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We consider crossovers with respect to the weak convergence theorems from a discrete-time quan-
tum walk (DTQW). We show that a continuous-time quantum walk (CTQW) and discrete- and
continuous-time random walks can be expressed as DTQWs in some limit. At first we generalize
our previous study [Phys. Rev. A 81, 062129 (2010)] on the DTQW with position measurements.
We show that the position measurements per each step with probability p ∼ 1/nβ can be evaluated,
where n is the final time and 0 < β < 1. We also give a corresponding continuous-time case. As a
consequence, crossovers from the diffusive spreading (random walk) to the ballistic spreading (quan-
tum walk) can be seen as the parameter β shifts from 0 to 1 in both discrete- and continuous-time
cases of the weak convergence theorems. Secondly, we introduce a new class of the DTQW, in which
the absolute value of the diagonal parts of the quantum coin is proportional to a power of the in-
verse of the final time n. This is called a final-time-dependent DTQW (FTD-DTQW). The CTQW
is obtained in a limit of the FTD-DTQW. We also obtain the weak convergence theorem for the
FTD-DTQW which shows a variety of spreading properties. Finally, we consider the FTD-DTQW
with periodic position measurements. This weak convergence theorem gives a phase diagram which
maps sufficiently long-time behaviors of the discrete- and continuous-time quantum and random
walks.

PACS numbers: 02.50.Ey, 02.50.Ga, 03.65.Ca, 03.65.Yz

I. INTRODUCTION

A quantum walk (QW) is a quantum analogue of the random walk (RW) [1–3]. As is the RW has important roles
in various fields, it has been shown that the QW also plays important roles in the quantum world, for example,
constructing quantum speed-up algorithm [4] and expressing the energy transfer on the chromatographic network in
the photosynthetic system [5]. It is shown that approximations of a discrete-time quantum walk (DTQW) give the
Dirac equation or a continuous-time quantum walk (CTQW), i.e., the discretized Schrödinger equation [6–9]. The
behaviors of the RW and the corresponding QW are quite different. One of the effective tools to show this difference is
the weak convergence theorem [10, 11]. For simplicity, we restrict the quantum and random walks on the infinite one-

dimensional lattice Z throughout this paper. Let Z
(D)
n and Z

(C)
t be a symmetric discrete-time random walk (DTRW)

at time n and a continuous-time random walk (CTRW) at time t, respectively. Then the diffusive spreadings follow
from the central limit theorems: as n, t → ∞,

Z
(D)
n√
n

⇒ N(0, 1),
Z

(C)
t√
t

⇒ N(0, 1), (1)

where “⇒” means weak convergence and N(m,σ2) is the normal distribution with mean m and variance σ2. On the

other hand, let X
(D)
n and X

(C)
t be a symmetric DTQW at time n whose quantum coin is a|L〉〈L|+b|R〉〈L|+c|L〉〈R|+

d|R〉〈R| ∈ U(2) with abcd 6= 0 and a CTQW at time t, respectively, where U(d) is the set of d-dimensional unitary
matrices. Here uL ≡ 〈L|† = |L〉 ≡ T [1, 0] and uR ≡ 〈R|† = |R〉 ≡ T [0, 1] throughout this paper, where A† means the
conjugate and transpose of A and T is the matrix transpose. Then as shown in Refs. [10–12], the weak convergence
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theorems give ballistic spreadings of the QWs: as n, t → ∞,

X
(D)
n

n
⇒ K(|a|), X

(C)
t

t
⇒ Z(γ), (2)

where the explicit expressions for the densities K(|a|) and Z(γ) are given by

ρK(x; a) =

√
1− |a|2

π(1 − x2)
√

|a|2 − x2
χ(−|a|,|a|)(x), (3)

ρZ(x; γ) =
χ(−|γ|,|γ|)(x)

π
√
|γ|2 − x2

, (4)

respectively. Here, χΩ(x) is the indicator function of the region Ω of x. The additional degree of freedom of the
DTQW, i.e., the coin state, is one of the important factors for the difference between discrete- and continuous-time
QWs. The power of the time variable in the weak convergence for the QW doubles RW’s one. As is seen in Refs. [13–
15] for example, it is shown that random or periodic measurements of a DTQW induces a sudden transition from
the quantum to the random walk. In our previous study [16], we introduced a toy model as an approximation of the
DTQW with periodic position measurements. We showed that when the number of position measurements in the
walk is given by a power of the final time, a gradual crossover from the DTQW to the DTRW with respect to the
weak convergence. In the DTQW with position measurements, we repeat the following procedure by the final time:
we only measure the position state of the DTQW remaining the coin state at the decided time and restart the DTQW
from the measured position by the next measurement. Thus the re-preparing initial coin states and spans between
the measurements are varied in general. In this paper, we give the limit theorems in a general setting in which the
periodicity of position measurements and identity of re-preparing initial coin states are omitted from Ref. [16]. Our
setting in this paper gives an estimation of QWs with position measurements keeping the coin state at a random step
with probability pn ∼ 1/nβ, where n is the final time and

f(n) ∼ g(n)
def⇐⇒ lim

n→∞

f(n)

g(n)
= 1. (5)

It is remarked that the diffusive spreading of the DTQW with both position and coin measurements at a random
step with probability p in the weak convergence theorem was shown [14]. We find a crossover from the diffusive to
the ballistic spreading through the sub-ballistic (super-diffusive) spreading when the parameter β shifts from 0 to 1
in the weak convergence theorem. We also give a similar result on the crossover of a corresponding continuous-time
case. The similarity of DTQWs and the corresponding CTQWs can be seen in various QW’s models on Z [10, 12]
and homogeneous trees [17, 18]. Furthermore, the relationship is shown on Z [8] and general graphs [19, 20]. In
this paper, we introduce a final-time-dependent DTQW (FTD-DTQW) characterized with the quantum coin whose
absolute value of diagonal parts is in inverse proportion to a power of the final time. This is a modified version of
[8, 21]. In Ref. [8], the absolute value of diagonal parts of the quantum coin is given by sufficiently small ǫ which is
independent of each time step. It is shown that an asymptotic expansion of the DTQW with respect to small ǫ gives
the corresponding CTQW. Also in Ref. [21], the absolute value of diagonal parts of the time dependent quantum coin
is in inverse proportion to a power of each time. Various spreading properties of this walk, i.e., ballistic, sub-ballistic,
diffusive, sub-diffusive, and localized, are shown. We show that a limit of the FTD-DTQW gives the corresponding
CTQW and a relation between the discrete final time n and the corresponding continuous time t: the ratio n/t is
an important value to give the weak convergence theorems associated with the spreading properties. Furthermore we
give a relation between the discrete- and continuous-time QWs with position measurements induced by the position
measurements of the FTD-DTQW.
The remainder of this paper is organized as follows. In Sect. II, we give a definition of the discrete- and continuous-

time QWs. Section III presents an extended result on Ref. [16] which showed the crossover from the DTQW to the
DTRW with periodic position measurements (PPM). It is shown that even if the measurements are not periodic, and
re-preparing initial coin states are varied, our statements in Ref. [16] can be hold in some conditions. Furthermore,
we also give a similar result on the crossover of the CTQW corresponding to the DTQW [16]. Section IV presents
an FTD-DTQW. As shown in Ref. [8], we give a CTQW corresponding to the FTD-DTQW. We see a crossover
from the ballistic to the localized spreading of the FTD-DTQW in the weak convergence theorem. To clarify the
relation between the crossovers in the discrete- and continuous-time models, we consider a hybrid type of the walks,
i.e., the FTD-DTQW with PPM in Sect. V. Our analytical method is based on the Fourier analysis [22, 23]. As
a consequence, the weak convergence theorem for the FTD-DTQW with PPM shows that the DTQW is one of the
fundamental processes which give asymptotic behavior of the corresponding CTQW and CTRW and DTRW. Section
VI is devoted to summary.
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II. DEFINITION OF DISCRETE- AND CONTINUOUS-TIME QWS ON Z

(1) DTQW: The state space of the one dimensional DTQW with a two dimensional coin is defined as a tensor
product of the position-state space HP and the coin-state space HC , where HP and HC are associated with
the orthogonal bases {|x〉 : x ∈ Z} and {|L〉, |R〉}, respectively. The one-step unitary time evolution for
the DTQW is given by U = S(1P ⊗ H), where S is a shift operator such that S|x,R〉 = |x + 1, R〉 and
S|x, L〉 = |x− 1, L〉, 1P is the identity operator on HP , and H is a quantum coin operator on HC described by

H = a|L〉〈L|+ b|L〉〈R|+ c|R〉〈L|+ d|R〉〈R| ∈ U(2) with abcd 6= 0. Put Ψ
(D)
n (x) as the coin state at time t and

position x. Then the coin state Ψ
(D)
n (x) has the following recurrence relation, that is,

Ψ(D)
n (x) = QΨ

(D)
n−1(x− 1) + PΨ

(D)
n−1(x + 1) (n ≥ 1), (6)

Ψ
(D)
0 (x) = δ0(x)ϕ0, (7)

where P = |L〉〈L|H , Q = |R〉〈R|H , δ0(x) is the Dirac delta function of x, and ϕ0 is the initial coin state:

ϕ0 = qL|L〉 + qR|R〉 with |qL|2 + |qR|2 = 1. Let X
(D)
n be the DTQW at time n. The distribution of X

(D)
n is

defined by µn(x) ≡ P (X
(D)
n = x) = ||Ψ(D)

n (x)||2. Note that by the unitarity of the time evolution U and the
normality of the initial state, the distribution sequence (µ0, µ1, µ2, . . . ) for each time is defined. It is shown that
if the initial coin state satisfies the symmetric condition [10, 11],

|qR| = |qL| = 1/
√
2, aqLbqR + aqLbqR = 0, (8)

where a is the complex conjugate to a, then X
(D)
n /n converges weakly to K(a) whose density is defined in Eq.

(3). Remark that ρK has the support (−|a|, |a|), takes infinity at the boundaries at x = ±|a| and depends only
on the norm of the (L,L) element of the quantum coin.

(2) CTQW: The state space is defined as the position state space HP only in contrast with the DTQW. Let Ψ
(C)
t (x)

be the state at time t at position x. The time evolution is given by the discretized Schrödinger equation:

− i
∂Ψ

(C)
t (x)

∂t
=

1

2

(
γΨ

(C)
t (x− 1) + γΨ

(C)
t (x+ 1)

)
(t > 0), Ψ̂

(C)
0 (x) = δ0(x), (9)

where γ is a complex number. Let X
(C)
t be the CTQW at time t. The distribution of X

(C)
t is given by

P (X
(C)
t = x) = |Ψ(C)

t (x)|2. It is shown in Ref. [12] that X
(C)
t /t converges weakly to Z(a) whose density is

defined in Eq. (4).

III. CROSSOVER FROM QW TO RW

To give the relation between RW and QW, we consider the QW with position measurements in the following. Let
(d1(s), d2(s), . . . ) be a sequence of functions of a parameter s, where in the case of discrete (resp. continuous) time,
s is a natural (resp. non-negative real) number. The value dj(s) corresponds to the span between (j − 1)-th and j-th
measurements. According to Ref. [17], we take sβ as dj(s) for all j ∈ {1, 2, . . .} with 0 ≤ β ≤ 1. In this paper, we
consider the more general setting by imposing dj(s) under the following assumption:

Assumption. For all j ∈ {1, 2, . . .},
(1) dj(s) ≤ s,

(2) dj(s) → ∞ as s → ∞,

(3) d2j(s)/{
∑M(s)

l=1 d2l (s)} → 0 as s → ∞,

where M(s) ≡ sup{m :
∑m

j=1 dj(s) ≤ s}.

From Assumption (2) and (3), both dj(s) and M(s) go to infinity as s → ∞ simultaneously. We measure the
position state of a QW at times d1(s), d1(s) + d2(s),...,d1(s) + d2(s) + · · ·+ dM(s)(s), and restart the QW by the next
measurement time after the each time measurement. Thus M(s) corresponds to the number of measurements. It
should be noted that there is no difference of the behavior between the RW with and without position measurements.
However, we will see that the both DTQW and CTQW give essential changes in the weak limit theorems by the
position measurements in the following subsections.
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A. DTQW with position measurements

Let Y
(D)
j be the DTQW at time dj(n) with a quantum coin H and with the initial coin state ϕj (j = 1, 2, . . . ). We

consider a convolution of an independent sequence {Y (D)
j }M(n)

j=1 denoted as X
(D)
n ≡ Y

(D)
1 + Y

(D)
2 + · · ·+ Y

(D)
M(n). In Ref.

[16], X
(D)
n is a convolution of the independent and identically distributed (i.i.d.) sequence because of the re-preparing

initial coin state ϕj = ϕ0 and dj(n) = nβ for all j. In a general definition of a DTQW with position measurements,
however, the position state of the DTQW alone is measured at the decided/random times. Thereafter, the DTQW is
restarted from the measured position remaining the coin state by the next measurement time. The following theorem

gives an estimation of the DTQW with the position measurements through the weak convergence of the scaled X
(D)
n

as the convolution of the independent and not identically distributed sequence of {Y (D)
j }∞j=1.

Theorem 1. Let Θ(n) =
√∑M(n)

j=1 dj(n)2 and σ2(a) = 1−
√
1− |a|2. Then we have as n → ∞,

X
(D)
n − E[X

(D)
n ]

Θ(n)
⇒ N(0, σ2(a)). (10)

Theorem 1 evaluates the DTQW with position measurements per each time with probability p ∼ 1/nβ (0 < β < 1)
in the following meaning. The range between measurements, Dj , is given by the geometric distribution with the
success probability p, that is, P (Dj = d) = (1 − p)d−1p. If we evaluate Dj as its average E[Dj ] = 1/p ∼ nβ , then
M(n) ∼ n1−β. As a consequence, Theorem 1 reduces to the result in Ref. [16]:

Corollary 1 ([16]). Assume ϕj = ϕ0 ≡ qR|R〉 + qL|L〉 satisfying the symmetric condition (8) (j ∈ {1, 2, . . .}). Let

dj(n) ∼ d(n) ≡ nβ with 0 ≤ β ≤ 1 (j ∈ {1, 2, . . .}). So we have as n → ∞,

X
(D)
n√
n1+β

⇒





N(0, 1) : β = 0,

N(0, σ2(a)) : 0 < β < 1,

K(|a|) : β = 1.

(11)

Remark that from Theorem 1, as long as both d(n) and M(n) are infinite for n → ∞, that is 0 < β < 1, X
(D)
n

converges to N(0, σ(a)2) in distribution with the power of the time variable d(n)
√
M(n). At β = 0 (resp. β = 1),

d(n) (resp. M(n)) is finite in the limit of large n. The DTQW with PPM always has the discontinuity of the above
limit theorem at β = 0 and β = 1.
As a preparation for the proof of Theorem 1, we give the useful lemma as follows. The proof is given at the end of

this section.

Lemma 1.

E
[
eiξ(Y

(D)
j

−E[Y
(D)
j

])/Θ(n)
]
∼ 1− ξ2

2

(
σ(a)dj(n)

Θ(n)

)2

, (12)

where an explicit expression for the average E[Y
(D)
j ] is described in [10, Proposition 2].

Then by using the above lemma, we can give the proof of Theorem 1 in the following.

Proof of Theorem 1. Since {Y (D)
j }M(n)

j=1 is an independent sequence, the characteristic function for (X
(D)
n −

E[X
(D)
n ])/Θ(n) can be written as a product of E[eiξ(Y

(D)
j

−E[Y
(D)
j

])/Θ(n)] (j ∈ {1, 2, . . .}). Thus from Lemma 1 and

the definition of Θ(n), we can give the asymptotic expression for E[eiξ(X
(D)
n −E[X(D)

n ])/Θ(n)] as follows.

E
[
eiξ(X

(D)
n −E[X(D)

n ])/Θ(n)
]
=

M(n)∏

j=1

E[eiξ(Y
(D)
j

−E[Y
(D)
j

])/Θ(n)] ∼ exp

[
−ξ2

2

∑M
j=1(d

(n)
j )2

σ2(a)Θ(n)2

]
∼ e−ξ2σ2(a)/2. (13)

Then we have the desired conclusion.

Finally, we give the proof of Lemma 1.
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Proof of Lemma 1. Let us omit the suffix of dj(n) as d(n). We consider the DTQW Y
(D)
j at time d(n) with the

initial coin state ϕ0, where d(n) satisfies Assumption (1) and (2). The spatial Fourier transform for Ψd(n)(n) is

described by Ψ̂d(n)(k) ≡ Ĥd(n)(k)ϕ0, where Ĥ(k) ≡ (eik|R〉〈R|+ e−ik|L〉〈L|)H . According to [23, Equation (7)], the

characteristic function for Y
(D)
j can be expressed as

E[eiξY
(D)
j ] =

∫ 2π

0

Λ(k, ξ)
dk

2π
, (14)

where Λ(k, ξ) = 〈Ψ̂d(t)(k), Ψ̂d(t)(k+ ξ)〉. Here, 〈u, v〉 means an inner product between two vectors u and v. From now

on, we evaluate E[eiξY
(D)
j

/Θ(t)]. Note that Y
(D)
j is defined at time d(t) from the definition. Let the eigenvalue and the

corresponding eigenvector of Ĥ(k) be denoted as eiφl(k) and vl(k), respectively (l ∈ {±}). By using eiφl(k) and vl(k),
L(k, ξ/Θ(t)) can be decomposed as

Λ(k, ξ) =
∑

l,m∈{±}

exp [id(t) {φl (k + ξ)− φm(k)}]× 〈ϕ0,vm(k)〉〈vm(k),vl(k + ξ)〉〈vl(k + ξ),ϕ0〉. (15)

By replacing ξ with ξ/Θ(n), the term corresponding to the eigenvalues and eigenvectors in Eq. (15) is evaluated as

exp [id(n) {φl (k + ξ/Θ(n))− φm(k)}] = eid(n){φl(k)−φm(k)} × exp

[
iξ

d(n)

Θ(n)
hl(k) +O

(
d(n)

Θ2(n)

)]
, (16)

〈ϕ0,vm(k)〉〈vm(k),vl(k + ξ/Θ(n))〉〈vl(k + ξ/Θ(n)),ϕ0〉

= δlmpl(k) +
ξ

Θ(n)
〈ϕ0,vm(k)〉

〈
vm(k),

∂

∂k
πl(k)ϕ0

〉
+O(Θ−2(n)), (17)

where hl(k) ≡ ∂φl(k)/∂k, pl(k) ≡ |〈ϕ0,vl(k)〉|2, and πl(k) ≡ vl(k) vl(k)
†. Here f(n) = O(g(n)) means that

there exists 0 ≤ c < ∞ such that limn→∞ f(n)/g(n) = c. So by the orthonormality of eigenvectors and defining
h(k) ≡ h+(k) = −h−(k), we obtain

Λ(k, ξ/Θ(n)) = 1− ξ2

2

(
d(n)

Θ(n)
h(k)

)2

+ i
ξ

Θ(n)
µd(n)(k) + o(η(n)), (18)

where f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. Here, µm(k) ≡ 〈Ψ̂m(k), DkΨ̂m(k)〉 with Dk = −i∂/∂k and
η(n) = d2(n)/Θ2(n) (if Θ(n)/d2(n) = o(1)), = 1/Θ(n) (otherwise). Since it is known that (see more details in Ref.
[22])

E[(Y
(D)
j )r] =

∫ 2π

0

〈Ψ̂d(n)(k), D
r
kΨ̂d(n)(k)〉

dk

2π
(r ∈ {1, 2, . . .}), (19)

one obtains

∫ 2π

0

µd(n)(k)
dk

2π
= E[Y

(D)
j ]. (20)

Since
∫ 2π

0 h2(k)dk/2π ∼ E[(Y
(D)
j /d(n))2] with the initial coin state satisfying the symmetric condition (8), we obtain

the explicit expression for σ2(a) as σ2(a) = 1−
√
1− a2 [22]. We have

∫ 2π

0

Λ(k, ξ/Θ(n))
dk

2π
= 1+ i

ξ

Θ(n)
E[Y

(D)
j ]− ξ2

2

(
d(n)

Θ(n)

)2

σ2(a) + o

(
1

Θ(n)

)
. (21)

By multiplying e−iξE[Y
(D)
j

]/Θ(n) to both sides of Eq. (21), we have

E[eiξ(Y
(D)
j

−E[Y
(D)
j

])/Θ(n)] ∼ e−
ξ2

2 (d(n)/Θ(n))2σ2(a). (22)

Then we obtain the desired conclusion.
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B. CTQW with position measurements

Let Y
(C)
j be the CTQW at time dj(t) (j = 1, 2, . . . ). We consider a convolution of an independent sequence

{Y (C)
j }M(t)

j=1 denoted as X
(C)
t ≡ Y

(C)
1 + Y

(C)
2 + · · ·+ Y

(C)
M(t). We obtain the following theorem for the continuous-time

case in analogy to Theorem 1 in the discrete-time case.

Theorem 2. Let Θ(C)(t) =
√∑M(t)

j=1 d2j (t). We have as t → ∞,

X
(C)
t

Θ(t)
⇒ N(0, |γ|2). (23)

Proof. Let the spatial Fourier transform Ψ̂
(C)
s (k) ≡∑x∈Z

Ψ
(C)
s (x)eikx. From Eq. (9), the solution has

Ψ̂(C)
s (k) = ei|γ|s cos(k+arg(γ)), (24)

where arg(z) is the argument of the complex number z. Therefore we have

E[eiY
(C)
j

/Θ(t)] =

∫ 2π

0

〈Ψ̂(C)
dj(t)

(k), Ψ̂
(C)
dj(t)

(k + ξ/Θ(C)(t))〉dk
2π

= 1− ξ2

2

(
dj(t)

Θ(C)(t)

)2

+ o

(
dj(t)

Θ(C)(t)

)2

. (25)

From the independence of {Y (C)
j }∞j=1, we have

E[eiX
(C)
t /Θ(C)(t)] =

M(t)∏

j=1

E[eiY
(C)
j

/Θ(C)(t)] ∼ exp

[
−ξ2

2

∑M(t)
j=1 (dj(t))

2

Θ(C)(t)2

]
→ e−ξ2/2 (t → ∞). (26)

It is emphasized that the CTQW with position measurements is nothing but expressed by X
(C)
t without approx-

imation in contrast with the previous discrete-time case, since the CTQW is described only by the position-state
space.

Corollary 2. Let dj(t) ∼ tβ with 0 ≤ β ≤ 1 (j ∈ {1, 2, . . .}). So we obtain as t → ∞,

X
(C)
t√
t1+β

⇒
{
N(0, |γ|2) : 0 ≤ β < 1,

Z(γ) : β = 1.
(27)

There is no discontinuous point at β = 0 unlike the DTQW with PPM. According to Theorem 2, the CTQW with
PPM always has the discontinuity of the above limit distribution at β = 1 (corresponding to “finite measurements”)
and continuity at β = 0 (corresponding to “finite span between measurements”).

IV. CROSSOVER FROM DTQW TO CTQW

To give some insights into the similarity of the results on the position measurements for discrete-time and continuous-
time cases, in this section, we introduce a final-time-dependent walks which are modified walks initiated by Strauch
[8]. Let n be the final time, that is, a particle keeps walking until the final time comes. At first, we show a construction
of the CTRW from final-time-dependent DTRWs. Secondly, we give CTQWs in some limit of the FTD-DTQW which
is a quantum analogue of the final time dependent RW. Throughout this paper, we assume the parameter r(n) > 0
with r(n) → 0 as n → ∞ for the final-time dependent DTRW and DTQW.
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A. RW case

We consider the final-time-dependent RW on Z, where the “final time” means the time that a particle stops the
walk. The average of the waiting time of particle movement is 1/r(n), where r(n) is the probability that the particle
moves by the final time n. The number of particle movements in the walk by the final time n is evaluated as r(n)n.
A particle spends her most time being lazy since the rate of movements r(n) tends to 0 as n → ∞. This is called
a lazy RW. In the following, we will show that the lazy RW with the number of particle’s movements nr(n) can be
taken as the CTRW with the final time t for sufficiently large n.

Let Z
(F )
m be the lazy RW at time m ∈ {0, 1, 2, . . . , n} defined by

pm(x) = (1 − r(n))pm−1(x) +
r(n)

2

{
pm−1(x− 1) + pm−1(x+ 1)

}
, p0(x) = δ0(x), (28)

where pm(x) ≡ P (Z
(F )
m = x). This means that a particle stays at the same place with the probability 1 − r(n), and

the particle jumps left or right with probability 1/2 when the moving opportunity comes with probability r(n). Put
µm = T [. . . , pm(−1), pm(0), pm(1), . . . ]. Equation (28) is equivalent to

µm = {1+ r(n)(A/2 − 1)}µm−1, µ0 = |0〉, (29)

where A|x〉 = |x+1〉+ |x− 1〉 and 1 is the identity operator. Therefore we have under the assumption of nr2(n) → 0
as n → ∞,

µn ∼ enr(n)(A/2−1)µ0. (30)

Replace the particle movements nr(n) with a continuous parameter t. We can express µn(x) ∼ mt(x) for sufficiently
large n, where ms(x) satisfies

∂

∂s
ms(x) =

1

2
{ms(x+ 1) +ms(x − 1)} −ms(x), m0(x) = δ0(x) (s ≤ t). (31)

This differential equation corresponds to the CTRW with the final t. We have the central limit theorem by using the
Fourier transform in the following: if nr(n) → ∞, as n → ∞, then

Z
(F )
n√
nr(n)

⇒ N(0, 1) (n → ∞). (32)

It is remarked that this Eq. (32) can be shown without nr(n) → 0 as n → ∞ In particular, in the case of r(n) ∼ r/nα

with 0 < r < 1 and 0 ≤ α, we obtain a crossover from the diffusive to the localized spreading: as n → ∞, if 0 ≤ α < 1,
then

Z
(F )
n√
n1−α

⇒ N(0, r) (33)

and if α = 1, then

P (Z(F )
n = x) ∼ e−rIx(r), (34)

where Iν(z) is the modified Bessel function of order ν. As for the modified Bessel function, see Ref. [24]. Note that
Eq.(34) comes from the correspondence between nr(n) and t, and the Fourier transform for Eq. (31): for large n,

pn(x) ∼ mt(x) = e−tIx(t), (35)

where and if α > 1, then we can easily see that P (Z
(F )
n = x) → δ0(x). The limit theorem for the lazy RW will be

used in Sect. V.

B. QW case

In this subsection, we will consider a quantum analogue of the above method of continuum approximation to the
lazy RW. The final-time-dependent quantum coin is defined by

Hn =

[ √
r(n)

√
1− r(n)√

1− r(n) −
√
r(n)

]
. (36)
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The quantum coin is a quantum analogue to the final-time-dependent stochastic coin of the correlated RW [25]. We
give a relation between the correlated RW and the FTD-DTQW, and the limit theorems for the correlated RW in
Appendix A. According to [8], the absolute values of diagonal parts of the quantum coin are sufficiently small and
independent of the final time n. According to Ref. [21], the quantum coin is changed at each time, and its diagonal
parts at time m(< n) are given in proportion to 1/mα (0 ≤ α ≤ 1). On the other hand, in our model, all elements of
the quantum coin depend on the final time n. The above quantum coin (36) shows that a particle moves the same

direction of the previous step with the probability amplitude
√
r(n) (left case) and −

√
r(n) (right case), and the

opposite one with
√
1− r(n) (left and right cases). This is called an FTD-DTQW. We give the following lemma

which shows that the FTD-DTQW is expressed as a linear combination of some CTQWs for sufficiently large n. The
following lemma is consistent to Refs. [8, 21] except for the time scaling. Let n be the final time for the FTD-DTQW
and t be the final time for the corresponding CTQWs. We define a quantum analogue of the waiting time of a
quantum particle movement by n/t.

Lemma 2. Let Ψ
(F )
n (x) be the coin state of the FTD-DTQW at time n and position x. Put t = n

√
r(n) with

nr(n) = o(1) for large n. Ψ
(F )
n (x) is asymptotically expressed by

Ψ(F )
n (x) ∼ 1

2

(
Ψ

(+)
t (x) + (−1)nΨ

(−)
t (x)

)
(37)

with t = n
√
r(n), where Ψ

(±)
s (x) satisfies the following Schrödinger equation:

−i
∂

∂s
Ψ(±,J)

s (x) = ±1

2

(
iΨ(±,J)

s (x− 1)− iΨ(±,J)
s (x+ 1)

)
, (J ∈ {L,R}) (38)

Ψ
(±,L)
0 (x) = qLδ0(x) ± qRδ1(x), Ψ

(±,R)
0 (x) = qRδ0(x) ± qLδ−1(x), (39)

where Ψ
(±,J)
s (x) = 〈uJ ,Ψ

(±)
s (x)〉, (J ∈ {R,L}).

It is noted that Eq. (38) can be taken as the CTQW with γ = ±i and the modified initial condition Eq. (39).

Proof. By the spatial Fourier transform for Eq. (36), we obtain

Ĥ2
n(k) = 1− 2i

√
r(n) sin kVσx

(k) +O(r(n)), (40)

with Vσx
(k) =

(
e−ik|L〉〈L|+ eik|R〉〈R|

)
σx, where σx is x comportment of the Pauli matrix. When

|det(
√

r(n) sinkVσx
(k))| < 1, so log(Ĥ2

n(k)) = −2i
√
r(n) sinkVσx

(k) + O(r(n)), where det(A) is the determinant
of A. Therefore we have under the assumption of nr(n) → 0 as n → ∞,

Ĥn(k) = (Vσx
(k))ne−in

√
r(n) sin kVσx (k)+O(nr(n)) ∼ (Vσx

(k))ne−in
√

r(n) sin kVσx (k). (41)

Because of (1± Vσx
(k))e−is sin kVσx (k) = e∓is sin k(1± Vσx

(k)) for any real number s, we obtain

Ĥn(k) ∼ 1

2

(
e−in

√
r(n) sin k(1+ Vσx

(k)) + (−1)nein
√

r(n) sin k(1− Vσx
(k))

)
. (42)

To see a relation between the FTD-DTQW and the CTQW, we define Ψ̂
(±)
s (k) ≡ e∓is sin kΨ̂

(±)
0 (k) with Ψ̂

(±)
0 (k) ≡

(1± Vσx
(k))ϕ0. It is noted that Ψ̂n(k) =

(
Ψ̂

(+)
t (k) + (−1)nΨ̂

(−)
t (k)

)
/2, with t = n

√
r(n) and Ψ̂

(±)
s (k) obeys

± i
d

ds
Ψ̂(±)

s (k) = sin kΨ̂(±)
s (k). (43)

By the inverse Fourier transform for Eq. (42) and the definition of the Bessel function, we get the following theorem.

Theorem 3. Let X
(F )
n be the FTD-DTQW at time n. Put t = n

√
r(n). When the initial coin state is ϕ0 =

qL|L〉+ qR|R〉 with |qL|2 + |qR|2 = 1, then we have

P (X(F )
n = x) ∼ 1 + (−1)n+x

2
J (x; t), (44)
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where

J (x; t) =

{
1− (qRqL + qRqL)

2x

t

}
J2
x(t) + |qL|2J2

x−1(t) + |qR|2J2
x+1(t). (45)

Here Jν(z) is the Bessel function of the first kind of order ν. As for the Bessel function, see Ref. [24].

The following theorem shows that the weak convergence theorem of the FTD-DTQW also holds without the
assumption of nr(n) → 0 as n → ∞.

Theorem 4. Let the initial coin state be ϕ0 = qL|L〉 + qR|R〉 with |qL|2 + |qR|2 = 1. Assume n
√
r(n) → ∞ as

n → ∞. Then we have as n → ∞,

X
(F )
n

n
√
r(n)

⇒ Aϕ0(1), (46)

where A(ϕ0)(r) has the following density:

ρ(x; r) = {1− (qLq̄R + q̄LqR)x/r}
χ(−|r|,|r|)(x)

π
√
r2 − x2

. (47)

Proof. We show that Eq. (46) holds without assumption nr(n) → 0 as n → ∞. The Fourier transform for the
quantum coin Hn (36) is described as

Ĥn(k) =

[
e−ik

√
r(n) e−ik

√
1− r(n)

eik
√
1− r(n) −eik

√
r(n)

]
. (48)

Let the eigenvalue and corresponding eigenvector of Ĥn(k) be eiθ
(±)
n (k) and v

(±)
n (k). Then we obtain

cos θ(±)
n (k) = ±

√
1− r(n) sin2 k, sin θ(±)

n (k) = −
√
r(n) sink, (49)

π(±)
n (k) ≡ v(±)

n (k)v(±)
n (k)

†
=

1

2
(I ± Vσx

(k)) +O
(√

r(n)
)
. (50)

Let X
(F )
s be the FTD-DTQW at time s with the initial coin state ϕ0 = qL|L〉+ qR|R〉. It is noted that

θ(±)
n (k + ξ/t)− θ(±)

n (k) = ∓ξ

√
r(n)

t
cos k +O

(
(
√
r(n))3

t

)
, (51)

where t = n
√
r(n). We have

E[eiξX
(F )
n /t] =

∫ 2π

0

〈Ĥn(k)ϕ0, Ĥ
n(k + ξ/t)ϕ0〉

dk

2π

=

∫ 2π

0

∑

j∈{0,1}

e
−(−1)jiξ cos k+O

(√
r(n)

)

× 1

2
〈ϕ0,

(
I + (−1)jVσx

(k)
)
ϕ0〉

dk

2π
+O(

√
r(n))

→
∫ ∞

−∞

eiξx
{
1− (qLqR + qLqR)x

}
χ(−1,1)(x)

π
√
1− x2

dk (n → ∞), (52)

where t = n
√
r(n). Then we get the desired conclusion.

From Theorems 3 and 4, we obtain the following limit theorem which shows a crossover from the localized to the
ballistic spreading.

Corollary 3. If
√
r(n) = r/nα with 0 < r < 1, then as n → ∞,

X
(F )
n

n1−α
⇒
{
K(r) if α = 0,

Aϕ0(r) if 0 < α < 1,
(53)

and if α = 1, then

P (X(F )
n = x) ∼ 1 + (−1)n+x

2
J (x; r). (54)

and if α > 1, then P (Xn = x) → δ0(x) as n → ∞.
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Proof. Since the α = 0 case corresponds to the DTQW, X
(F )
n /n ⇒ K(r) as n → ∞. The

√
r(n) = nα with 0 < α < 1

satisfies the condition n
√
r(n) → 0 as n → ∞. Therefore it follows from Theorem 4 that X

(F )
n /n1−α ⇒ Aϕ0 with

0 < α < 1. The result on α ≥ 1 case derives from Theorem 3.

V. FROM DTQW TO CTQW WITH PPM

We give a relation between the DTQW with PPM and the corresponding CTQW. In this section, for simplicity,
let dj(n) = d(n) for all j ∈ {1, 2, . . .} and ϕj = |L〉 with probability 1/2, = |R〉 with probability 1/2. We consider
a hybrid type walk, that is, the position of the FTD-DTQW is measured per d(n)th step analogues to Ref. [16]. To
give the following relation to the lazy RW discussed in the previous section, here we assume that d(n) is even.

Remark 1. Assume that the final time n is even. Let W
(F )
n be the FTD-DTQW with PPM at time n. The following

two cases correspond to the lazy RW and the FTD-DTQW, respectively:

(1) d(n) = 2 (⇔ M(n) = n/2) case: This case does not satisfy Assumption (2) in Sect. III. This walk corresponds

to the FTD-DTQW with position measurements per two steps (not each step). Let Z
(F )
m be the lazy RW at time

m defined in Eq. (28). If x is even, then we have P (W
(F )
n = x) = P (Z

(F )
n/2 = x/2).

(2) d(n) = n (⇔ M(n) = 1) case: This case dose not satisfy Assumption (3) in Sect. III. This walk corresponds

to the FTD-DTQW without position measurements by the final time, i.e., P (W
(F )
n = x) = P (X

(F )
n = x).

The next theorem is our main result which gives limit theorems for the FTD-DTQW with PPM when both the
span between measurements d(n) and the number of measurements M(s) go to infinity as n → ∞, simultaneously in
contrast with Remark 1.

Theorem 5. Let S = {(α, β) ∈ [0, 1]2 : 2α < 1 + β, 0 < α < 1, 0 ≤ β < 1} ∪ {(0, 0)} and S′ = {(α, β) ∈ [0, 1]2 : 2α =
1 + β, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1}. When we take d(n) ∼ 21−βnβ and r(n) ∼ r2/n2α with 0 ≤ α, β ≤ 1 and 0 < r < 1, we
obtain an α-β phase diagram with respect to limit distribution (see Fig. 1 (1)):

W
(F )
n√

21−βnβ−2α+1
⇒





K(r) : (α, β) = (0, 1),

Z(r) : β = 1, 0 < α < 1,

N(0, σ2(r)) : α = 0, 0 < β < 1,

N(0, r) : (α, β) ∈ S.

(55)

If (α, β) ∈ {(α, β) ∈ [0, 1]2 : 2α ≥ 1 + β}, then

lim
n→∞

P (W (F )
n = x) =





I(x; r) : (α, β) ∈ S′, 0 ≤ β < 1,

J(x; r) : (α, β) ∈ S′, β = 1,

δ0(x) : otherwise,

(56)

where J(x; r) = χ{x:even}(x)×
{
J2
x(r) +

(
J2
x−1(r) + J2

x+1(r)
)
/2
}
and I(x; r) = χ{x:even}(x) ×

{
e−r2/2Ix/2

(
r2/2

)}
.

The limit distributions in the case of 0 ≤ α, β ≤ 1 for the FTD-DTQW with PPM can be illustrated in Fig. 1 (1)
as the phase diagram. Theorem 5 shows that in the limit of n → ∞, the FTD-DTQW with PPM parametrized by α
and β corresponds to the walks which have been treated in this paper like Fig. 1 (2).

Lemma 3. Define Θ̃(n) = dn
√
r(n)M(n). We assume that d(n) is even and satisfies Assumption (1) - (3). Then

we have

(1) When Θ̃(n) → ∞ as n → ∞,

W
(F )
n

Θ̃(n)
⇒ N(0, 1). (57)
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FIG. 1: (1) The α-β diagram with respect to limit distributions in Theorem 5 is shown. The corners, (α, β) = (0, 1) and

(α, β) = (0, 0), correspond to the DTQW and DTRW, respectively. If (α, β) ∈ S, then W
(n)
n /

√
21−βnβ − 2α+ 1 converges

weakly to N(0, r2) as n → ∞. (2) The boundary of S is mapped to the DTQW with PPM (α = 0), the FTD-DTQW (β = 1)
and the lazy RW (β = 0). If 0 < α < 1, the CTQW (resp. CTRW) corresponds to the FTD-DQW (resp. lazy RW) with the
continuous final time t ∼ n1−α (resp. s ∼ n1−2α). Therefore the CTQW is mapped to some point (α, 1) while the CTRW is
(α/2, 0) with 0 < α < 1. Thus the CTQW with PPM can be seen as a line which connects the point (α, 1) to (α/2, 0) with
0 < α < 1.

(2) When Θ̃(n) → c < ∞ as n → ∞, if x is odd, then we have P (W
(F )
n = x) = 0, and if x is even, then we have

lim
n→∞

P (W (F )
n = x) = χ{x:even}(x)×

{
e−c2/2Ix/2

(
c2/2

)
: c > 0,

δ0(x) : c = 0.
(58)

The lemma is essential to the proof of Theorem 5. The proof is given at the end of this section.

Remark 2. We show how the CTQW with PPM can be seen from Lemma 3 in the following. Let X
(C)
t be the CTQW

with PPM at time t determined in Eq. (9). Define the span between measurements of the CTQW by d(C)(t). Then
we have from Theorem 2, as t → ∞,

X
(C)
t

d(t)
√

M(t)
⇒ N(0, 1). (59)

As we have already seen in Sect. 3, the quantum analogue of the waiting time is evaluated as 1/
√
r(n). Then we can

evaluate t ∼ n
√
r(n), d(t) ∼

√
r(n)d(n), and M(n) = n/d(n) ∼ n

√
r(n)/d(t) ∼ t/d(t) = M(t). Therefore combining

the above estimations with Lemma 3, we obtain Eq. (59).

Proof of Theorem 5. The DTQW with PPM corresponds to α = 0, 0 ≤ β ≤ 1 with the quantum coin r|L〉〈L| +√
1− r2|R〉〈L| + r|L〉〈R| −

√
1− r2|R〉〈R|. So Corollary 1 and Remark 1 (1) give the desired conclusion in the case

of α = 0 and 0 ≤ β ≤ 1. In a similar way, both “β = 0, 0 ≤ α ≤ 1/2” and “β = 1, 0 ≤ α ≤ 1” cases correspond to
the lazy RW and the FTD-DTQW, respectively. Thus the results on these two cases follow from Eqs. (33), (34) and
Corollary 3. Finally, Lemma 3 implies the other cases, i.e., 0 < α, β < 1.

We now give the proof of Lemma 3.
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Proof of Lemma 3. Let {Y (F )
j }M(n)

j=1 be an i.i.d. sequence of the FTD-DTQW at time d(n) with W
(F )
n = Y

(F )
1 +Y

(F )
2 +

· · ·+ Y
(F )
M(n).

(1) Θ̃(n) → ∞ case: The Fourier transform for the quantum coin Hn (36) is expressed as

Ĥd(n)(k) = e
−id(n) arcsin

(√
r(n) sin k

)

π(+)
n (k) + (−1)d(n)e

id(n) arcsin
(√

r(n) sin k
)

π(−)
n (k). (60)

Note that

π(l)
n (k + ξ/Θ̃(n)) · π(m)

n (k)
†
= δlmπ(l)

n (k) +O(1/Θ̃(n)) (l,m ∈ {±}), (61)

arcsin
(√

r(n) sin(k + ξ/Θ̃(n))
)
− arcsin

(√
r(n) sink

)
=

ξ

d(n)
√

M(n)
cos k +O

(
r(n)

d(n)
√

M(n)

)
. (62)

From Eq. (60), we have

E[eiξY
(n)
j

/Θ̃(n)] =

∫ 2π

0

〈Ĥd(n)ϕ0, Ĥ
d(n)(k + ξ/Θ̃(n))ϕ0〉

dk

2π

=
∑

j∈{±}

∫ 2π

0

eijξ{cos k+O(r(n))}/
√

M(n) × 1

2
Tr(π(j)

n (k))
dk

2π

∼ 1− ξ2

2
× 1

M(n)
+ o

(
1

M(n)

)
. (63)

Since {Y (F )
j }M(n)

j=1 is an i.i.d. sequence, we have as n → ∞,

E[eiξW
(F )
t /g(n)] → e−ξ2/2. (64)

(2) Θ̃(n) → c < ∞ case: Combining d(n)
√

r(n) = o(1) with Theorem 3, we obtain

P (Y
(F )
1 = x) ∼ 1 + (−1)d(n)+x

2
J(x; d(n)

√
r(n)), (65)

where J(x; s) = J2
x(s)+

(
J2
x−1(s) + J2

x+1(s)
)
/2. Note that J2

x(s) ∼ δ0(x)+{δ0(x− 1)/2 + δ0(x+ 1)/2− δ0(x)} s2
for sufficiently small s. Thus the characteristic function of Y

(F )
1 is evaluated as

E[eiξY
(F )
1 ] =

∑

x:even

J2
x(s)e

iξx + cos ξ
∑

x:odd

J2
x(s)e

iξx = 1− d2(n)r(n)
{
sin2 ξ + o(1)

}
. (66)

So we have as n → ∞,

E[eiξW
(F )
n ] ∼

{
1− d2(n)r(n) sin2 ξ

}M(n) →
{
e−c2 sin2 ξ : c > 0,

1 : c = 0.
(67)

It is noted that because of
∑

x∈Z
e−rIx(r)e

2iξx = e−2r sin2 ξ and Remark 1 (1), the value e−2r sin2 ξ is the limit of

the characteristic function of the scaled lazy RW: 2 × Z
(F )
n/2 with nr(n) → r as n → ∞. Then we complete the

proof.

VI. SUMMARY

We have analyzed long-time behaviors for DTQWs with position measurements from the view point of the weak
limit theorem. In the situation that both the span of the position measurements and its number are simultaneously
infinite as the final time goes to infinity; n → ∞, we have shown a crossover from ballistic spreading to diffusive



13

spreading of the particle. Physically speaking, we have analytically seen the long-time behavior in the decoherence-
induced model of the discrete- and continuous-time QWs. Our main result is summarized in Theorem 5 and is
illustrated in Fig. 1. To show this crossover, we have given the estimation of the limit theorems for the DTQW with
position measurements per each time with probability p ∼ 1/nβ (Theorem 1). This result generalizes our previous
study [16]. Also, we have obtained the similar result on the corresponding CTQW (Theorem 2). Furthermore, we have
introduced a new class of the QW, FTD-DTQW, inspired by Refs. [8, 21]. We have given the estimation of the limit
theorem for the FTD-DTQW. This means that the DTQW and CTQW are connected for the sufficiently long-time
behavior (Corollary 3). We have presented the relationship between the FTD-DTQW with position measurements
per two steps and the lazy RW (Remark 1 (1)). These analytical results are our contributions in this paper.
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Appendix A: Correlated RW

Because of the No-Go Lemma [3], we cannot construct the quantum analogue of the lazy RW directly. The final-
time-dependent quantum coin is a quantum analogue to the stochastic coin Cn which determines the behavior of the
correlated RW:

Cn =

[
r(n) 1− r(n)

1− r(n) r(n)

]
. (A1)

The coin of the correlated RW depends on the previous time: a particle moves to the opposite direction of the previous
step with probability 1−r(n) and moves to the same direction with probability r(n). According to the assumption for
r(n); r(n) → 0 as n → ∞, a particle tends to walk zigzag. The number of opportunities in the walk by the final time

that a particle moves the same direction of the previous step is evaluated as nr(n). Let Z̃
(F )
m be the correlated RW at

time m. The distribution is determined by P (Z̃
(F )
m = x) = 〈e,pm(x)〉, where e = |L〉+ |R〉. Here pm(x) = u|L〉+v|R〉

with 0 ≤ u, v ≤ 1 and 0 ≤ u+ v ≤ 1 satisfies the following relations:

pm(x) = Q̃npm−1(x− 1) + P̃npm−1(x+ 1), p0(x) = δ0(x)φ0, (A2)

where P̃n = |L〉〈L|Cn, Q̃n = |R〉〈R|Cn, and φ0 = T [pL, pR] ∈ [0, 1]2 with pL + pR = 1. The detailed asymptotic
estimation of pn(x) for sufficiently large n is almost similar to the FTD-DTQW case, so we give the results without
the proof. Let t = nr(n) under the assumption nr2(n) = o(1), and the initial state is p0(x) = δ0(x) (pL|L〉+ pR|R〉).
Then we have for sufficiently large n,

pn(x) ∼
1

2

{
p
(+)
t (x) + (−1)tp

(−)
t (x)

}
, (A3)

where p
(±)
t (x) = p(±,R)|R〉+ p(±,L)|L〉 satisfies

∂

∂t
p
(±,J)
t (x) = ±1

2

(
p
(±,J)
t (x + 1) + p

(±,J)
t (x− 1)

)
− p

(±,J)
t (x) (J ∈ {L,R}), (A4)

p
(±,L)
0 (x) = pLδ0(x)± pRδ1(x), p

(±,R)
0 (x) = pRδ0(x)± pLδ−1(x), (A5)

Here, the “+” part corresponds to the CTRW given by Eq. (31). We obtain the asymptotic behavior of P (Z̃
(F )
n = x)

as follows. Let nr2(n) → 0 as n → ∞. For sufficiently large n, we have

P (Z̃(F )
n = x) ∼ 1 + (−1)n+x

2
e−t

{
pLIx−1(t) + Ix(t) + pRIx+1(t)

}
, (A6)

where t = nr(n). Analogous to the lazy RW, we also get the following weak convergence theorem: for any initial state
p0(x) = δ0(x)φ0, we have with nr(n) → ∞,

Z̃
(F )
n√
nr(n)

⇒ N(0, 1) (n → ∞). (A7)
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