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Uncertainty relations give upper bounds on the accuracy by which the outcomes of two incom-
patible measurements can be predicted. While the established uncertainty relations apply to cases
where the predictions are based on purely classical data (e.g., a description of the system’s state
before the measurement), an extended relation which remains valid in the presence of quantum
information has been proposed recently [Berta et al., Nature Physics 6, 659 (2010)]. Here we gener-
alize this uncertainty relation to one formulated in terms of smooth entropies. Since these entropy
measures are related to operational quantities, our uncertainty relation has various applications. As
an example, we show that it directly implies security of quantum key distribution protocols.

I. INTRODUCTION

Quantum mechanics has the peculiar property that,
even if the state of a system is fully known, certain mea-
surements will result in a random outcome. In other
words, the information contained in the description of a
system’s state is generally not sufficient to predict mea-
surement outcomes with certainty. Heisenberg’s uncer-
tainty principle can be seen as a quantitative characteri-
zation of this property.

Uncertainty relations expressed in terms of entropies
have recently attracted renewed attention [1]. We con-
sider two possible positive operator valued measurements
(POVMs), X and Z, that can be applied to a quantum
system A. In its entropic version, as first proposed by
Deutsch and later proved by Maasen and Uffink [2] and
Krishna et al. [3], the uncertainty principle reads1

H (X|S) +H (Z|S) ≥ log
1

c
, (1)

where H denotes the Shannon entropy and character-
izes the uncertainty about the measurement outcomes X
and Z given any classical description S of the original
state of A. The bound depends on the overlap, denoted
c, which quantifies the “incompatibility” of the two mea-
surements.2

One may now consider an agent B who, instead of hold-
ing a classical description of A, has access to a quantum
system which is fully entangled with A. It is easy to verify
that B can predict the outcome of any possible orthogo-
nal measurement applied to A by performing a suitable
measurement on his share of the entangled state. In other
words, (1) is not valid in such a generalized scenario.
However, as first conjectured by Renes and Boileau [4],
and later proved by Berta et al. [5] and Coles et al. [6],

1 Hereafter, log denotes the binary logarithm.
2 For example, if A is a two-level system, and if X and Z are
measurements with respect to a standard and the corresponding
diagonal basis, respectively, one has c = 1

2
.

the relation

H (X|B) +H (Z|C) ≥ log
1

c
(2)

holds in general, for two disjoint, not necessarily classi-
cal, B and C. If both systems contain only a classical
description S of the state, we recover (1).3

The main contribution of this work is to generalize (2)
to smooth entropies [7, 8], which are generalizations of
the Shannon / von Neumann entropy. In contrast to the
latter, they characterize operational quantities beyond
the standard i.i.d. scenario.4 In particular, the smooth
min-entropy of a random variable X conditioned on a sys-
tem B, denoted Hε

min(X|B), corresponds to the number
of bits contained in X that are uniformly distributed and
independent of B. Similarly the smooth max-entropy of Z
conditioned on C, Hε

max(Z|C), corresponds to the num-
ber of bits that are needed in order to reconstruct the
value Z using C.

The generalized uncertainty relation reads5

Hε
min(X|B) +Hε

max(Z|C) ≥ log
1

c
. (3)

The above result strengthens and generalizes an uncer-
tainty relation that was derived via operational inter-
pretations of the smooth entropies [9]. Also note that
we can recover (2) by applying the entropic asymptotic
equipartition property [10] to (3). Moreover, for ε = 0
and disregarding B and C, we find a generalization to
POVMs of a result by Maassen and Uffink [2], bounding
the uncertainty in terms of Rényi entropies [11] of order
1/2 and ∞, i.e. H∞(X) +H

1/2(Z) ≥ log 1
c .

3 Note, however, that this assignment is only possible because clas-
sical information can be “copied” and therefore be assigned to
two disjoint subsystems, B and C.

4 Most results involving the Shannon or the von Neumann entropy
are only valid for processes that produce a sequence of identical
and independently distributed (i.i.d.) random values.

5 Precise definitions of all quantities involved will follow in Sec-
tion II.
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Uncertainty relations have various applications, e.g.,
in the context of entanglement witnessing or in cryptog-
raphy [5]. The generalized version provided here further
extends the range of applications, particularly because
of its formulation in terms of smooth entropies. To il-
lustrate this, we show that security of quantum key dis-
tribution (QKD) is an almost immediate consequence of
the relation.
The remainder of the paper is organized as follows:

Section II introduces the notation and definitions neces-
sary to state our uncertainty relation as a theorem. The
proof follows in Section III. Finally, an application of our
result to QKD is discussed in Section IV.

II. NOTATION AND DEFINITIONS

For our purposes, quantum states are positive semi-
definite operators with trace smaller or equal to 1 on a
finite-dimensional Hilbert space. We use subscripts to de-
note different Hilbert spaces. For a state ρA on (a Hilbert
space) A we say that ρAB is an extension of ρA on B if
trB(ρAB) = ρA. In turn, given a state ρAB, its marginals
ρA and ρB are uniquely and implicitly defined via the
partial trace. A purification is an extension with rank 1.
For a pure state φ, we denote its vector representation as
|φ〉 and |φ〉† = 〈φ|, i.e. we may write φ = |φ〉〈φ|.
We use the purified distance (see [12] for a definition

and properties) as a distance measure on the quantum
state space. We write ρ ≈ε τ (ρ is ε-close to τ) if the
purified distance between ρ and τ does not exceed ε.
We now define the smooth min- and max-entropy.

Definition 1. Let ε ≥ 0 and ρAB be a bipartite state on
A and B. The min-entropy of A given B is defined as

Hmin(A|B)ρ := max
σB

sup
{

λ ∈ R : 2−λ
1A ⊗ σB ≥ ρAB

}

,

where σB is maximized over all states on B and 1A is the
identity operator on A. Furthermore, the smooth min-
entropy of A given B is defined as

Hε
min(A|B)ρ := max

ρ̃AB

Hmin(A|B)ρ̃ ,

where the optimization is over all states ρ̃AB ≈ε ρAB.

Definition 2. Let ε ≥ 0 and ρAB be a bipartite state on
A and B. The max-entropy of A given B is defined as

Hmax(A|B)ρ := max
σB

logF 2
(

ρAB,1A ⊗ σB

)

,

where σB is maximized over all states on B and F (ρ, τ) :=
tr|√ρ

√
τ | is the fidelity. Furthermore, the smooth max-

entropy of A given B is defined as

Hε
max(A|B)ρ := min

ρ̃AB

Hmax(A|B)ρ̃ ,

where the optimization is over all states ρ̃AB ≈ε ρAB.

The smooth min- and max-entropies are dual [12, 13]
with regards to any purification ρABC of ρAB in the sense
that, for any ε ≥ 0,

Hε
min(A|B)ρ = −Hε

max(A|C)ρ . (4)

In the following, let ρABC be a quantum state on three
subsystems A, B and C and let X and Z be two POVMs
acting on A with elements {Mx}x∈X amd {Nz}z∈Z , re-
spectively.6 Measuring the system A using X and dis-
regarding the post-measurement state on A and C will
result in a state7

ρXB :=
∑

x

|x〉〈x| ⊗ τ
[x]
B , where

τ
[x]
B = trAC

(

MxρABCMx

)

.

The probability of measuring x is given by tr(τ
[x]
B ) and

{|x〉}x is an orthonormal basis on X enumerating the pos-
sible measurement outcomes of X. Similarly, we intro-
duce ρZC and {|z〉}z, which result from measuring Z and
disregarding the post-measurement state on A and B.
The overlap of the two measurements is defined as8

c := max
x,z

∣

∣

∣

∣

√

Mx

√

Nz

∣

∣

∣

∣

2

∞
. (5)

We are now ready to restate our uncertainty relation.

Theorem 1. Let ε ≥ 0, let ρABC be a tri-partite quantum
state and let X and Z be two POVMs on A. Then,

Hε
min(X|B)ρ +Hε

max(Z|C)ρ ≥ log
1

c
,

where the entropies are evaluated using the states ρXB and
ρZC, respectively, and ρXB, ρZC and c are defined as above.

III. PROOF OF THE MAIN RESULT

It will be helpful to describe the two measurements in
the Stinespring dilation picture as isometries followed by
a partial trace. Let U be the isometry from A to A, X
and X’ given by U :=

∑

x |x〉 ⊗ |x〉 ⊗
√
Mx. The isom-

etry stores two copies of the measurement outcome in
the registers X and X’ and the post-measurement state
in A. Analogously, V :=

∑

z |z〉 ⊗ |z〉 ⊗
√
Nz. Fur-

thermore, we introduce the states ρXX’ABC := UρABCU
†

6 We will not mention the sets X and Z explicitly in the following.
However, variables x and x̄ are always to be taken from X and
variables z and z̄ are to be taken from Z.

7 We will henceforth omit identity operators whenever their pres-
ence is implied by context, e.g.MxρABCMx should be understood
as (Mx ⊗ 1BC)ρABC(Mx ⊗ 1BC).

8 The norm || · ||∞ evaluates the maximum singular value of an
operator. If the measurements are projective and rank 1 —
i.e. if Mx = |x〉〈x| and Nz = |z〉〈z| — then (5) reduces to
c = maxx,z |〈x|z〉|2.
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and ρZZ’ABC := V ρABCV
†, of which the post-measurement

states of Section II, ρXB and ρZC, are marginals.
We now proceed to prove Theorem 1 for the special

case where ρABC is pure and ε = 0 and then extend the
result to mixed states and ε > 0.

Proof of Theorem 1 (for ρABC pure and ε = 0). The du-
ality relation (4) applied to ρZZ’ABC gives

Hmax(Z|C)ρ +Hmin(Z|Z’AB)ρ = 0 . (6)

Comparing (6) with the statement of the theorem, it re-
mains to show that Hmin(Z|Z’AB)ρ ≤ Hmin(X|B)ρ+log c
holds. By the definition of the min-entropy, we have

Hmin(Z|Z’AB)ρ
= max

σZ’AB

sup{λ ∈ R : 2−λ
1Z ⊗ σZ’AB ≥ ρZZ’AB}

≤ max
σZ’AB

sup{λ ∈ R : 2−λ c1X ⊗ σB ≥ ρXB} (7)

= Hmin(X|B)ρ + log c ,

where, in order to arrive at (7), we need to show that

2−λ
1Z ⊗ σZ’AB ≥ ρZZ’AB =⇒ 2−λ c1X ⊗ σB ≥ ρXB . (8)

To show (8), we apply the partial isometry9 W := UV †

followed by a partial trace over X’ and A on both sides
of the inequality on the left-hand side. This implies

2−λ trX’A

(

W (1Z ⊗ σZ’AB)W
†
)

≥ ρXB . (9)

Moreover, substituting the definition of W , we find

trX’A

(

W (1Z ⊗ σZ’AB)W
†
)

=
∑

x,z

|x〉〈x| ⊗ 〈z|trA
(

√

NzMx

√

NzσZ’AB

)

|z〉 (10)

≤ c1X ⊗ σB . (11)

To find (10), we used the orthonormality of {|x〉}x and
{|z〉}z as well as the cyclicity of the partial trace over A.
Moreover, in the last step, we used that

√

NzMx

√

Nz =
∣

∣

√

Nz

√

Mx

∣

∣

2

≤
∣

∣

∣

∣

√

Nz

√

Mx

∣

∣

∣

∣

2

∞
1A ≤ c1A,

Finally, combining (11) with (9) establishes (8), conclud-
ing the proof.

We now generalize this result to ε-smooth entropies.
The purified distance has some interesting properties [12]
that we use in the following.

9 A partial isometry is an operator W satisfying W †W = Psupp

and WW † = Pim, where Psupp and Pim are the projectors onto
the support and image of W , respectively.

1. Let E be any trace non-increasing completely posi-
tive map (e.g. a partial isometry, a measurement or
a partial trace). Then ρ ≈ε τ implies E(ρ) ≈ε E(τ).

2. Let ρAB be a fixed extension of ρA. Then ρA ≈ε τA
implies that there exists an extension τAB of τA that
is ε-close to ρAB. Furthermore, if ρAB is pure and
|supp {τA}| ≤ |B|, then τAB can be chosen pure.10

Let ρ̃ZC ≈ε ρZC be a state that minimizes the smooth
max-entropy, i.e. Hε

max(Z|C)ρ = Hmax(Z|C)ρ̃. Using
the properties of the purified distance outlined above11,
we introduce a purification ρ̃ZZ’ABC, a state ρ̃XX’ABC :=
Wρ̃ZZ’ABCW

† and its marginal ρ̃XB, which are ε-close to
the corresponding unsmoothed states ρZZ’ABC, ρXX’ABC

and ρXB. Applying the duality relation (6) as well as
the argument in (7) to the smoothed states results in

Hmax(Z|C)ρ̃ +Hmin(X|B)ρ̃ ≥ log
1

c
,

from which the smoothed uncertainty relation follows by
the definition of ρ̃ZC and the maximization in the defini-
tion of the smooth min-entropy.
Finally, we generalize the result to mixed states ρABC.

After we write down the uncertainty relation for a pu-
rification ρABCD of ρABC, i.e. H

ε
min(X|B)+Hε

max(Z|CD) ≥
log 1

c , the uncertainty relation for mixed states is a direct
consequence of the data-processing inequality [12] which
tells us that Hε

max(Z|CD) ≤ Hε
max(Z|C).

IV. APPLICATION TO QUANTUM KEY

DISTRIBUTION

As an example application of our uncertainty relation,
Theorem 1, we show how it can be used to prove security
of Quantum Key Distribution (QKD). For this, we con-
sider an entanglement-based QKD protocol [14], where it
is assumed that two distant parties, Alice and Bob, start
with an untrusted joint quantum state, ρAB, from which
they extract a secret key using only local operations and
public classical communication.12 We note that the se-
curity of the technologically less demanding prepare-and-
measure schemes, such as BB84 [15], can be inferred di-
rectly from the security of a corresponding entanglement-
based scheme [16].
Our security proof will rely on two main ingredients:

(i) the uncertainty relation and (ii) a result that bounds

10 Here, | · | denotes the dimensionality of a Hilbert space.
11 We also use that |supp {ρ̃ZC}| ≤ |supp {ρZ}| · |supp {ρC}| ≤ |Z′| ·

|AB|, where the first inequality follows from properties of the
smooth max-entropy [12].

12 Typically, the state ρAB is generated locally by one of the parties,
who then sends one part of it to the other using an (insecure)
quantum channel.
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the amount of key that can be extracted, by classical op-
erations, from an only partially secure and partially erro-
neous raw key. More precisely, let X and X’ be correlated
bit strings held by Alice and Bob, about which an adver-
sary may have information E. Then Alice and Bob can
employ a classical post-processing procedure (usually con-
sisting of an error correction scheme concatenated with
a procedure called privacy amplification [17, 18]), which
generates a shared secret key of length at most [19]

ℓ ≈ Hε
min(X|E) −Hε

max(X|X’) . (12)

(This can be seen as a single-shot version of the Devetak-
Winter bound [20].) In other words, the length of the
key that can be generated is essentially determined by
the difference between the uncertainty that the adversary
has about Alice’s raw key X, measured in terms of the
smooth min-entropy, and the uncertainty that Bob has
about X, measured in terms of the smooth max-entropy.
While the following considerations are rather general,

we may for concreteness consider the entanglement-based
version of the BB84 protocol [16]. Here, Alice and Bob
start with mutually correlated qubits. These are sup-
posed to be maximally entangled but may, in the pres-
ence of an adversary (or noise), be arbitrarily corrupted.
This means that nothing can be assumed about the ini-
tial state ρAB. The protocol then proceeds as follows.
First, Alice and Bob both measure each of these qubits
with respect to a basis chosen at random from two pos-
sibilities, X and Z, resulting in bit strings X (for Alice)
and X’ (for Bob). Next, Alice and Bob perform statis-
tical tests on a few sample bits taken from X and X’ in
order to estimate the correlation. If this correlation is
sufficiently large, they apply the above-mentioned post-
processing procedure to turn their raw keys, X and X’,
into a fully secret key of an appropriate length, ℓ. Other-
wise (if the estimated correlation is too small) they abort
the protocol.
To prove security of this protocol, we use the post-

processing result, according to which it suffices to verify
that the entropy difference in (12) is positive. It thus
remains to establish bounds on the entropies, under the
condition that the raw keys passed the correlation test.
The smooth max-entropy, Hε

max(X|X’), directly depends
on the correlation strength between X and X’. For ex-
ample, if X and X’ consist of n bits, of which at most a
fraction δ disagree (according to the statistical test per-
formed during the protocol), we have (see, e.g., [19])

Hε
max(X|X’) / nh(δ) , (13)

where h(·) denotes the binary entropy and n is the num-
ber of bits in the raw key.

The situation is however more involved for Hε
min(X|E).

This quantity depends on the correlations between X
and the adversary’s information E, which is obviously
not accessible to Alice and Bob so that no direct statis-
tical tests can be applied. The challenge is, therefore, to
bound these correlations from the data that is available,
i.e., the correlations between X and X’. This is exactly
where our uncertainty relation steps in.

Recall that, according to the protocol description, Al-
ice and Bob measure each of their qubits with respect
to one out of two different bases. One may now think
of a hypothetical run of the protocol where Alice and/or
Bob use the opposite basis choice for the measurement of
each of their qubits, resulting in outcomes Y and Y’, re-
spectively. We may then apply our uncertainty relation,
which gives

Hε
min(X|E) ≥ qn−Hε

max(Y|Y’) = qn−Hε
max(X|X’) ,

where q = log 1
c is determined by the overlap of the two

measurements. (For BB84, we typically have q = 1.) The
last equality follows because the choice of the basis was
random for each qubit, and hence the correlation between
Y and Y’ is identical to the the one between X and X’.
Inserting this into (12) and using (13), we conclude that
the protocol generates a secure key of length

ℓ ≈ n
(

q − 2h(δ)
)

.

We emphasize that this result is valid without resorting
to the assumption of collective attacks. In particular,
in contrast to security proofs based on a previous ver-
sion of the uncertainty relation (2), this security proof
does not rely on additional arguments such as the post-
selection technique [21] or the de Finetti theorem [22]. It
is therefore expected that it will lead to tighter finite-key
bounds [23].

We also remark that the above argument does not rely
in any way on the procedure that Bob used to generate
his part of the raw key, X’. Our proof is therefore in-
dependent of the internal workings of the measurement
device that Bob uses. We thus conclude that the achieved
security is device-independent [24] with respect to Bob.
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