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Abstract. We consider an optimal control problem of a property
insurance company with proportional reinsurance strategy. The in-
surance business brings in catastrophe risk, such as earthquake and
flood. The catastrophe risk could be partly reduced by reinsurance.
The management of the company controls the reinsurance rate and
dividend payments process to maximize the expected present value
of the dividends before bankruptcy. This is the first time to consider
the catastrophe risk in property insurance model, which is more real-
istic. We establish the solution of the problem by the mixed singular-
regular control of jump diffusions. We first derive the optimal reten-
tion ratio, the optimal dividend payments level, the optimal return
function and the optimal control strategy of the property insurance
company, then the impacts of the catastrophe risk and key model
parameters on the optimal return function and the optimal control
strategy of the company are discussed.
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1. Introduction

In this paper we consider a property insurance company in which the

dividend payments process and risk exposure are controlled by the man-

agement. The property insurance business brings in catastrophe risk,
1
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such as earthquake and flood. We assume that the company can only

reduce its risk exposure by proportional insurance strategy for simplicity.

The catastrophe risk could also be partly reduced by reinsurance. The

regulation of the catastrophe risk determines to what extent the catastro-

phe risk could be eliminated, here we use reinsurance rate and adjusted

risk rate in the regulation. We equate the value of the company to the

expected present value of the dividend payments before bankruptcy.

This is a mixed singular-regular control on diffusion models with jumps.

These optimization problems of diffusion models for property insurance

companies that control their risk exposure by means of dividend pay-

ments have attracted significant interests recently. We refer readers

to Radner and Shepp [22], Paulsen and Gjessing [21], Højgaard and

Taksar[17, 19] and Asmussen[2]. Optimizing dividend payments is a

classical problem starting from the early work of Borch[6, 7], Gerber[10].

For some applications of control theory in insurance mathematics, see

Højgaard and Taksar[16, 18], Martin-löf[20], Asmussen and Taksar[4, 9]

and He and Liang[13, 14, 15], Basse, Reddemann, Riegler and Schulenburg[8],

Guo, Liu and Zhou [11] and other author’s work. Recent surveys can be

found in Taksar[23], Avanzi [3], Albrecher and Thonhauser[1].

Unfortunately, there is little work concerned with the catastrophe risk

of the property insurance company in the problem of optimal risk con-

trol/dividend distribution via the reinsurance rate. In the real financial

market, the property insurance business generally brings in catastrophe

risk, such as earthquake and flood. The asset of the company evolves as

a lévy process with jump diffusions. Harrison and Taksar [12] provides

a good idea to solve this kind of problems. Bernt Øksendal and Agnès

Sulem[5] study the stochastic control problem of jump diffusions. En-

lightened by these innovative ideas, we can solve effectively the optimal

control problem of the company under catastrophe risk. Firstly, we estab-

lish the control problem of the Lévy processes with jump diffusions which

is a realistic model of the property insurance company facing catastro-

phe risk. Then we work out the solution of singular-regular control of the

jump diffusions, that is, we establish the optimal return function, the op-

timal reinsurance rate and the optimal dividend strategy of the insurance

company. Finally we study the impacts of some key model parameters

on the optimal return function and the optimal dividend strategy.
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The paper is organized as follows: In next section, we establish the math-

ematical control model of the insurance company facing catastrophe risk.

In section 3, we work out a solution of HJB equations associated with

the singular-regular control on Lévy processes with jump diffusions. In

section 4, we establish the solution of the optimal control problem, i.e.,

we derive the optimal return function, the optimal reinsurance rate and

the optimal dividend strategy of the property insurance company. In sec-

tion 5, we use numerical calculations to discuss the influences of the key

model parameters on the optimal retention ratio, the optimal dividend

payments level, the optimal return function and optimal control strategy

of the company. In section 6, we summarize main results of this paper.

2. Mathematical model with proportional reinsurance

strategy under catastrophe risk

In this paper, we consider a property insurance company with propor-

tional reinsurance strategy. The property insurance business brings in

catastrophe risk, such as earthquake and flood. The catastrophe risk

could only be partly reduced by reinsurance. The company’s manage-

ment can accommodate the profit and the risk by choosing dividend

payments process and reinsurance rate.

The asset of the company evolves as the Lévy processes with jump dif-

fusions. In this model, if there is no dividend payments and only the

proportional reinsurance strategy is used to control the risk, then the as-

set of the property insurance company is approximated by the following

processes(see Øksendal and Sulem[5]),

dRt = µa(t)dt+ σa(t)dWt + ka(t)

∫

ℜ

zÑ(dt, dz),

where Wt is a standard Brownian motion, µ is the premium rate, and

σ2 is the volatility rate, it is a normal description of the property in-

surance company. 1 − a(t) ∈ [0, 1] is the proportional reinsurance rate.

Ñ(dt, dz) = N(dt, dz)− I{|z|<R}ν(dz)dt is the compensated Poisson ran-

dom measure of Lévy process {Nt} with finite Lévy measure ν. The

jump diffusions stand for the catastrophe risk produced by earthquake

and flood in the property insurance business. The catastrophe risk could
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be partly reduced by reinsurance strategy. Since the catastrophe risk is

huge, the reinsurance strategy is not the same as the normal reinsurance.

Denote k as the adjusted risk rate according to the reinsurance regula-

tion of the catastrophe risk. k is a constant. Throughout this paper we

assume that k ∈ (0, µ

2
∫
ℜ
zν(dz)

], which ensures that the company does not

go into bankruptcy as soon as the catastrophe risk appears.

To give a mathematical foundation of the optimization problem, we fixed

a filtered probability space (Ω,F ,Ft, P ), {Wt} is a standard Brownian

motion, Ñ(dt, dz) = N(dt, dz)− I{|z|<R}ν(dz)dt is also the compensated

Poisson random measure of Lévy process {Nt} with finite Lévy measure

ν on this probability space. Ft represents the information available at

time t and any decision is made based on this information. In our model,

we denote Lt as the cumulative amount of dividend payments from time

0 to time t. We assume that the dividend payments process Lt is an Ft

-adapted, non-decreasing and right-continuous with left limits.

A control strategy π is described by a pair of Ft -adapted stochastic

processes {aπ, L
π}. A strategy π = {aπ(t), L

π
t } is called admissible

if 0 ≤ aπ(t) ≤ 1 and Lπ
t is a nonnegative, non-decreasing and right-

continuous function. We denote Π the set of all admissible policies.

When a admissible strategy π is applied, we can rewrite the asset of

the insurance company by the following processes,

dRπ
t = µaπ(t)dt+ σaπ(t)dWt + kaπ(t)

∫

ℜ

zÑ(dt, dz)− dLπ
t , Rπ

0 = x.

In this case, we consider transaction cost in the dividend procedures. To

simplify the problem, we consider the proportional transaction cost, that

is, if the company pays l, as dividend payments, then the shareholders can

get βl, β < 1. The company is considered bankruptcy as soon as its asset

falls below 0. We define the bankrupt time as τπ = inf{t ≥ 0 : Rπ
t ≤ 0}.

τπ is clearly an Ft -stopping time.

The performance function associated with each π is defined by

J(s, x, π) = E
[ ∫ τπ

0

e−c(s+t)βdLπ
t

]
, (2.1)

and the optimal return function is

V (s, x) = sup
π∈Π

{
J(s, x, π)

}
, (2.2)
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where c denotes the discount rate. If a strategy π∗ is such that J(s, x, π∗) =

V (s, x), then we call π∗, aπ∗(t) and Lπ∗

t the optimal dividend strategy,

the optimal retention ratio and the optimal dividend payments process,

respectively. This paper aims at working out the optimal strategy as well

as the optimal return function, and then discussing impacts of key model

parameters(e.g. k, ν, µ and σ2) on V (s, x), aπ∗(t) and Lπ∗

t .

3. The solution of HJB equations for(2.1) and (2.2)

In order to solve the optimal stochastic control problem (2.1) and (2.2) of

jump diffusions in next section, we establish a solution of HJB equation

associated with the control problem in this section. The main result of

this section is the following.

Theorem 3.1. Assume that the Lévy measure ν and the adjusted risk

rate k satisfy 0 < ν(ℜ) < +∞, 0 <
∫
ℜ
zν(dz) < +∞ and 0 < k ≤

µ

2
∫
ℜ
zν(dz)

. Let φ(s, x) be the function defined by

φ(s, x) = e−csψ(x) and

ψ(x) =





ψ1(x) = C1x
γ , 0 ≤ x ≤ x0,

ψ2(x) = C3e
d−x + C4e

d+x, x0 ≤ x ≤ x∗,

ψ3(x) = β(x− x∗) + ψ2(x
∗), x ≥ x∗,

(3.1)

where x0 =
(1−γ)σ2

µ
, γ, d− and d+ are solutions of (3.10) and (3.13) below

with
x0

γ
+

1

|d−|
−

1

d+
< 0. (3.2)

x∗, C1, C2 and C3 are determined by (3.21), (3.22),( 3.16) and (3.17)

below, respectively. Then φ(s, x) ∈ C2 and is a solution of the following

HJB equation

max
{
−
∂φ

∂x
(s, x) + βe−cs, max

a∈[0,1]
{Aφ}

}
= 0, (3.3)

where

Aφ =
∂φ

∂s
+
∂φ

∂x
aµ+

1

2
a2σ2∂

2φ

∂x2
+

∫

ℜ

{
φ(s, x+ akz)− φ(s, x)

− akz
∂φ

∂x
(s, x)

}
ν(dz).
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Proof. Define D as

D = {(s, x) : −
∂φ

∂x
(s, x) + βe−cs < 0}.

We guess that

D = {(s, x) : s ≥ 0, 0 < x < x∗}

for some unidentified x∗. Inside D, the φ satisfies

max
a∈[0,1]

{Aφ} = 0, (3.4)

i.e.,

max
a∈[0,1]

{∂φ
∂s

+
∂φ

∂x
aµ+

1

2
a2σ2∂

2φ

∂x2
+

∫

ℜ

{φ(s, x+ akz)− φ(s, x)

− akz
∂φ

∂x
(s, x)}ν(dz)

}
= 0.

(3.5)

Differentiating Aφ = 0 w.r.t. a, we get

∂φ

∂x
µ+ aσ2∂

2φ

∂x2
= 0. (3.6)

The equation (3.6) implies that the maximizer of the right-hand side of

the equation (3.5), a(x), is the following

a(x) = −
µ∂φ

∂x

σ2 ∂2φ

∂x2

. (3.7)

Putting the expression (3.7) into the equation (3.5), we derive

∂φ

∂s
−

1

2

µ2(∂φ
∂x
)2

σ2 ∂
2φ

∂x2

+

∫

ℜ

{φ(s, x−
µ∂φ

∂x

σ2 ∂
2φ

∂x2

kz)− φ(s, x)

+
µ∂φ

∂x

σ2 ∂
2φ

∂x2

kz
∂φ

∂x
(s, x)}ν(dz) = 0.

(3.8)

Define φ = e−csψ(x), then it is easy to see from (3.8) that the function

ψ(x) satisfies

− cψ −
1

2

µ2(ψ
′

)2

σ2ψ
′′

+

∫

ℜ

{ψ(x−
µψ

′

σ2ψ′′
kz)− ψ +

µ(ψ
′

)2

σ2ψ′′
kz}ν(dz) = 0.

(3.9)

Because a(x) ∈ [0, 1), 0 ≤ x ≤ x0 and a(x) = 1, x ≥ x0 for some x0 ≥ 0,

we guess that ψ(x) = ψ1(x) := C1x
γ + C2, 0 ≤ x ≤ x0. Using ψ(0) = 0,
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we have ψ(x) = C1x
γ . Putting it into (3.9), we derive the following

equation

− c−
1

2

µ2

σ2

γ

γ − 1
+

∫

ℜ

{(1−
µ

σ2

1

γ − 1
kz)γ − 1 +

µ

σ2

γ

γ − 1
kz}ν(dz) = 0.

(3.10)

By the assumption of Lévy measure ν every term in the (3.10) is well-

defined. Let h(γ) denote the left hand side of the (3.10). Then by the

assumption of k we have h(1−) := lim
γ<1,γ→1

{h(γ)} = +∞ and h(0) =

−c < 0. So there is at least a γ to solve the equation (3.10). Thus

ψ1(x) = C1x
γ and a(x) = µx

σ2(1−γ)
for 0 ≤ x ≤ x0 = (1−γ)σ2

µ
because of

a(x) ∈ [0, 1].

If x0 ≤ x ≤ x∗, then a(x) = 1 and the (3.5 ) becomes

∂φ

∂s
+
∂φ

∂x
µ+

1

2
σ2∂

2φ

∂x2
+

∫

ℜ

{φ(s, x+ kz)− φ(s, x)− kz
∂φ

∂x
(s, x)}ν(dz) = 0.

(3.11)

Define φ(x) = φ2(x) := e−csψ2(x) for x0 ≤ x ≤ x∗, then we derive from

the (3.11) that

1

2
σ2ψ

′′

2 (x) + µψ
′

2(x)− cψ2(x) +

∫

ℜ

{ψ2(x+ kz)− ψ2(x)− kzψ
′

2(x)}ν(dz) = 0.

(3.12)

We guess that

ψ2(x) = edx for some constant d ∈ ℜ

and further get the equation

l(d) :=
1

2
σ2d2 + µd− c +

∫

ℜ

{
ekdz − 1− kdz

}
ν(dz) = 0. (3.13)

Since l(0) < 0 and lim
d→+∞

l(d) = lim
d→−∞

l(d) = +∞, the equation(3.13) has

two solutions d− and d+ with d− < 0 < d+, and so the ψ2(x) should have

the following form

ψ2(x) = C3e
d−x + C4e

d+x for x0 ≤ x ≤ x∗

where C3 and C4 are constants.

For x ≥ x∗, the solution φ = e−csψ3(x) and

ψ3(x) = β(x− x∗) + ψ2(x
∗) for x ≥ x∗.
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Since ψ′ and ψ′′ are continuous at x∗,

ψ
′

2(x
∗) = ψ

′

3(x
∗), (3.14)

ψ
′′

2 (x
∗) = ψ

′′

3 (x
∗). (3.15)

So

C3(x
∗)d−e

d−x∗

+ C4(x
∗)d+e

d+x∗

= β,

C3(x
∗)d2−e

d−x∗

+ C4(x
∗)d2+e

d+x∗

= 0.

Solving the last two equations, we have

C3(x
∗) =

βd+

ed−x∗

d−(d+ − d−)
< 0, (3.16)

C4(x
∗) =

βd−

ed+x∗

d+(d− − d+)
> 0. (3.17)

Also, since ψ and ψ
′

are continuous at x0,

ψ1(x0) = ψ2(x0),

ψ
′

1(x0) = ψ
′

2(x0),

that is,

C1x
γ
0 = C3(x

∗)ed−x0 + C4(x
∗)ed+x0, (3.18)

C1γx
γ−1
0 = C3(x

∗)d−e
d−x0 + C4(x

∗)d+e
d+x0. (3.19)

We deduce from the equations (3.18) and (3.19) that

q(x∗) := (
x0

γ
−

1

d−
)

βd+

(d+ − d−)
ed−(x0−x∗)

−(
x0

γ
−

1

d+
)

βd−

(d+ − d−)
ed+(x0−x∗) = 0.

We claim that the x∗ satisfying the last equation does exist. In fact,

differentiating q(x), we have

q
′

(x) = −(
x0

γ
d− − 1)

βd+

(d+ − d−)
ed−(x0−x) − (

x0

γ
d+ − 1)

βd−

(d− − d+)
ed+(x0−x)

= −β{
x0d+d−

γ(d+ − d−)
(ed−(x0−x) − ed+(x0−x)) +

d−e
d+(x0−x) − d+e

d−(x0−x)

d+ − d−
} > 0

for x > x0. So q(x) is an increasing function of x and reaches its minimum

at x0. Furthermore, by (3.2) we have

q(x0) = (
x0

γ
−

1

d−
)

βd+

(d+ − d−)
− (

x0

γ
−

1

d+
)

βd−

(d+ − d−)
< 0. (3.20)
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Also lim
x→+∞

q(x) = +∞. Thus there exists an x∗(> x0) satisfying q(x
∗) =

0. Solving the equation q(x∗) = 0, we get

x∗ = x0 −
1

d+ − d−
ln
{d2+(d−x0 − γ)

d2−(d+x0 − γ)

}
. (3.21)

Clearly, (3.2) implies that 0 <
d2+(d−x0−γ)

d2
−
(d+x0−γ)

< 1, so x∗ > x0. Moreover,

C1(x
∗) =

βd+

x
γ
0e

d−x∗

d−(d+ − d−)
ed−x0 +

βd−

x
γ
0e

d+x∗

d+(d− − d+)
ed+x0 > 0.

(3.22)

Therefore the function φ(s, x) defined by the (3.3) should be the following

form

φ(s, x) = e−csψ(x) and

ψ(x) =





ψ1(x) = C1(x
∗)xγ, 0 ≤ x ≤ x0,

ψ2(x) = C3(x
∗)ed−x + C4(x

∗)ed+x, x0 ≤ x ≤ x∗,

ψ3(x) = β(x− x∗) + ψ2(x
∗), x ≥ x∗,

(3.23)

where x0 = (1−γ)σ2

µ
. x∗, γ, d− and d+ are solutions of (3.21), (3.10) and

(3.13), and C1, C2 and C3 are determined by (3.22),(3.16) and (3.17),

respectively.

The problem remained is to approve the following inequalities.

For 0 ≤ x ≤ x∗,

−
∂φ

∂x
(s, x) + βe−cs < 0, (3.24)

max
a∈[0,1]

{∂φ
∂s

+
∂φ

∂x
aµ+

1

2
a2σ2∂

2φ

∂x2
+

∫

ℜ

{φ(s, x+ akz)− φ(s, x)

− akz
∂φ

∂x
(s, x)}ν(dz)

}
≤ 0. (3.25)

For x ≥ x∗,

−
∂φ

∂x
(s, x) + βe−cs = 0, (3.26)

max
a∈[0,1]

{∂φ
∂s

+
∂φ

∂x
aµ+

1

2
a2σ2∂

2φ

∂x2
+

∫

ℜ

{φ(s, x+ akz)− φ(s, x)

− akz
∂φ

∂x
(s, x)}ν(dz)

}
≤ 0. (3.27)
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Since

φ
′′

1(x) = e−csC1γ(γ − 1)xγ−2 < 0,

φ
′′

2(x) = e−cs βd+d−

d+ − d−
(ed−(x−x∗) − ed+(x−x∗)) < 0

for γ < 1 and x ≤ x∗, the inequality (3.24) is trivial due to φ(x) ∈ C2

is a convex function, and the inequality (3.26) is a direct consequence of

φ′′
3(x) = β for x ≥ x∗ .

For 0 ≤ x ≤ x0, by the expression of φ, max
a∈[0,1]

{Aφ} = 0 is obvious.

For x0 ≤ x ≤ x∗, the inequality (3.25) is equal to

max
a∈[0,1]

{
1

2
a2σ2ψ

′′

2 (x) + aµψ
′

2(x)− cψ2(x) +

∫

ℜ

{ψ2(x+ akz) − ψ2(x)

− akzψ
′

2(x)}ν(dz)} ≤ 0. (3.28)

Denote the function in bracket {·} at the left side of the inequality (3.28)

as p(a), we will prove that p(a) is an increasing function of a.

p
′

(a) = aσ2ψ
′′

2 (x) + µψ
′

2(x) = aσ2[C3(d−)
2ed−x + C4(d+)

2ed+x]

+ µ[C3d−e
d−x + C4d+e

d+x] =
βd+d−

d+ − d−
(ed−(x−x∗) − ed+(x−x∗))

+ µ[C3d−e
d−x + C4d+e

d+x] ≥ 0.

as d− < 0, d+ > 0, x ≤ x∗, C3 < 0, and C4 > 0. Then p(a) ≤ p(1) = 0

for 0 ≤ a ≤ 1.

For x ≥ x∗, the inequality(3.27) is equal to

max
a∈[0,1]

1

2
a2σ2ψ

′′

3 (x) + aµψ
′

3(x)− cψ3(x) +

∫

ℜ

{ψ3(x+ akz)− ψ3(x)

− akzψ
′

3(x)}ν(dz) = aµβ − cβ(x− x∗)− cψ2(x
∗)

≤ µβ − cψ2(x
∗)− cβ(x− x∗) ≤ 0

due to x ≥ x∗ and µβ − cψ2(x
∗) = 0. So we end the proof. �

4. The solution of the optimal control problem with jump

diffusions

We now give a verification theorem for singular -regular control prob-

lem(2.1) and (2.2). We first prove the following.
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Theorem 4.1. Let W(s, x) satisfy the following HJB equation,

max{−
∂W

∂x
(t, x) + βe−ct, max

a∈[0,1]
{AW (t, x)}} = 0 (4.1)

for t ≥ 0 and x ≥ 0,

W (t, 0) = 0 for any t ≥ 0. (4.2)

Then W (s, x) ≥ J(s, x, π) for any admissible strategy π and (s, x) ∈ ℜ2
+.

Proof. For any fixed strategy π, let Λ = {s : Lπ
s− 6= Lπ

s}, L̂ =
∑

s∈Λ,s≤t(L
π
s−

Lπ
s−) be the discontinuous part of Lπ

s and L̃π
t = Lπ

t − L̂π
t be the continu-

ous part of Lπ
s . Let τπ be the first time that the corresponding cash flow

Rπ
t defined by (2.2) hit (−∞, 0). Then, by applying the generalized Itô

formula to the stochastic process Y π(t) := (s+ t, Rπ
t )

T and the function

W (s, x), we have

E[W (s+ t ∧ τπ, R
π
t∧τπ )]

=W (s, x) + E[

∫ t∧τπ

0

AW (s+ u,Rπ
u)du

−

∫ t∧τπ

0

∂W (s + u,Rπ
u)

∂x
dL(c)

u +
∑

0<tn≤t∧τπ

∆LW (s+ tn, R
π
tn
)],

(4.3)

where

AW (s, x) =
∂W

∂s
+ aµ

∂W

∂x
+

1

2
a2σ2∂

2W

∂x2
+

∫

ℜ

{W (s, x+ akz)−W (s, x)

− akz
∂W

∂x
(s, x)}ν(dz),

∆LW (s+ tn, R
π
tn
) :=W (Y π(tn))−W (Y π(t−n ) + ∆NY

π(tn)),

∆NY
π(tn)) :=

(
0, kaπ(tn)

∫

ℜ

zÑ({tn}, dz)
)
,

{tk} is the set of jumping times of L .

Using AW ≤ 0 in the equation (4.3), we see that

E[W (s+ t ∧ τπ, R
π
t∧τπ)] ≤W (s, x)

−E[

∫ t∧τπ

0

∂W (s+ u,Rπ
u)

∂x
dL(c)

u −
∑

s<tn≤t∧τπ

∆LW (Y π
tn
)]. (4.4)

By the mean value theorem we have

∆LW (Y π
tn
) = −

∂W

∂x
(Ŷ

(n)
tn )∆L(tn),
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where Ŷ
(n)
tn is some point on the straight line between Y π

tn
and Y π

t−n
+

∆N(Y
π
tn
). Since W

′

(Y π
u ) ≥ βe−c(s+u),

∆LW (Y π
tn
) ≤ −βe−c(s+tn)(Lπ

tn
− Lπ

tn−),

which, together with the inequality (4.4), implies

E[W (s+ t ∧ τπ, R
π
t∧τπ )] + E

{∫ t∧τπ

0

βe−c(s+u)dLπ
u

}
≤W (s, x).

(4.5)

By the definition of τπ, the boundary condition (4.2) and W
′

(Y π
u ) ≥

βe−c(s+u), it is easy to prove that lim inf
t→∞

W (Yt)I{τπ=∞} = 0 and

lim inf
t→∞

W (s+ t ∧ τπ, R
π
t∧τπ) = W (s+ τπ, 0)I{τπ<∞} + lim inf

t→∞
W (Yt)I{τπ=∞}

≥ W (s+ τπ, 0)I{τπ<∞} = 0. (4.6)

So, we deduce from the inequalities (4.5) and (4.6) that

J(s, x, π) = E
{∫ τπ

0

e−c(s+t)βdLπ
t

}
≤W (s, x),

thus we complete the proof. �

Let

a(x) =

{ µx

σ2(1−γ)
, x < x0,

1, x ≥ x0

where x0 = (1−γ)σ2

µ
. We call a(x) the feedback control function of the

control problem (2.1) and (2.2).

We can now state the main result of this paper.

Theorem 4.2. Assume that (3.2)holds, the Lévy measure ν and the ad-

justed risk rate k satisfy 0 < ν(ℜ) < +∞, 0 <
∫
ℜ
zν(dz) < +∞ and

0 < k ≤ µ

2
∫
ℜ
zν(dz)

. Then the optimal return function and the optimal

dividend strategy of the control problem (2.1) and (2.2) are V (s, x) =

φ(s, x) = e−csψ(x) and π∗ = (a(Rπ∗

t ), Lπ∗

t ), respectively, where (Rπ∗

t , L
π∗

t )

is uniquely determined by the following stochastic differential equations

with reflection,





Rπ∗

t = x+
∫ t

0
µa(Rπ∗

s )ds+
∫ t

0
σa(Rπ∗

s )dWs + k
∫ t

0

∫
ℜ
a(Rπ∗

s )zÑ(ds, dz)
−Lπ∗

t ,

Rπ∗

t ≤ x∗,∫∞

0
I{t:Rπ∗

t
<x∗}(t)dL

π∗

t = 0,

(4.7)
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ψ(x) is the function defined by (3.1) and the optimal dividend payments

level x∗ is given by (3.21).

Proof. Since the function φ(s, x) satisfies the HJB equations (3.3), it is

not hard to see that φ(s, x) also satisfies conditions in Theorem 4.1. So

φ(s, x) ≥ J(s, x, π) for any π, i.e.,

φ(s, x) ≥ V (s, x). (4.8)

Next, we will prove V (s, x) = φ(s, x) = J(s, x, π∗) corresponding to π∗.

By applying the generalized Itô formula, noting that the construction

of φ(s, x) and the last two equations in (4.7), we deduce from the in-

equality(3.24)and the equations (4.1) that Aφ(s + t, Rπ∗

t ) = 0 for any

t ≥ 0,
∫ t∧τ∗

0
∂φ(Y π

∗

u
)

∂x
dL

(c)
u =

∫ t∧τ∗

0
βe−c(s+u)dL

(c)
u and

∑
s<tn≤τ∗

∆Lφ(Y
π∗

tn
) =

−
∑

s<tn≤τ∗

∂φ

∂x
(s + tn, x

∗)∆L(tn) = −
∑

s<tn≤τ∗
βe−c(s+tn)∆L(tn), where τ

∗ =

inf{t ≥ 0 : Rπ∗

t < 0}. So

E[φ(s+ t ∧ τ ∗, Rπ∗

t∧τ∗)] = φ(s, x) + E[

∫ t∧τ∗

0

Aφ(Y π∗

u )du

−

∫ t∧τ∗

0

∂φ(Y π∗

u )

∂x
dL(c)

u +
∑

s<tn≤τ∗

∆Lφ(Y
π∗

tn
)]

= φ(s, x)−E[

∫ t∧τ∗

0

βe−c(s+u)dL(c)
u

+
∑

s<tn≤τ∗

βe−c(s+tn)∆L(tn)]

= φ(s, x)−E[

∫ t∧τ∗

0

βe−c(s+u)dLπ∗

u ]. (4.9)

Since lim
t→∞

φ(s+t∧τ ∗, Rπ∗

t∧τ∗) = lim
t→∞

e−c(s+t∧τ∗)ψ(Rπ∗

t∧τ∗) = e−c(s+τ∗)ψ(Rπ∗

τ∗ ) =

e−c(s+τ∗)ψ(0) = 0, we see from the inequality (4.8) and the equation(4.9)

that

V (s, x) ≤ φ(s, x) = lim
t→∞

E
[ ∫ t∧τ∗

0

e−csβ1dL
π∗

s

]
= J(s, x, π∗) ≤ V (s, x).

So V (s, x) = φ(s, x) = J(s, x, π∗), that is, φ(s, x) is the optimal return

function, π∗ is the optimal dividend strategy and x∗ is the optimal divi-

dend payments level. Thus the proof has been done. �
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5. Numerical examples

In this section, based on Theorem 4.2, we present some numerical exam-

ples, together with the feedback control function a(x) and the comparison

theorem for SDE, to portray how the key model parameters(e.g. k, µ,

σ2 and ν) impact on V (s, x) and the optimal control strategy π∗, that is,

aπ∗(t) and Lπ∗

t , respectively.

Example 5.1. Let ν(dz) = e−zI{z≥0}(z)dz. Figure 1 below explains that

the adjusted risk rate will increase the optimal dividend payments level

x∗(k), so to avoid bankruptcy the company should decrease the times of

dividend or increase k if possible, that is, the company needs to maintain

the cash inside the company to cover the catastrophe risk ,so it pays divi-

dend at a higher level. On the other hand, Lπ∗

t decreases with k by (4.7),

Rπ∗

t increases with k, so we see that aπ∗(t) also increases with k. In fact,

the catastrophe risk business brings in more risk as well as more income,

and the higher asset level raises the risk sustainment of the company.

It could reduce its reinsurance level (i.e., 1 − aπ∗(t)) according with the

optimal control strategy π∗.

0 0.2 0.4 0.6 0.8 1
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

k

x*
(k

)

Figure 1. The optimal dividend payments level x∗(k) as
a function of k.The parameter values are σ2 = 5, c = 0.05,
µ = 2, s = 0.

Example 5.2. Let ν(dz) = e−zI{z≥0}(z)dz. Figure 2 below states that

the property insurance company’s profit increases with the initial capital
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x and the adjusted risk rate k. So the property insurance company can get

some return from its catastrophe risk insurance business, but the return’s

increment is small by adjusting k. However, the company can receive a

good public reputation by constant k, and interest from the catastrophe

insurance business.

Figure 2. The optimal return function V (x, k) as a func-
tion of x and k. The parameter values are σ2 = 5, c = 0.05,
β = 0.8, s = 0, µ = 2.

Example 5.3. Let ν(dz) = e−zI{z≥0}(z). Figure 3 below portrays that the

optimal dividend payments level x∗(µ) decreases with the premium rate

µ, so Lπ∗

t increases with µ, but aπ∗(t) decreases with the premium rate.

These facts mean that the higher growth rate of the insurance company’s

asset raise the company’s risk tolerance level and the company could pay

dividend at a lower level. Meanwhile, the company should adopt a higher

reinsurance rate to avoid bankruptcy due to the lower dividend payments

level.
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1 2 3 4 5 6 7 8 9 10 11
2

3

4

5

6

7

8

9

µ

x* (µ
)

Figure 3. The optimal dividend payments level x∗(µ) as
a function of µ. The parameter values are σ2 = 5, c = 0.05,
s = 0, k = 0.5.

Example 5.4. Let ν(dz) = e−zI{z≥0}(z)dz. Figure 4 states that the

optimal return function V (x, µ) is an increasing function of µ, and high

premium rate can notably increase the company’s return, that is, a higher

growth rate of the insurance company’s asset results in a higher return.

Figure 4. The optimal return function V (x, µ) as a func-
tion of x and µ. The parameter values are σ2 = 5, c = 0.05,
β = 0.8, s = 0, k = 0.5.
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Example 5.5. Let ν(dz) = e−zI{z≥0}(z)dz. Figure 5 below portrays

that the optimal dividend payments level x∗(σ2) increases with the risk

volatility rate σ2 of normal insurance business, so Lπ∗

t decreases with σ2,

but aπ∗(t) increases it. These mean that the higher volatility make the

insurance company’s asset reduce the company’s risk tolerance level and

the company prefer to maintain the cash inside the company to cover the

risk. Meanwhile, the company should adopt a lower reinsurance rate to

get lower optimal dividend payments level.

0 10 20 30 40 50
0

5

10

15

20

25

σ 2

x* (σ
2 )

Figure 5. The optimal dividend payments level x∗(σ2)
as a function of σ2. The parameter values are c = 0.05,
s = 0, k = 0.5, µ = 2.

Example 5.6. Let ν(dz) = e−zI{z≥0}(z)dz. Figure 6 below states that

the increment of the optimal return function V (x, σ2) due to σ2 is very

large, so higher risk can also notably increase the company’s return.
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Figure 6. The optimal return function V (x, σ2) as a
function of x and σ2. The parameter values are c = 0.05,
β = 0.8, s = 0, k = 0.5, µ = 2.

Example 5.7. Let νt(dz) = e−tzI{z≥0}(z)dz(t ≥ 1). Figure 7 below por-

trays that the optimal dividend payments level x∗(t) has obvious decre-

ments on [1, 4], but on [4,+∞) the optimal dividend payments level has

no visibly changes, so aπ∗(·) and Lπ∗

· change greatly for different Lévy

measures νt(dz) = e−tzI{z≥0}(z)dz, t ∈ [1, 4]. However, they are almost

same for different Lévy measures νt(dz) = e−tzI{z≥0}(z)dz, t ≥ 4.

1 2 3 4 5 6 7 8 9 10 11
6.35

6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

t

x*
(t

)

Figure 7. The optimal dividend payments level x∗(t) as
a function of t. The parameter values are σ2 = 5, c = 0.05,
s = 0, k = 0.5, µ = 2.
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Example 5.8. Let νt(dz) = e−tzI{z≥0}(z)dz. Figure 8 below states that

the change of the optimal return function V (x, t) for different t is not dis-

tinct. So the optimal return function V (x, t) is nearly stable for different

Lévy measures νt(dz) = e−tzI{z≥0}(z)dz (t ≥ 0).

Figure 8. The optimal return function V (x, t) as a func-
tion of x and t. The parameter values are σ2 = 5, c = 0.05,
β = 0.8, s = 0, k = 0.5, µ = 2. )

6. Conclusion

We consider the optimal dividend and the reinsurance strategy of a prop-

erty insurance company. The property insurance business brings in catas-

trophe risk, such as earthquake and flood. The catastrophe risk could

be partly reduced by reinsurance. Due to the huge risk, the company

needs to add a adjusted risk rate in the regulation. The management

of the company controls the reinsurance rate and dividend payments to

maximize the expected present value of the dividends before bankruptcy.

This is the first time to consider the catastrophe risk in an insurance

model, which is more realistic. The catastrophe risk is modeled as the

jump process in the stochastic control problem. In order to find the

solution of the problem, we implore the mixed singular-regular control

methods of jump diffusions. We establish the optimal reinsurance rate,

the optimal dividend strategies and explicit the optimal return function

of the company. The influences of the catastrophe risk and the reinsur-

ance regulation of the catastrophe risk on the optimal control strategy
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of the insurance company are also discussed. Based on the main results

we have just established, we present some numerical examples to analyze

in detail how the key model parameters impact on the optimal retention

ratio, the optimal dividend payments strategies and the optimal return

of the company.
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