles associated to the classical groups (see [36]
and references therein).

It is worth emphasizing that the Hamiltonian H(N) above is not a sum of pair
interactions (even to the leading order) when n > 1. This is closely related to the
fact that the mean field equations obtained in section 2.2 are fully non-linear and
it makes the analysis of the thermodynamical limit rather challenging.

2. Convergence in the thermodynamical limit

It will be illuminating to consider the general setting of the previous setting with

βk = β/k

for a fixed parameter β (where β = 2 appears in the canonical background free
case 1.4). As will be clear this is, in a certain sense, a mean field limit. As explain
above we hence fix the geometric data (h0, µ0) consisting of Hermitian metric h0

on L → X and a volume form µ0 on X. Given this data we furthermore fix a base
(ΨI) in H0(X,L⊗k), for any k, which is orthonormal with respect to Hilbert space
structure on H0(X,L⊗k) induced by (h0, µ0) :

〈f, g〉X :=

ˆ

X

〈f, g〉µ0,

where the point-wise Hermitian product in the integrand is taken with respect h0.
In particular, the corresponding partition function is then (a power of) the induced
Lβ/k norm of the corresponding Slater determinant Ψ (formula 1.3):

ZN :=

ˆ

XN

‖Ψ‖
β/k

µ⊗N
0

To prove the convergence we will use the techniques of the theory of large deviations.
In a nutshell this is a formalism which allows one to give a meaning to the statement
that a given sequence of probability measure µ(N)on XN is “exponentially concen-
trated on a deterministic macroscopic measure µ∗ with a rate functional I(µ)” (see
[52] for an introduction to the theory of large deviations, due to Cramér, Varadhan
and others, emphasizing the links to statistical mechanics - relations to functional
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integrals are emphasized in [30]) . Heuristically, the idea is to think of the large
N−limit of the N−particle space XN of “microstates” as being approximated by
a space of “macrostates”, which is the space M1(X) of all probability measures on
X :

XN ∼ M1(X),

as N → ∞. The exponential concentration referred to above may then be heuristi-
cally written as

(2.1) µ(N) := ρ(N)(Z1, ..., ZN )dV (Z1) ∧ · · · dV (ZN ) ∼ e−NF (µ)Dµ,

where Dµ denotes a (formal) probability measure on the infinite dimensional space
M1(X) (more generally, the exponent N could be replaced by a rate aN which is
usually a power of N). Exponential concentration around µ∗ appears when F (µ) ≥ 0
with µ∗ the unique minimizer of F. Mathematically, the “change of variables” from
XN to M1(X) is made precise by using the embedding

jN : XN → M1(X), jN (x, ..., xN ) :=
1

N

∑

i

δxi

and then pushing forward µ(N) to M1(X) with the map jN , giving a probability
measure (jN )∗µ

(N) on M1(X) (i.e. the law of the random variable 1.2). The precise
meaning of 2.1, in the sense of large deviations, is then that

lim
δ→0

lim
N→∞

1

N
log

ˆ

Bδ(µ)

(jN )∗µ
(N) = −I(µ),

integrating over a small ball Bδ(µ) of radius δ centered at µ ∈ M1(X) (using any
metric on M1(X) which is compatible with the weak topology).

The idea is now to establish the asymptotics 2.1 for a certain free energy func-
tional F (µ) which is minimized precisely on a measure µ∗ which equals the Kähler-
Einstein measure µKE in the canonical case introduced in section 1.4. In fact, in
this latter case the functional F (µ) will turn out to be naturally identified with
Mabuchi’s K-energy, which plays an important role in Kähler geometry (as ex-
plained in section 2.3)

To this end we will combine two already established asymptotics, concerning the
the case when βk = 0 and βk = 2 respectively. In the first case it is a classical result
going back to the work of Boltzmann (called Sanov’s theorem in the mathematics
literature) that the asymptotics 2.1 hold with −F (µ) equal to the relative entropy
functional S(µ):

(2.2) µ⊗N
0 ∼ eNS(µ)Dµ,

where

(2.3) S(µ) := −

ˆ

X

log(
µ

µ0
)µ(≤ 0)

if µ has a density with respect to µ0 and otherwise S(µ) = −∞. This result gives a
precise meaning to Boltzmann’s notion of entropy as proportional to the logarithmic
number (or volume) of microstates corresponding to a given macrostate.

Next, in the case when βk = 2 it was shown very recently in [10] that

(2.4) e−2H(N)(x1,...,xN)µ⊗N
0 ∼ e−kNE(µ)Dµ
8



In the present work we are interested in the intermediate asymptotic regime
where βk = β/k. Decomposing the corresponding probability measure µ(N) as

µ(N) := (e−2H(N)(x1,...,xN))β/2kµ⊗N
0

or more precisely as

µ(N) :=
[

(e−2H(N)(x1,...,xN)µ⊗N
0 )β/2k

] [

·(µ⊗N
0 )1−β/2k

]

we can, at least heuristically, combine the asymptotics 2.2 and 2.4 to get

µ(N) ∼ e−Nβ(E(µ)− 1
β
S(µ))Dµ

(in order to be mathematically rigorous this heuristic argument needs to be com-
plemented with precise estimates justifying the “interchange” of the large N and
small δ−limits)

The convergence of of the one-point correlation measures µ
(N)
1 towards the min-

imizer µ∗ of the functional

F (µ) := E(µ)−
1

β
S(µ))

can now be shown by standard arguments (given the existence and uniqueness of
µ∗ which we will deal with in section 2.2). First note that the partition function
may be asymptotically calculated as

ZN ∼

ˆ

M1(X)

Dµe−βN(E(µ)− 1
β
S(µ)),

giving

−
1

βN
logZN → inf

µ∈M1(X)
(E(µ)−

1

β
S(µ)

Next, note that upon performing an overall scaling of the original base (ΨI) we
may assume that the infimum above vanishes. Now fix a smooth function φ on X
and consider the functional

FN(u) := − log
〈

e−(φ(x1)+...+φ(xN))
〉

:= − log

ˆ

XN

e−(φ(x1)+...+φ(xN))µ(Nk)

The following basic general exact variational identity holds

(2.5)
1

βN

dFN (tφ)

dt t=0
=

ˆ

X

µ
(Nk)
1 φ

Arguing precisely as above and using the trivial asymptotics

(2.6) e−(φ(x1)+...+φ(xN)) ∼ e−N
´

X
φµ,

hence gives
1

βN
FN (tφ) → inf

µ∈M1(X)
(E(µ)−

1

β
S(µ) + t

ˆ

X

φµ)

Finally, differentiating with respect to t gives

1

βN

dFN (tφ)

dt t=0
→ 0 +

ˆ

X

µ∗φ

and hence, using 2.5, we finally get

µ
(N)
1 → µ∗

9



Next, we will show that the minimizer µ∗ can be obtained by solving a mean field
type equation which will reduce to the Kähler-Einstein equation in the canonical
case. We will start by explaining the notion of pluricomplex energy E(µ) appearing
in the asymptotics 2.4.

2.1. The pluricomplex energy E(µ). Assume now that the fixed metric h0 on L
has positive curvature, i.e. its normalized curvature form is a Kähler form that we
denote by ω(= ω0). Since, h0 is uniquely determined up to scaling by its curvature
form ω and since the probability measure µ(N) is insensitive to scaling of h0 we
may as well say that the geometric data defining the βk- ensemble is (ω0, µ0).

Now any Kähler metric which is cohomologous to ω (i.e. in the class [ω] = c1(L))
may by the ∂∂̄−lemma be written as

ωφ := ω +
i

π
∂∂̄φ

for a smooth function u. In this way the space of all Kähler metrics in c1(L) be
identified with the space of Kähler potentials

Hω(X) := {φ ∈ C∞(X) : ωφ > 0}

modulo constants (we will usually mod out by R sometimes without mentioning it
explicitly). Geometrically, the space Hω(X) may be identified with the space of all
positively curved Hermitian metrics on L and ωu with the (normalized) curvature
form of the metric

hφ := e−2φh0

on L corresponding to φ (as follows immedaitely from formula 1.4).
Thanks to Yau’s solution of the Calabi conjecture one can also associate poten-

tials to volume forms on X. Indeed, to any volume form µ on X (which we will
always assume normalized so that

´

X
µ = 1) there is a unique potential φ(:= φµ)

in Hω(X)/R such that

ωn
φ

V n!
= µ,

where V is the volume of any Kähler metric in the class c1(L). The equation involves
the n :th exterior power of ωφ and is hence a non-linear generalization of the inho-
mogeneous Laplace equation, called the inhomogeneous (complex) Monge-Ampère
equation (and the left hand side above is called the Monge-Ampère measure of φ).

The previous equation can also be given a variational formulation by noting that
there is a functional Eω (we will often omit the subscript ω) on the space Hω(X)
such that its first variation is given by

(2.7) δE(φ) := dEφ =
ωn
φ

V n!
,

where dE is the differential of E(φ) seen as a one-form on Hω(X). The functional
E is uniquely determined by the normalization E(0) = 0 (singled out by the fixed
reference Kähler metric ω). This is a well-known functional in Kähler geometry
which seems to first have been introduced by Mabuchi ( (it is denoted by −Fω in
the book [50]; similar functionals also appeared in the works of Aubin and Yau).
We will call it the Monge-Ampère action, since it physically appears as an action
generalizing the Liouville action, as explained in section 2.1.2. It is straight-forward
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to obtain an explicit formula for E(φ) by integrating along the line segment tφ for
0 ≤ t ≤ 1 and get

(2.8) Eω(φ) =
1

(n+ 1)!V

ˆ

X

φ

n
∑

i=1

(ωn−j ∧ ωj
φ),

but we will only make use of the defining property 2.7 in the following.
The functional E is (strictly) concave on Hω(X)/R (with respect to the flat

metric) [50] and hence the potential φµ may be characterized as the unique (mod
R) maximizer of the the functional

φ 7→ E(φ) − 〈φ, µ〉 ,

expressed in terms of the usual pairing

(2.9) 〈φ, µ〉 :=

ˆ

X

φµ

Finally, we can now, following [15], define the pluricomplex energy E(µ) of the
measure µ as

E(µ) := sup
φ∈Hω(X)

E(φ) − 〈φ, µ〉 = E(φµ)− 〈φµ, µ〉

The first equality in fact makes sense for any (possibly singular) measure µ in
M1(X) and one says that µ has finite energy if E(µ) < ∞.

When n = 1 one may actually take the sup defining E over all φ ∈ C∞(X) (i.e.
without imposing the constraint ωφ > 0). Then the convex functional E(µ) is, by
definition, the Legendre transform of the concave functional E(φ) on C∞(X) (with
a non-standard sign convention). It turns out that in the case n > 1 the functional
E(µ) can also be realized as a Legendre transform by extending E(φ) to another
(concave and one time differentiable) functional F∞ on C∞(X) [15, 10, 13] (which
appears in the general asymptotics 2.11 below). This fact is an important ingredient
in the variational approach to complex Monge-Ampère equations introduced in [15].

Note that the energy functional E certainly depends on the choice of fixed Kähler
metric ω. In fact, it is not hard to see that E(µ) ≥ 0 with equality precisely
if µ = ωn/V n!. Indeed, it follows from general principles (concerning Legendre
transforms) that

inf
µ∈M1(X)

E(µ) = E((δE)(0)) = E(
ωn

V n!
) = E(0)− 0 = 0

It would hence be more appropriate to call E(µ) the relative energy of µ.

2.1.1. The Riemann surface case. It may be illuminating to consider the case when
n = 1, i.e. when X is a Riemann surface. Then E(φ) coincides with the functional
sometimes referred to as the Liouville action in the physics literature [18, 43]:

E(φ) =
1

2

ˆ

X

φ(ωφ + ω)

and hence, taking the potential φµ to be normalized so that
´

φµω = 0 we get

(2.10) E(µ) = −
i

2π

ˆ

X

φµ∂∂̄φµ =
i

2π

ˆ

∂φµ ∧ ∂̄φµ

which is essentially the usual electrostatic energy of the continuous charge distri-
bution µ in the neutralizing background charge −ω. Equivalently, if we define the

11



Green function g(x, y) for the scalar Laplacian ∆ = ω−1 i
π∂∂̄ on X by the properties

g(x, y) = g(y, x) and

i

π
∂x∂̄xg(x, y) = δx(y)− ω(y),

ˆ

X

g(x, y)ω(y) = 0

then we have φµ(x) =
´

X g(x, y)(µ)(y) and hence

E(µ) = −
1

2

ˆ

X×X

g(x, y)µ(x)⊗ µ(y).

2.1.2. The asymptotics 2.4 for βk = 2 and effective bosonization. Let us briefly
explain the idea behind the large deviation asymptotics 2.4 proved in [10]. The
starting point is the basic observation that when βk = 2 the one point correlation

function ρ
(N)
1 can be represented as a density of states function:

ρ
(N)
1 (Z) =

N
∑

I=1

‖ΨI(Z)‖2

(called the Bergman kernel at the diagonal in the mathematics literature). By a
fundamental result of Bouche and Tian the leading asymptotics of the corresponding
one point correlation measure are given by the Monge-Ampère measure:

µ
(N)
1 → ωn/V n!

(see [58] for a survey of Bergman kernel asymptotics and [23] for a physical point of
view) Now using these asymptotics and perturbing by potentials φ in Hω(X) one
can reverse the arguments used in the end of section 2 and get

1

N
FN(φ) → E(φ), φ ∈ Hω(X)

using the variational property of E . Then an argument involving Legendre trans-
forms gives the large deviation asymptotics 2.4, using that E(µ) can be realized as
an (infinite dimensional) Legendre transform of E(φ). More precisely, the argument
uses the convergence of (perturbed) free energies

(2.11)
1

N
FN(φ) → F∞(φ), φ ∈ C∞(X)

for any smooth function φ (not necesserly with ωφ ≥ 0) for a certain functional F∞

on C∞(X), whose Legendre transform is E(µ). The key point, as shown in [13], is
that F∞ is one time differentiable on C∞(X), which hence establishes the absence
of a phase transition with respect to perturbations of φ for the βk = 2−ensemble.

Incidentally, the large deviation asymptotics 2.4 can, from a physical point of
view, be interpreted as an effective bosonization of a fermionic quantum field theory
on X (but is should be pointed out that this is only an interpretation: no bosoniza-
tion is actually used in the derivation 2.4 as explained above). In other words, the
collective theory of N fermions is effectively described by a bosonic field theory, as
N → ∞. To see this first recall the representation of the Slater determinant 1.3 as
a functional integral over Grassman fields

(2.12) ‖Ψ(x1, ..., xN )‖2 = CN

ˆ

DΨDΨ̄e−Sferm(Ψ,Ψ̄) ‖Ψ(x1)‖
2 · · · ‖Ψ(x1)‖

2 ,
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integrating of over all complex spinors, i.e. smooth sections of the exterior algebra
Λ0,∗(T

∗

X)⊗ L⊗k and where Sferm(Ψ, Ψ̄) is the fermionic action

Sferm(Ψ, Ψ̄) =

ˆ

X

〈DLΨ,Ψ〉µ0,

expressed in terms of the Dirac operator DL on Λ0,∗(T
∗

X)⊗ L⊗k induced by the

complex structure J, i.e. DL = ∂+ ∂
∗

(see [18] for the Riemann surface case). The

integer N is the dimension of the space of zero-modes of DL on Λ0,∗(T
∗

X)⊗ L⊗k

which coincides with H0(X,L⊗k) due to Kodaira vanishing in positive degrees
(when k >> 1). Moreover, the constant CN in 2.12 can be expressed in terms of
determinants of (0, q)−Laplacians coupled to L⊗k, i.e. as the Ray-Singer analytic
torsion of the complex Λ0,∗(T

∗

X)⊗ L⊗k [9].
Next, we express the right hand side in the asymptotics 2.4 as a bosonic path

integral with action Sbos(φ) = −E(φ) and with insertions of e−φ(x) :

(2.13) ekNE(µ) ∼

(

ˆ

Hω(X)

DφekNEω(φ)e−kφ(x1) · · · e−kφ(xN )

)

,

using 2.6 and that the integral may, to the leading order, by estimated by it largest
value, which by definition is precisely the exponential of kNE(µ).

Combining 2.12 and 2.13 the asymptotics 2.4 can now be interpreted by the

effective bosonization rule that insertion of ‖Ψ(x)‖
2

in the fermionic path integral
is effectively equivalent to insertion of e−kφ(x) in the bosonic path integral, up
to inversion of the bosonic functional integral. This asymptotic fermion-boson
equivalence is strongly reminiscent of the exact equivalence established in [18, 53,
55] when n = 1, i.e. when X is a Riemann surface. However, there are several
differences that should be pointed out:

• When the genus of X is at least one further “solotonic” terms have to be
added to the action −E(kφ). These terms are lower-order in k and hence
do not contribute to the asymptotic equivalence (this is closely related to
the fact that φ is assumed to be circle valued in 2.4, i.e. its values are only
defined mod 2π)

• The insertion of ‖Ψ(x)‖
2

is equivalent to insertion of eikφ(x) and there
is no inversion. In fact, in the case when n = 1 we could as well have
inserted eiφ(x) in the functional integral 2.13 and applied a stationary phase
approximation. This would have given the asymptotics e−kNE(µ) directly
and there would have been no need to invert the final expression. This is
a consequence of analytic continuation. Indeed, Etω(tu) is homogeneous of
degree n+ 1 in t and hence applying the previous argument with e−kφ(x1)

replaced by ektφ(x1) and ω replaced by tω gives the asymptotics

et
2kNE(µ) ∼

ˆ

Hω(X)

DφekNEtω(φ)e−iktφ(x1) · · · e−iktφ(xN ),

Finally, setting t = −i (assuming that analytic continuation is valid) gives

(2.14) e−kNE(µ) ∼

ˆ

Hω(X)

DφekNE−iω(φ)eikφ(x1) · · · eikφ(xN ),

where

E−iω(φ) =
1

2

ˆ

X

φ(
i

π
∂∂̄φ) +

ˆ

X

φ(−i)ω),
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Note that the first term above is real and equal to −
´

|∇φ|2ω, while the
second term is imaginary. This decomposition hence corresponds (up to
real-valued normalization factors) to the decomposition of the action as
Sbos = S1 + S2 in [18] (formula 3.9).

• One integrates over all φ ∈ C∞(X) and not only the subset Hω(X), i.e.
without the constraint ωφ > 0. In fact, when n = 1 we could as well have
integrated over all φ ∈ C∞(X) in 2.13. The reason is that, when n = 1, the
sup defining E(µ) may be taken over all of C∞(X) without changing the
maximal value. Basically, this follows from the fact that a stationary point
anyway satisfies ωu = µ > 0.

Note that combining the comments in the last two points above the bosonic func-
tional integral with t = −i becomes, in the limit when we replace the points
(x1, ..xN ) with a measure µ,

ˆ

Dφe−k2‖∇φ‖2ωeik〈µ−ω,φ〉

which can be interpreted as an infinite dimensional Fourier transform of the Gauss-
ian free field. Recalling that µ − ω = i

π∂∂̄φµ the asymptotics 2.14 then amounts
to the basic fact that Fourier transforms preserve Gaussian functions (compare
formula 2.10).

As for the case when n > 1 it seems rather intruging that insertion of eikφ(x1),
as discussed in the second point above, gives a boson-fermion equivalence (at least
effectively) precisely when n = 1 mod 4 (so that (−i)n+1 = −1) and hence the next
case after n = 1 appears when n = 5, i.e. when the real dimension of X is ten.
In conclusion, it would be interesting to better understand the differences between
the case when n = 1 and higher dimensions.

2.2. The minimizer µ∗ of the free energy functional F (µ) and mean field
equations. Recall that the free energy functional F (µ) (for a fixed parameter
β > 0) on the spaceM1(X) of probability measure son X is defined by

F (µ) := E(µ)−
1

β
S(µ)

where E is the energy functional define in the previous section and S(µ) is the
relative entropy 2.3. It follows from basic duality arguments that F is strictly
convex on M1(X) (or rather on the subset where F is finite) and hence admits at
most one minimizer. Next we note that µ is a critical point for F (µ) on M1(X) if
and only if

−φµ +
1

β
log(µ/µ0)− Zµ = 0,

where φµ is the potential of µ and Zµ is a normalizing constant. Indeed, using
the defining properties of E and E respectively one obtains (by basic Legendre
transform considerations) that

δE(µ) = −φµ

as a one-form on the infinite dimensional submanifold M1(X) of the vector space
M(X) of all signed measures. Moreover, a simple calculation gives

δS(µ) = − log(µ/µ0) + Zµ,
14



where Zµ is a normalizing constant (coming from the constraint
´

X
µ = 1). Com-

bining these two variational formulas gives

(2.15) δF (µ) = − log(µ/µ0)− φµ

up to a normalizing constant. In other words, µ is a critical point for for F (µ)
on M1(X) if and only if its potential φ solves the following non-linear partial
differential equation:

(2.16)
ωn
φ

V n!
=

eβφµ0

Zφ

As follows from a simple modification of the proof of the Aubin-Yau theorem there
is a unique φ ∈ Hω(X)/R solving this equation (crucially using that β > 0) which
by strict convexity is hence the unique maximizer of the free energy functional
F. It is sometimes convenient to fix the normalization of the solution φ above by
imposing that

ˆ

X

eβφµ0 = 1,

i.e. φ ∈ Hω(X) is the unique solution to

(2.17)
ωn
φ

V n!
= eβφµ0

It should be pointed out that when n = 1 the previous equation is often called the
mean field equation [17, 37] and accordingly we will call it the mean field Monge-
Ampère equation for a general dimension n.

Finally, coming back to the canonical case when β = 2 and L = KX we take, as
explained in section 1.4 the geometric data (ω, µ0) such that ω is the curvature form
of the metric on KX defined by the inverse 1/µ0. This means that µ0 = e2fωωn/V n!,
where fω is the Ricci potential, i.e.

i

π
∂∂̄fω = ω + Ricω,

´

X
e2fωωn/V n! = 1

Then the corresponding Monge-Ampère mean field equation reads

ωn
φ = e2φe2fωωn

Hence, the solution φ is such that the Kähler metric ωφ satisfies

Ricωφ = −ωφ,

i.e. ωφ is a Kähler-Einstein metric with negative Ricci curvature. Coming back
to the convergence of the one-correlation measures in the thermodynamical limit,
considered in section 2, this means that the limiting measure µ∗ indeed equals
µKE := ωn

KE/V n!.

2.3. Duality and relation to the Yau-Tian-Donaldson program and bal-
anced metrics. In this section we will briefly point out some relations to the influ-
ential Yau-Tian-Donaldson program in Kähler geometry [25, 26, 50, 44]. In a nut-
shell the idea of this program is to approximate Kähler-Einstein metrics (and more
general extremal metrics), by a limit of finite dimensional objects of an algebro-
geometrical nature. There are various versions of this program, but the one which
is most relevant for the present paper is Donaldson’s notion of canonically balanced
metrics introduced in [27], which is particularly adapted to Kähler-Einstein metrics
(as opposed to general extremal metrics).
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To highlight the similarities let us first formulate a more general “β−analogue”
of Donaldson’s setting, starting with an ample line bundle L → X. The main point
is to replace the infinite dimensional space Hω(X) of Kähler potentials in c1(L)
with its quantization at level k. This latter space, denoted by Hk, is the space of all
Hermitian metrics on the finite dimensional vector space H0(X,L⊗k). Upon fixing
a reference metric Hk is hence isomorphic to the symmetric space GL(Nk)/U(Nk)
of all Hermitian Nk × Nk- matrices. There is a natural injection defined by the
Fubini-Study map FSk(H) at level k :

(2.18) FSk : Hk → Hω(X), FSk(H)(x) :=
1

k
log

N
∑

I=1

‖ΨI(x)‖
2
,

expressed in terms of the point-wise norms with respect to the fixed metric h⊗k
0

on L⊗k of a base (ΨI) in H0(X ;L⊗k) which is orthonormal with respect to H.
Moreover, for any given β we may define a map in the reversed direction that we
will call Hilbk,β :

Hilbk,β : Hω(X) → Hk

defined as follows: Hilbk,β(φ) is the Hermitian product (or equivalently, Hilbert
norm) on H0(X,L⊗k) defined by

〈f, g〉Hilbk,β (φ)
:=

ˆ

X

〈f, g〉 e−kφeβφµ0

(note that 〈·, ·〉 e−kφ is the Hermitian metric on L⊗k naturally associated to φ ∈
Hω(X) and the remaining factor eβφµ0 should be thought of as a specific choice
of integration element depending on φ). An element Hk in Hk will be said to be
β−balanced at level k with respect to (ω, µ0) if is is a fixed point under the composed
map

(2.19) Tk,β := Hilbk,β(φ) ◦ FSk : Hk → Hk.

on Hk. Equivalently, this means that Hk is a critical point of the following functional
Gk on Hk :

Gk(H) := −
1

kN
log det(H)−

1

β
log

ˆ

X

eβFSk(H)µ0,

(after normalization). Repeating the arguments in the proof of Theorem 7.1 in [15]
concerning the canonical case when L = KX ((the case referred to as S+ in [15])
essentially word for word, one obtains the existence and uniqueness of a Hk ∈ Hk

which is β−balanced at level k with respect to (ω, µ0) and such that

FSk(H) → uβ ,

in Hω(X) when k → ∞ (or equivalently, N → ∞) where uβ is the unique solution
of the Monge-Ampère mean field equation 2.17, assuming β > 0. As explained in
[15] the main point of the proof is to show that any limit point in Hω(X)/R of the
sequence FSk(H) is a maximizer of the following functional on Hω(X) :

G(φ) := E(φ) −
1

β
log

ˆ

X

eβφµ0,

whose critical points are precisely the solutions of the Monge-Ampère mean field
equation 2.16. Note that the functional G is invariant under the natural action by
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R, φ → φ+ c and hence maximizing the functional

(2.20) E(φ) −
1

β

ˆ

X

eβφµ0

picks out the maximizers of G which satisfies the normalization
ˆ

X

eβφµ0 = 1

In the Riemann surface case the functional 2.20 with the exponential term is also
sometimes referred to as the Liouville action (it appears for example in Polyakov’s
functional integral quantization of the bosonic string, further developed in [43])

To see the relation to the β−ensembles introduced in section 1.5 and their ther-
modynamical limit one should keep in mind the basic linear duality between func-
tions φ and measures µ defined by the basic pairing 2.9 In turn, this pairing induces,
using the Legendre transform a non-linear duality between convex functionals of φ
on one hand and convex functionals of µ, on the other.

The roles of the spaces Hω(X) and Hk(X) are now played by the space M1(X)
and M(XNk), respectively, where MNk

(X) denotes the space of all symmetric
probability measures on the product XN (i.e. all Nk−particle random point pro-
cesses on X). The analogue of the Fubini-Study map 2.18 is the map

M(XNk) → M1(X), µN 7→ (µN )1 :=

〈

1

N

∑

i

δxi

〉

,

sending a random point process to its one-point correlation measure. Finally, the
role of a β−balanced metric is now played by the measure µ(Nk) ∈ M(XNk) defining
the β−ensemble with Nk particles, which was expressed as a Boltzmann-Gibbs
ensemble with Hamiltonian H(Nk) in formula 1.6. The point is that µ(Nk) can also
be defined by a variational principle. Indeed, by the N−particle Gibbs principle
for canonical ensembles µ(Nk) is the unique minimizer of the N−particle mean free

energy functional on M(XNk) :

F (N)(µN ) =
1

N

ˆ

XN

µNH(N) −
1

N
S(µN , µ⊗N

0 )

i.e. the difference between mean energy and mean entropy. There is also an ana-
logue of the definition of a balanced metric as a fixed point of the map Tk,β above.
Indeed, it is well-known that any Gibbs-Boltzmann measure can be uniquely deter-
mined as a stationary state for a stochastic process µt on XN defined by suitable
Glauber (or Langevin) dynamics, but we will not develop this point of view here.

Interestingly, performing a Legendre transform of each of the two convex func-
tionals on M1(X) summing up to the free energy functional F (µ) (i.e. the pluri-
complex energy E(µ) and minus entropy − 1

βS(µ)) yields a functional on Hω(X)

which is nothing but the functional G above:

F = E + (−
1

β
S), G = E∗ + (−

1

β
S)∗

It should be pointed out that in the canonical case (where the critical points of the
functionals are Kähler-Einstein metrics) the two functionals F and G have already
appeared in Kähler geometry from a different point of view. For example, the
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limiting free energy functional F (µ) on M1(X) may be identified with Mabuchi’s
K−energy ν of a Kähler metric in c1(KX) :

(2.21) F (ωn
φ/V n!) = ν(ωφ)

The functional ν was first introduced by Mabuchi as the functional on Hω(X)
whose gradient with respect to the Mabuchi-Semmes-Donaldson Riemannian metric
on Hω(X) is the scalar curvature minus its average [50, 44]. But this is easily
seen to be equivalent to the variational property 2.15 of F and hence F and ν
coincide under the identification above. The explicit formula for ν obtained from
the identification 2.21 is in fact equivalent to an explicit formula for ν of Tian and
Chen [50]. Moreover, the functional −G coincides with the Ding-Tian functional
[50].

Using Legendre transforms as above one arrives at new proofs and generalizations
of various useful results in Kähler geometry. For example, it follows from general
principles that

inf
µ∈M1(X)

F (µ) = inf
φ∈Hω(X)

(−G)(φ)

which in the “canonical case” was first shown by Bando-Mabuchi [6]. These relations
and extensions to negative β will be further investigated elsewhere. In the latter
case the functional F (µ) may not be bounded from below when β is too large, which
in the Kähler-Einstein case is closely related to lack of K−stability.

Finally, it seems worth pointing out that in the case when β = 0 the notion of
balanced metrics still makes sense and was studied by Donaldson in [27] with a
particular emphasize on the case when X is a Calabi-Yau form. Then µ may be

canonically chosen as in
2

Ω ∧ Ω̄/
´

in
2

Ω ∧ Ω̄ where Ω is non-vanishing holomorphic
n−form on X and the curvature forms of the balanced metrics at level k then
converge to the unique Ricci flat metric in [ω], whose existence was established in
Yau’s proof of the Calabi conjecture. Relation between these balanced metrics on
Calabi-Yau manifolds and black holes were considered in [24]. However, in the case
when β = 0 the β−ensembles introduced in the present work appear to be less
interesting: they are pure Poisson processes without any connections to fermions.
The case when β is negative is briefly discussed below in connection to Kähler-
Einstein metrics with positive Ricci curvature.

2.4. Conclusion and discussion. To a given a compact manifold with a fixed
integrable complex structure J we have associated a canonical N−particle free
fermion gas whose one-particle correlation measures converge in the thermody-
namical (large N) limit to the volume form of the Kähler-Einstein metric ωKE

associated to (X, J). More precisely, it was assumed that the canonical line bundle
KX be positive (i.e. ample), which corresponds to ωKE having negative Ricci cur-
vature and the one-particle quantum state space of the fermion gas was taken as
the Nk−dimensional space H0(X,K⊗k

X ) of global holomorphic sections on X with

values in K⊗k
X . The argument in fact gave precise exponentially small fluctuations

around the Kähler-Einstein volume forms with a rate function F naturally identi-
fied with Mabuchi’s K−energy (which plays an important rule in Kähler geometry).
The convergence in the thermodynamical limit was obtained by introducing an aux-
iliary background Kähler form ω in the first Chern class c1(KX) (or equivalently a
metric on KX) also determining a volume form on X. This lead to a decomposition
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of the rate functional F as

F (µ) = E(µ)− S(µ),

(with both terms depending on the choice of ω). In terms of the statistical mechanics
of a classical canonical Boltzmann-Gibbs ensemble E and S appeared as the limiting
mean energy and mean entropy, respectively. Minimizing F then gave an equation
of mean field type whose unique solution is given by the Kähler-Einstein volume
form. An interpretation of the energy E in terms of effective bosonization was also
given.

Heuristically, it seems that one could interpret the thermodynamical limit above
as saying that the Kähler-Einstein metric emerges from a fermionic maximum en-
tropy principle: the particles try to maximize their entropy (i.e. volume in con-
figuration space) under the constraint that they behave as fermions and hence,
according to Pauli’s exclusion principle, cannot occupy the same space leading to
an effective repulsion.

It would be interesting to understand the physical relevance of these results.
For example, it would be useful to understand the role of the background complex
structure J. One could try to work immediately on the universal space X over the
moduli space J of all complex structures J on X [29], i.e. X is a holomorphic
fibration over J such that the fiber over [J ] is simply (X, J). Then specifying a
particular complex structure J is somewhat similar to the choice of a conformal
gauge in Hawking’s functional integral for Euclidean quantum gravity (see section
5 in [32] and also the very recent paper [33] of t’ Hooft ). One could ask (rather
speculatively) whether the integral over the configuration spaces XN of increasing
dimension can be seen as a canonical regularization of a functional integral describ-
ing quantum fluctuations around Kähler-Einstein metrics. This could be compared
with approach of CDT (causal dynamical triangulations); see [3] and references
therein, but in the present case one only consider fluctuating Riemannian metrics
which are Kähler with respect to some complex structure.

The precise mathematical details of the thermodynamical convergence will be
investigated elsewhere, as well as the case when KX is negative (so that any Kähler-
Einstein metric must have positive Ricci curvature). In the latter case there are
well-known obstructions to the existence of Kähler-Einstein metrics and the Yau-
Tian-Donaldson program aims at showing that all obstruction may be formulated
in terms of algebro-geometric stability (such as K−stability). From the point of
view of the present paper this is related to the fact that the natural candidate for
the N−particle ensemble in the case when KX is negative may be formally written
as

µ(N) = (Ψ1(x1) ∧ Ψ̄1(x1) ∧ · · · ∧ΨN(xN ) ∧ Ψ̄N (xN ))−1/k/ZN

where now (ΨI) is a base in H0(X, (K−1
X )⊗k). However, because of the negative

exponent above this singular volume form on XN is usually non-integrable, due to
singularities appearing when to points merge. But fixing an auxiliary metric on
K−1

X one can look at the β−ensemble

µ
(N)
β =

∥

∥Ψ1 ∧ Ψ̄1 ∧ · · · ∧ΨN ∧ Ψ̄N

∥

∥

−kγ/2
/ZN

(with β = −γ negative) which is integrable for γ sufficiently small. In fact, it can
be shown that the measure is integrable as long as γ < αX , where αX is Tian’s
α−invariant [50] (also called the log canonical threshold in algebraic geometry ).
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As shown by Tian a sufficient (but not necessary) criterion for the existence of a
Kähler-Einstein metric with positive Ricci curvature is that

αX > n/(n+ 1)

(and similarly for the more useful equivariant versions of αX). In the case of com-
plex surface (i.e. n = 2) this leads to a complete classification of Fano manifolds
admitting a Kähler-Einstein metric [48, 49].

If Tian’s condition above holds it seems natural to expect the one-point corre-

lation measure of µ
(N)
β to converge to the corresponding Kähler-Einstein volume

form when first N → ∞ and then β → −2 (at least when there are no holomorphic
vector fields on X, so that the Kähler-Einstein metric is unique [6]). The simplest
case appears when X is the Riemann sphere. Then the corresponding ensemble
is explicitly given by a one component plasma (or equivalently a point vortex sys-
tem) studied by Kiessling in [38] where a first order phase transition appears at
β = −2. Kiessling also considered generalizations in other directions than the one
explored here, namely to the conformal geometry of higher dimensional spheres
where the Hamiltonian, where the Hamiltonian H(N) in is a sum of logarithmic
pair interaction. As a consequence the corresponding mean field equations are
quasi-linear (with the non-linearity coming from the exponential term), as opposed
to the present setting where the fully non-linear Monge-Ampère operator appears.

Finally, it would also be interesting to detail the Glauber (Langevin) stochastic
dynamics alluded to in the previous section and investigate a suitable “hydrody-
namical” scaling limit (see for example the recent paper [22] for relations between
Langevin dynamics and field theories with holomorphic factorization and supersym-
metry). This should lead to a deterministic heat-equation type flow on the space of
all (smooth) probability measures M1(X), converging towards the Kähler-Einstein
volume form. In fact, a “dual” (in the sense of the previous section) scaling limit of
Donaldson’s iteration of the map Tk,β 2.19 was shown to converge to the Kähler-
Ricci flow in [11].
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